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Modeling, Scheduling and Optimization of

Wireless Sensor Networks lifetime

Yousif Elhadi Elsideeg Ahmed

Abstract

Wireless sensor networks (WSNs), as a collection of sensing nodes with limited pro-

cessing, limited energy reserve and radio communication capabilities, are widely

implemented in many areas of applications such as industry, environment, health-

care, etc. Regarding this large range of applications, many research issues are

introduced including the applications, performance, reliability, lifetime, etc. The

WSNs lifetime considered in this work is the period of time through which the

WSN is perfectly completing its function. This lifetime is affected by many fac-

tors including the amount of energy available, failure probability and components

degradation. The amount of energy available become the most important factor

in case of non renewable components applications. Different algorithms, strategies

and optimization techniques were developed and implemented for this purpose

based on the possibility of activating a subset of sensors that satisfied the moni-

toring constraint, while keeping the others in sleep mode to be implemented later.

This is an NP complete maximization problem that can be solved using disjoint

set covers (DSCs). But the solution obtained using DSCs does not extend always

significantly the WSNs lifetime. So, the present work aims to search for a better

solution using non-disjoint set covers (NDSCs). This approach gives the oppor-

tunity for a sensor to be implemented in one or more subset covers. For that

purpose, we studied a binary representation based model to maximize the number

of NDSCs. Also, we developed a genetic algorithm based heuristic based on this

model to find out the maximum number of NDSCs in a reasonable time. Thus, for

a set of m sensors used to monitor a set of n targets or a field, this heuristic allows

to construct a maximum number q of NDSCs. Additional effort is required to find

the best scheduling for implementing the NDSCs so as to maximize the lifetime

of the sensors involved in the WSNs, considering their limited available energy.

This problem is formulated using integer linear programming (ILP) mathematical

model. The objective function of this problem is the sum of all monitoring seasons

on which all q NDSCs scheduled, and the constraint is the energy consumption in
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all sensors included in all NDSCs. Solving this problem using ILP in a period of

time depends on the complexity of the model and the instances used. To find the

solution in reasonable time, we have developed a NDSCs based genetic algorithm

(NDSC-GA). The candidate solutions are represented in chromosomes composed

of a number of genes equal to the number q of NDSCs, and each gene is the number

of monitoring seasons on which a NDSC is scheduled. We have then developed a

GA that combines the four crossover operators and four mutation operators. The

GA based methods are coded in C programming language to obtain a satisfying

solution and the Cplex software was used to obtain the corresponding exact solu-

tion. Comparing the optimal solution obtained using the ILP on small instances,

to the solutions obtained using our GA based method explained that our methods

can find a solution near the optimal in reasonable time. Then, comparing the

solution obtained using our NDSCs GA based methods, to the DSCs GA based

method in the literature, we showed that the NDSCs GA can prolong the WSNs

lifetime better than DSCs GA for the same instances. Our approach combines

together the scheduling principles and the optimization techniques to maximizing

the WSNs lifetime.



Modélisation, Ordonnancement et Optimisation

de la Durée de Vie des Réseaux de Capteurs

Sans Fil

Resumé

Les réseaux de capteurs sans fil (RCSFs), sont composés d’un ensemble de nœuds

avec des capteurs, transmetteur/récepteur, d’un système de traitement es d’un

réserve d’énergie. Au regard d’applications, de travaux de recherche sont développés

sur l’utilisation de ce réseau leur performance, fiabilité ou durée de vie. La durée

de vie RCSFs correspond à la période à travers laquelle le RCSF fonctionne par-

faitement. Cette durée de vie est très affectée par de nombreux facteurs comme

la quantité d’énergie disponible, la probabilité de défaillance et les dégradations

des composants. L’énergie disponible devient le facteur prépondérant dans les

cas d’applications avec des composants difficilement rechargeables ou non renou-

velables. Différents algorithmes, stratégies et techniques d’optimisation ont été

élaborées et mises en œuvre à cet effet sur la possibilité d’activer un sous-ensemble

de capteurs qui satisfont à la contrainte de surveillance et de garder les autres

capteurs en mode veille pour pouvoir être mis en œuvre ultérieurement. Ainsi,

c’est un problème de type NP complet de maximisation qui peut être résolu en

considérant des Ensembles Disjoints de capteurs de Couverture (EDC). Mais la

solution obtenue à l’aide des EDCs ne conduit pas toujours à une extension sig-

nificative de la durée de vie des RCSFs. Le présent travail vise à rechercher

une meilleure solution basée sur des capteurs regroupés dans des ensembles non-

disjointes de couverture (ECND). Cette approche permet à un capteur de par-

ticiper à une ou plusieurs ensembles de capteurs de couvertures. Nous avons alors

étudié un modèle de représentation binaire des ECNDs pour déterminer un ordon-

nancement optimum permettant de maximiser la vie d’un RCSF. De plus, nous

avons développé une heuristique basée sur un algorithme génétique, pour trou-

ver une solution proche de l’optimal dans un délai raisonnable. Ainsi, pour un

ensemble de m capteurs utilisés pour surveiller un ensemble de n cibles, cette

heuristique permet construire un nombre maximum q d’ensembles ECNDs. Des

efforts supplémentaires sont donc nécessaires pour trouver le meilleur ordonnance-

ment pour la mise en oeuvre des ECNDs, qui maximise la durée de vie globale

iii
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du RCSF, compte tenu de l’énergie initialement disponible dans chaque capteur.

Ce problème est formulé à l’aide d’un modèle mathématique de programmation

linéaire en nombres entiers (PLE). La fonction objective de ce problème est la

somme de toutes les périodes de surveillance pour les q ECNDs programmés, et

la contrainte est la consommation d’énergie de tous les capteurs constituant les

ECNDs. La possibilité de trouver la solution à ce problème par PLE dans une

période de temps donnée dépend de la complexité du modèle et des instances

utilisées. Pour trouver la solution dans un délai raisonnable, nous avons développé

un algorithme génétique (AG) basé sur les ECNDs. Les solutions potentielles sont

représentées dans des chromosomes composés d’un certain nombre de gènes corre-

spondant aux ECNDs, et chaque gène est caractérisé par la période de surveillance

d’un ECND. Nous avons ensuite développé un AG qui combine quatre opérateurs

de croisement et quatre opérateurs de mutation. La méthode basée cet AG a été

codée dans le langage de programmation C pour obtenir une solution satisfaisante

et le logiciel Cplex a été utilisé de déterminer la solution exacte correspondant.

Une comparaison des solutions obtenues sur de petites instances en utilisant la

PLE par rapport aux solutions obtenues par notre AG montre que la méthode

basée sur les AG peut trouver une solution proche de l’optimale dans un délai

raisonnable. Ensuite, en comparant les solutions en utilisant l’AG ECNDs à l’AG

EDCs de la littérature, nous montrons que l’AG avec ECND peut prolonger la

durée de vie des RCSFs plus que les AG avec EDCs pour les mêmes instances.

Notre approche combine ainsi les principes d’ordonnancement et les techniques

d’optimisation pour maximiser la durée de vie des RCSFs.
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General Introduction

A wireless sensor network (WSN) is a collection of a vast number of small, low-cost,

low-power and multi-functional sensor nodes deployed over a region or embedded

in a target to be monitored or tracked. Each sensor node consists of a processing

capability, a memory unit, an RF transceiver, an electrical battery as power source,

and accommodate various sensors and actuators [8]. These nodes self-organize in

a cooperative network [9] to communicate and transmit the sensor measurements

to the end user. The lifetime of each sensor node depends on the energy stored

in the electrical battery. The sensor is considered to be dead once the battery is

exhausted. Most of the applications of WSNs are intended to monitor a region

or a set of targets. In some applications, targets may be located in a dangerous

or remote area where installing sensors in specific positions can be a difficult or

impossible task. In this case, sensors could not be accessed when installation is

completed. For such difficult or impossible to deploy WSNs applications, sensors

are randomly deployed in large numbers by flying an aircraft over the region to

be monitored to ensure that the area or targets of interest could be covered. The

network lifetime is defined as the time elapsed until any active sensor set fails to

satisfy the required coverage [10]. Possible primary states of a sensor in WSN

can be either active or in sleep, where active state consists of three possible states:

transmitting signal, receiving signal and sleeping (or idle waiting for send/receive).

To extend the lifetime of a sensors network, minimal subsets of sensors can actively

cover the targets, while the other sensors can sleep. Then, the problem is to deter-

mine how long to use a given subset and which subset to use next as a scheduling

approach [11]. A significant number of researchers addressed the issue of efficient
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energy management in wireless sensor networks considering the new constraints

about sensing coverage introduced to satisfy the distributed nodes sensing require-

ments [12]. Powerful and modern optimal scheduling methods have emerged for

solving complex engineering optimization problems in the recent years regarding

the various evolutionary computation methods addressed. These methods include

mathematical programming techniques, genetic algorithms, simulated annealing,

ant colony optimization, neural network-based optimization, fuzzy optimization,

etc. The optimization problem can be solved by using decision data, the objective

function to be optimized and the constraints to be met [13]. In GAs, the term

chromosome is typically referred to a candidate solution for an optimization prob-

lem, often encoded as a string of numbers, characters or bits. The genes are either

single digit or short blocks of adjacent bits or characters that encode a particular

element of the candidate solution [14].

Considering the WSNs application in which the sensors are not rechargeable, the

battery lifespan is the available period of sensor node utilization. Therefore, the

optimal lifetime for such WSNs is exactly the optimal utilization time of this lim-

ited resources. For a set of sensors used to monitor a set of targets or region,

subsets of sensors that satisfy the required monitoring should be found so as to

be scheduled and implemented to prolong the network lifetime. The current work

is an investigation for modeling and optimizing the life of such like set of sensors

used for monitoring a set of targets or some fields. It aims to formulate the mathe-

matical model of this problem through which the optimal energy utilization could

be planned and the optimal lifetime could be obtained. This work tried to im-

plement the mathematical programming and the evolutionary algorithm to build

an efficient method for WSNs lifetime optimization, considering limited initial en-

ergy for the involved sensor nodes. An integer linear programming (ILP) model

is developed, and the GA is used in this work to solve the problem of randomly

deployed wireless sensors network lifetime optimization formulated as scheduling

problem.

The rest of this thesis is planned as follows:

• In chapter 2, the literature review of this problem is covered considering the
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WSNs, the scheduling, and the optimization theory. The WSN is described

regarding the architecture, protocols, applications and research challenges.

Then, the models, classes, environment, objectives, and complexity of the

scheduling problems are presented. Finally, the optimization theory is in-

troduced considering both exact and heuristic methods that are aimed to be

implemented in this work. The most common exact methods of the linear

programming (LP) and branch and bound (B&B) are briefly presented in

addition to the most common heuristic and meta-heuristic methods such as

greedy algorithm and genetic algorithms (GA).

• In chapter 3, we stated the problem of WSNs lifetime regarding the envi-

ronmental constraints and the objective function to be maximized. Then,

the most popular methods used to solve this problem in the literature are

described. It is clear that the disjoint set cover maximization (DSC) problem

is widely used to solve the WSNs lifetime optimization problem. Different

exact and heuristic methods are used for WSNs lifetime optimization for-

mulated as DSCs maximization problem. The WSNs lifetime problem is

formulated in many different ways of mathematical modeling and different

exact, and heuristic methods are used to solve it. One should notice that

this problem in NP-hard.

• Chapter 4 details the method we developed using the non-disjoint set cov-

ers (NDSCs) approach. For solving this problem, we split it into two sub-

problems: 1) find the maximum number of NDSCs and 2) find the optimal

scheduling that maximizes the WSNs lifetime. To find the optimal number

of NDSCs we used a simple heuristic developed for this propose then worked

out a GA based one. The second sub-problem started with the mathematical

modeling of the problem then we developed an integer linear programming

algorithm to find an optimal solution. Finally, we suggested and developed

a GA for searching a near optimal solution in reasonable time. The GA

based method coding, initialization, fitness, crossover, mutation, and selec-

tion functions are detailed. Several possible configurations of the GA are

possible based on four mutation strategies and for crossover operators.
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Chapter 1

State of the Art on WSNs

Scheduling and Lifetime

Optimization

1.1 Overview

This chapter aims to present an integrated vision of the problems incorporating the

scheduling and the combinatorial optimization in the area of wireless sensor net-

works. The wireless sensor networks (WSNs), the scheduling, the optimization and

the recent research work in this scope should be explained. A general description

of WSNs then, applications and the recent related research issues are considered.

The scheduling area is briefly presented considering the models, the complexity,

the algorithms and the operation. This chapter focuses on the combinatorial opti-

mization methods including the exact methods, the heuristic and meta-heuristics,

such as the integer linear programming and the genetic algorithms implemented

in this work. To sum up, this chapter helps to understand the problem stated,

with its related works in the next chapter.

5
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1.2 Introduction to Wireless Sensor Networks

The sensing nodes are low-cost devices embodying a unit of digital signal proces-

sors (DSP), with low-power radio frequency (RF) communication capability, and

energy stored in a small battery [1] [2] (see figure 1.1). The nodes have the ability

to collect and communicate data to each other, or to a base station. Thus, each

node can send data through the network for various utilizations such as monitor-

ing, or decision support.

Sensor

ADC

DSP

RF

Memory

Battery

Figure 1.1: Wireless Sensor Node [1] [2].

Sensor nodes communicate not only with each other but also with a base station

(BS), using their wireless radios, allowing them to disseminate their data to re-

mote systems of data processing, visualization, analysis, and storage. Figure 1.2

illustrates two sensor networks assigned to monitoring two distinct areas and con-

nected through the intranet, using their base stations [15] [3]. Authors in [16] have

described different interconnection architectures.
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Cloud 

Buried 
Infrastructures Natural  Environment Sensor 
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Figure 1.2: Sensors connected through internet via base stations.

In addition to the communication protocol layers (application, transport, network,

data-link, and physical), the management (mobility, quality of service, security

and power management) challenges should be considered in the WSNs [17]. The

extended version of this standard was presented by Wang and Balasingham in [3]

as in figure 1.3.

Figure 1.3: WSNs Protocol Stack [3].
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The IEEE 802.15.4 standard specifies the physical layer and medium access control

(MAC) layer characteristics of low power and low data rate radio communications

used in WSNs such as the ZigBee standard. The features based on the IEEE

802.15.4 standard include data rates of 250 kbps, 40 kbps, and 20 kbps, two

addressing modes (16-bit short and 64-bit IEEE for addressing), Carrier Sense

Multiple Access with Collision Avoidance (CSMA-CA) is used for channel access.

Fully handshake protocol for transfer reliability, power management for low energy

consumption, 16 channels in the 2.4GHz ISM band, 10 channels in the 915MHz

for the industrial, scientific and medical radio (ISM) band, and one channel in the

868MHz band [3].

Application Layer

Security Layer

Network Layer

Medium Access Control

Physical Layer

The IEEE 802.15.4 standard

Figure 1.4: ZigBee Protocol Stack [3].

Based on the IEEE 802.15.4 standard, ZigBee is a low-cost, low-complexity and low

power technology. The characteristics of this technology allow to developing full

wireless mesh networks, involving up to 65,000 nodes in the wide range industry

networks. It has network layer, security layers and application layers in addition

to the IEEE 802.15.4 standard (see figure 1.4). It has a global (2.4 GHz) and

regional (915MHz Americans) and (868 MHz Europe) operation bands, and it has
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various transmission options and security key generation mechanism based on the

Advanced Encryption Standard (AES-128) security scheme [18] [19].

Different components and algorithms could be implemented in each of these layers,

thus giving the opportunity to WSNs to be widely applied as an efficient link

between the digital virtual world and the physical world. Efficient multi-channel

media access control could apply to establish the nodes connectivity [4].

The ad-hoc networks [4], depicted in Figure 1.5, offered a flexible access medium,

with greater energy efficiency, security, etc., while the capability Using custom

routing control protocols. This kind of network is selected for a significant amount

of research investigations and many applications [20] [21].

N1 N2

A B

C D
E

F G

H I

Figure 1.5: An ad-hoc networks [4].

The following subsections describe some of the WSNs applications, the research

challenges, and the WSNs modeling. Also, the problem of lifetime optimization is

introduced through the main factors affect the WSNs lifetime such as the energy,

components degradation and failure.

1.2.1 WSNs applications

WSNs applications are increasingly penetrating into a broad range of the daily

life and systems with a large variation in characteristics and requirements. Their

operation relies on exchanges of data and information through different layers using

protocol stacks with specific constraints and needs. So, to meet the increasing
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needs of users and applications, [22] and solve the tough operating problems,

close collaborations will be required between software developers, researchers, and

hardware designers.

From service provider vision, a WSNs aims to provide the quality of service (QoS)

required for the application layer, considering the physical and data link layer

constraints. In a more abstracted vision, when the hardware constraints related to

the application, the physical and data link layer, and the services are encapsulated,

a service interface abstraction level is used for the interaction between the requests

and the WSN, and the ad-hoc architecture may be presented as in figure 1.6 [5].

The application

Service Interface

Service

Service

ServiceService

The hardware

Figure 1.6: Application and a service interface [5].

The WSNs applications include environmental monitoring, industrial infrastruc-

tures, civil infrastructures, logistics, military, positioning and tracking, transporta-

tion, medical applications, cyber-physical systems and the internet of things [5]

[22].
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• Environmental applications

The WSNs are intensively implemented in the environmental monitoring ap-

plications such as weather, radiation and air pollution monitoring systems

[23]. The WSNs architecture and nodes should have the capability to com-

municate with each other, collect the environmental data from a region of

interest and transmit the data via the gateway to the monitoring center

in addition to the limited processing capability. The processing can mini-

mize the invalid data transmission to reduce the overall energy consumption

during data transmission. The WSNs can monitor several environmental

parameters according to the application such as underground water level,

pressure, temperature, wind direction and speed to provide various services

for end users. The architecture of such systems is widely discussed, for in-

stance in [24]. Autonomy, reliability, and flexibility are the most common

requirements of such networks [25].

• Industrial infrastructures applications

Reliability, availability, maintainability, and mobility characteristics are cru-

cial for the WSNs implemented in industrial infrastructures and automation

applications. Tasks of events detection, periodic data collection, real-time

data acquisition, equipment control, robots control and real-time inventory

management have been assigned to WSNs. WSNs implementation has some

advantages in industrial infrastructures compared to the wire communica-

tions. The benefits include flexibility of installation and upgrading the net-

work, lower costs of deployment and maintenance, decentralization of tasks

automation, flexibility for moving and rotating devices, easier fault diag-

nosis. Possible interfaces to wide area networks from different networks

can help improving the efficiency of automation infrastructures. An addi-

tional advantage is the high interconnection capability of integrated wireless

sensors with built-in communication using micro-electromechanical systems

(MEMS) [26].

• Military applications
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WSNs is one main part of the modern military logistics, operations, and hu-

man resources protection. The requirement and challenges of the WSNs de-

sign depend on the operating scenarios for which they are intended. Most of

the military applications are large-scale implementation in which the WSNs

are non-manually deployed. Different sensor types are implemented in par-

ticular WSNs for supporting defense strategies, environment surveillances,

and logistics support [27].

• Medical and healthcare applications

High performance and reliability computational devices, smart sensors, and

high sensitive measurements devices are required in WSNs architecture im-

plemented in healthcare so as to allow in-home assistance or telemedicine and

perform patient progress monitoring and emergency situations. Also, light

or voice reminders could be used for the patient to remember the medical

data and time [28].

• Transportation and mobile applications

The efficient traffic management systems are required to cope with the rapid

increasing of traffics around the world, with accidents avoidance support.

The WSNs used in intelligent transportation systems have introduced new

ideas about the smart city applications with the capability to offer traffic

safety and congestion control [29].

• Internet of things

Internet of things (IoT) is the capability of physical objects or things with

embedded smart system to communicate and sense their internal and ex-

ternal environment. The WSNs are used to provide the communication

infrastructures for the IoT to introduce new applications, services, and the

smart world. Figure 1.7 explains the IoT applications and future [6].
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Figure 1.7: IoT future and applications [6].

Several applications and research challenges related to IoT are brought out

and classified by Miorandi et al [7] as in figure 1.8 [7].

Security

Trusted
Platforms,

Low-complexity,
Encryption,

Access control
Privacy,

Data
confidentiality,
Authentication,

Identity
management

Energy harvesting,
low energy computing
architectures, RFID

Network protocols,
Connection awareness,
Naming systems, etc

Data representation,
Mining, Ob. virtualization,
Profile managements, etc

Computing &

Communication

Distributed
Systems

Distributed

Intelligence

Figure 1.8: IoT research challenges [7].

• Cyber physical systems

The Cyber-physical systems (CPS) are systems that integrate natural and

human-made physical systems with computation, communication, and cy-

bernetics as an interaction between physical and computational environ-

ments. The sensing and sensor networks are the provider of the communica-

tion and data collection for the cyber-physical systems and its applications

[30] [31].
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The characteristics and advantages of WSNs are still attractive for new appli-

cations to be introduced. This large area of applications has brought out more

research challenges to be investigated in WSNs. The next paragraph introduces

some of them.

1.2.2 Wireless Sensor Networks research challenges

The evolution of WSNs, which merged many fields with a broad scope of appli-

cations and brought out many attractive issues, are addressed by intensive in-

vestigations. The problems include localization, connectivity, coverage, obstacle

adaptability, node density, communication and sensing range, energy, lifetime, sen-

sor relocation, movement of sensors, fault tolerance, reliability, ...[32] [17]. The

next paragraphs present some of the WSNs research challenges.

• Deployment

For localization and deployment, the targeted object or field position should

be known. Random deployment could be used by default to access envi-

ronments. The sensor node could be efficiently used or not completely used

according to its position [33]. Network cost, coverage, connectivity and life-

time constraints could be considered to optimize the WSNs deployment [34]

in addition to the targets mobility and tracking [35].

• Connectivity

Many protocols are developed recently as connectivity and routing strate-

gies considering the dynamic topology of the WSNs to ensure the collected

data propagation to the end destinations. For more details about routing

protocols of mobile ad-hoc Networks, the reader can refer to [20] for example.

• Coverage control

Many protocols were developed to providing a continuous and effective cov-

erage for the area of interest or the region to be monitored as one of the
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important research challenges faced in the WSNs [36]. A centralized con-

trol and distributed control are the main visible strategies used in coverage

control developed for the ad-hoc sensor network [22].

• Self-adaptivity

The self-adaptivity and the adaptability to obstacle typically come together

when describing the WSNs behavior or responding to the environmental

changes or barrier. The capability of the WSNs to reorganize itself with the

new situation or adaptability ought to be considered in the WSNs deploy-

ment and installation [37] that could support the fault-tolerance for WSNs

based systems [38].

• Nodes density

The node density is used to describe the number of nodes allocated in the

targeted field. It has a direct effect on all or most of the WSNs research

challenges such as the connectivity, energy consumption, adaptability, re-

siliency and lifetime. Considering that the node has the capability to act

as sender and router, the power consumption in each node is affected by its

position, the nodes near the base station spend more energy for data routing.

Therefore, the node density should be greater in the neighborhood of a base

station, or the sensing nodes will not be connected soon and so the node

lifetime will be shorter [39].

• Communication range

For each node, the communication range is defined as the circle area “or

section” inside which the neighbor nodes can receive its signal with a radius

equal to r [40].

• The energy

The power management [41] is always considered in WSNs design regarding

the available energy amount used for sensor node operations. Typically, the

sources of energy are batteries which must be replaced or recharged after

the drain. For some nodes, both options are not applicable. Therefore, the

sensor nodes will just be discarded once their energy reserve is depleted [15].
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The efficient coverage control methods could optimize the energy utilization,

the WSNs lifetime [42] and the number of nodes required for coverage [43].

The energy reserve, coverage control, node density, deployment are main factors

to prolong the WSNs lifetime, availability and reliability. How can these factors

affect the lifetime is described in details in the next chapter as the main problem

of this work.

1.2.3 Wireless Sensor Networks description and modeling

For every WSN, a limited number of sensor nodes are deployed in two-dimensional

or three-dimensional space, for the surveillance of specific targeted objects or fields.

The sensor nodes send the collected data to static or mobile base stations. There-

fore, the deployment of the sensor node requires to specify the values of (x, y)

of each node in the 2-dimensional space or (x, y, z) for 3 dimensions. Then, the

capability of each sensor node to monitor all or part of targeted objects or fields

mainly depend on this deployment and the coverage range r. Every sensor node i

can monitor every target j, if the distance dij is less than or equal r. Figure 1.9

displays 10 sensor nodes deployed in 10x10 area with r = 1.5.
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Figure 1.9: WSNs deployment.

The connectivity and data transmission between sensing nodes also depend on

deployment values (x, y) of the sender and receiver in addition to the positioning

of the base station (BS). The distance between sender and receiver dsr must be

less than or equal to r to ensure a possible connectivity to the BS.

1.2.4 WSNs lifetime optimization through energy consump-

tion

The WSNs lifetime, as one of the most significant design challenges [44], is exactly

the time elapses until all available sensors couldn’t satisfy the required coverage

constraint. The lifetime may be affected by different factors such as sensor degra-

dation or failure and the available amount of energy. When the reserve of energy

is not renewable, and the sensors is operating in some critical area or location [45],

the reserve of energy become the most important factor. Therefore, the lifetime
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of the WSNs could be optimized through optimization of energy consumption. In

ad-hoc WSNs, the energy consumption depends on the data sensing rate, receiving

and transmission rate[46] [47], which depend on the nearness of the node to the

base station. Although there are many recent works regarding this problem, it has

not been fittingly solved [48].

1.2.5 WSNs reliability, failure and self-adaptivity

Reliability is one of the most significant requirements for a wireless sensor networks

applications in the areas of industry, healthcare, and environments. Reliability

level of the network can be evaluated using reliability modeling and analysis as

key steps for designing and optimization of sensor network systems. Whatever

the strategy used for sending the sensed data to the end user, data cannot be

delivered if the path fails, which may happen either in the communication link

or the WSN node. A link failure can happen due to different factors such as

noise, interference, distance, or environmental conditions. While, the WSN node

can fail due to firmware factors (embedded operating system) or hardware factors

(radio, sensors and energy devices) failures [49]. In [49] the reliability of a node

is defined as sequential sorted blocks of all factors such as application, firmware,

middleware, hardware, radio communication or battery level. As the reliability of

a WSN node is a function of the reliability of its components arranged in series, if

one of them fails, the whole node fails. Regarding the reliability, the WSNs design,

and deployment [50] should consider sensor node constraints like battery power,

transmission range, sensing range and processor capability. The energy, sensing,

processing and communication issues should meet the reliability requirements,

and the communication ought to consider the connectivity requirements so that

the end user can access the network and receive the expected data sensed and

processed by the sensing nodes. Achieving the overall network reliability of the

communication process is to construct a network with the minimum number of

reliable links and each link must be feasible [51]. The self-adaptivity has different

definition[52]: it is the capability of the system to adapt its behavior according
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to the environment or the ability of a system to achieve its goals in a changing

environment, by selectively executing and switching between operating models.

Therefore, a self-adaptive system evaluates its behavior and changes its operation

when the evaluation indicates that its performance is not sufficient. Finding a

better possible configuration or performance according to the most common stages

is depicted in figure 1.10. The tasks for self-adaptivity includes: monitoring of the

targeted system or the environment to collect the conditions data required for

adapt, analysis of the collected data to make adaptive decisions in the next-step,

determine and plan the steps to achieve adaptivity, and execute the steps.

Monitoring

Executing

Planning

Analysing

Figure 1.10: The self-adaptivity common stages

At all time, the system components are monitored, the collected data analyzed

and estimated to the required, and then the next operation strategy is planned “if

available” and executed.

The WSNs lifetime should be optimized considering the limited energy reserve,

the component degradation and the probability of failure constraints. An effi-

cient resources utilization, tasks assigning and scheduling method could prolong

the WSNs lifetime. The next subsection describes the scheduling environment,

constraints, objectives and its applicability in WSNs.

1.3 Scheduling problem

Planning and scheduling as defined in [53] are decision-making processes that are

used on a regular basis in manufacturing and services. Mathematical techniques
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are utilized in all planning and scheduling functions. Solving a scheduling problem

can consist to organizing a set of activities (jobs or tasks) to be executed, by

using the available resources capacities. This execution has to consider and follow

different technical rules (constraints) to achieve the maximum efficiency of the

resources (according to a set of criteria or objectives) [54]. The number of jobs

and the number of machines are assumed to be finite and denoted by n and m

respectively. Then the pair (i, j) refers to the processing step or execution of job

j on machine i. The following pieces of data are associated with job j [55]. The

task index, processing time, release time and priority index are relevant variables

in scheduling problem.

1.3.1 Modeling the scheduling problems in WSNs

The problem of scheduling in WSNs could be considered as follows:

Given a set of sensors and a set of targets, find the sensors assignment to targets

coverage that maximizes the total coverage time or more objectives. Figure 1.11

gives a suggestion of 5 sensors assigned to cover 4 targets.

T1

T2

T3

T4

s2

s3
s4

s5s1

1 2 3 4 5 6 7 8 coverage time

Figure 1.11: Sensor to targets coverage scheduling

In figure 1.11, T3 is not covered through all coverage time while T1 and T2 are

not covered for a part of the coverage time. In most cases, the scheduling part

required after covers determining is left without solution [56] [57].
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To ensure that all targets are covered all time, the possible number of covers

should be found ”not necessary to be disjoint.” Then, one should search for covers

to targets assignment to optimize the coverage time. Figure 1.12 gives a suggestion

for 4 covers composed of 7 sensors assigned to cover 4 targets.

T1

T2

T3

T4

s7

s5
s6

s2s1

s3 s4

s2

s4

1 2 3 4 5 6 7 8 coverage time

cover1 cover2 cover3 cover4

Figure 1.12: Covers to targets coverage scheduling

In figure 1.12, cover 1 includes S1 and S3, cover 2 includes S1, S2 and S4, cover 3

includes S4 and S5 and cover 4 includes S6 and S7. Therefore, this problem could

be split into two sub-problems:

1. Given a set of sensors and set of targets, find the optimal covers.

2. Given a set of covers and a set of targets, find the coverage assignment that

optimizes the coverage time.

In addition to the coverage, the parallel processing running on the collection of

interconnected sensor nodes to execute a set of processes could be modeled as

parallel machines, (see [58] for more details).

1.3.2 Scheduling environments, constraints, and objectives

The scheduling problem description is always composed of three parameters α, β

and γ. The α field describes the machine and resources environment and contains
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generally one entry. Tthe β field provides the necessary details about the process-

ing constraints, and it can contain a single entry, multiple entries or nothing. The

γ field describes the objective to be minimized and contains, in general, a single

entry [55]. The possible situations of the machine environments specified in the α

field are: 1) single machine (1) as the simplest of machine environment, algorithms

such as weighted short processing time first (WSPT), weighted short discounted

processing time (WSDPT) and earlier due date first (EDD) can be used to achieve

the objectives, 2) parallel machines models in which a set of machines in parallel,

widely applied in information systems, can be: identical machines in parallel (Pm),

machines in parallel with different speeds (Qm), or unrelated machines in parallel

(Rm), 3) flow shop (Fm) is a set of machines in series, each job has to be processed

on each one of the machines. It could be generalized as flexible flow shop (FFc)

when identical machines in parallel used in a subset of the series stages. 4) the job

shop (Jm) in which each job has its required route to follow in the environment,

it could be generalized as a flexible job shop (FJc) when identical machines in

parallel are used in a subset of the series stages. 5) the open shop (Om) determines

a route for each job, different jobs could have different routes is allowed, some of

the processing times on each one of the machines may be zero. The restrictions

and constraints that could be found in β field includes: release dates, sequence

dependent, preemption (prmp), precedence constraints (prec), representation as a

directed acyclic graph (DAG), machine eligibility restrictions (Mj), permutation

(prmu), blocking (block), no ? wait (nwt) and recirculation (recirc).

Regarding the input variables of every scheduling problem (the environments (re-

sources) variables and constraints), the scheduling problems aims to perform the

following possible objective functions always to be minimized in the γ field [55]: 1)

the makespan (Cmax) that defined as max(C1, ..., Cn), is equivalent to the time

required for the last task to leave the system. Many approximation algorithms

developed for finding the minimum makespan of single machine [59] or parallel

environments. A minimum makespan usually refers to a good utilization of the

resources, 2) the maximum Lateness (Lmax) that defined as max(L1, ..., Ln). It

measures the worst violation of the due dates. This objective has been studied for
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different applications and constraints through many algorithms as in [60], 3) total

weighted completion time (
∑
wjCj) which is the sum of the weighted completion

times of the n jobs gives an indication of the total costs to be incurred by the

schedule. The total weighted completion time or the weighted flow time is aimed

to be minimized in many information system applications such as data centers

[61], 4) the discounted total weighted completion time (
∑
wj(1−e−rCj)) is a more

general cost function compared to the previous one, where costs are discounted at

a rate of r, 0 < r < 1, per unit time. That is, if job j is not completed by time t, an

additional cost wjre
−rtdt is incurred over the period [t, t+dt]. If job j is completed

at time t the total cost incurred over the period [0, t] is wj(1− e−rt). The value of

r is usually close to 0, say 0.1 or 10%. 5) total weighted tardiness (
∑
wjTj) is also

a more general cost function than the total weighted completion time, 6) weighted

number of tardy jobs (
∑
wjUj) is not only a measure of academic interest; it is

often an objective in practice as it is a measure that can be recorded very easily.

All the objective functions above are so-called regular performance measures.

1.3.3 Complexity of the scheduling and optimization prob-

lems

Solving a scheduling and optimization problem amount to finding the optimal

or near-optimal solutions for the objective function considering some goals and

restrictions. The complexity of the optimization problem could be evaluated based

on the computational resources required to solve it considering both time and

space complexity. The optimization problems are classified in different groups

or complexity classes according to the computational efforts required to find the

optimal solution. The problems in one complexity class could have limits linked

to the computational complexity, which depends on the size n of the problem or

its input size. the complexity classes includes the polynomial P , non-deterministic

polynomial NP , NP-complete and NP-hard [62] The complexity P class is a set

of optimization problems that can be solved in polynomial time complexity in the

worst-case. The time required for solving effectively this problem in P is bounded
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for any instance of the problem with n inputs (n > 0) by a polynomial function

of the type O(nk). The complexity NP class includes problems with practical

importance. It describes the set of optimization problems that can be solved

in polynomial time in worst-case using a non-deterministic algorithm. The NP −

complete belongs to NP , and there exist polynomial algorithms to transform every

problem in NP into it. The NP−hard is not in NP but there is a NP−complete

problem that can be transformed into it with a polynomial time. It is assumed

that P is a subset of NP (P < NP ) whether some problems are in NP , but not

in P . The Complexity classes relations are depicted in figure 1.13 [63] [64].

PNP-complete

NP-hard NP

Figure 1.13: Complexity classes.

1.3.4 Scheduling classes

In scheduling terminology, a sequence usually corresponds to the n task permuta-

tion or the order of jobs processing on a given machine while the schedule usually

refers to an allocation of tasks within a more complicated setting of machines that

allows the possibly for preemptions of tasks by other tasks that may be released at

a later time. Different scheduling classes with different operating conditions could

be abstracted as in figure 1.14.
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Semi− Active

ActiveSchedule

Non−Delay

Figure 1.14: Scheduling classes.

A feasible schedule is called non-delay if no machine is kept idle while an operation

is waiting for processing. Requiring a schedule to be non-delay is equivalent to

preventing unforced idleness. A feasible non-preemptive schedule is called active

if there is no possibility to construct another schedule, by changing the order of

processing by the resources, with at least one operation finishing earlier and no

operation finishing later. A feasible non-preemptive schedule is called semi-active

if no operation can be completed earlier without changing the order of processing

on any one of the resources.

1.4 Optimization approaches

Optimization problems are common in many fields and different domains in the

human activities where we have to find an optimal or near-optimal solutions for

specific problems with the capability to meet some limitations. The most common

optimization problems characteristics include the following:

1) It has many alternatives of decision and possibilities of solution.

2) Additional constraints can limit and decrease this number of available alterna-

tives.

3) Each decision can generate a different effect on the evaluation criteria.
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4) It has an evaluation function that based on these alternatives described as func-

tion of the decision variables [63].

Given a set of decision variables V = {v1, v2, ..., vv}, optimization considered to

obtain the best solution for an objective function of this decision variables f(V )

according to some restrictions on the decision variables. The best solution is ob-

tained either by minimizing or by maximizing the objective function, and the

optimization consists of finding the condition of the decision variables that gives

the maximum or minimum value of the objective function. Figure 1.15 explains

that if a point vi ∈ V is approved with in the minimum value of the function

f(v), the same point is also confirmed in the maximum value of the opposite of

the function, −f(x) [65] .

Figure 1.15: Maximization and minimization of f(v).

The optimization problem, in general, has the following mathematical formulation:

• The objective function

Maximize/Minimizef(v1, v2, ..., vn)

• The constraints

Φi(v1, v2, ..., vn) ≤ 0(i = 1, ..., l)
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ϕj(v1, v2, ..., vn) ≤ 0(i = 1, ...,m)

This formulation is normally referred to as the general nonlinear programming

problem. The feasible point of a solution is any point value of the vector V that

satisfies all these equations [66].

1.4.1 Combinatorial optimization

Combinatorial optimization methods are useful in a particular type of mathemat-

ical optimization problem in which the set of feasible solutions of the problem is

finite. Such a problem is defined, in its most general form, on a finite set of feasi-

ble solutions with a reasonable characterization [67]. The computational problems

normally require significant efforts to search a huge number of candidates for the

optimal solution in which the evolutionary algorithms could be used. The evolu-

tionary algorithms are natural principles based computational methods developed

as a simulation of natural behavior to be implemented in computer science for

human systems developing. This kind of algorithms is involved in many fields of

research, development, and applications as in figure 1.16 [64].

Industrial engineering
Electrical engineering

.....

Operations

research
EAs

Artificial
intelligence

Figure 1.16: Evolutionary algorithm applications.
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The key features of the evolutionary algorithms include: 1) has group of solutions

or individuals to be enhanced called Population (Population-based); 2) the solu-

tions or individuals in a population have its value or representation (code), and

the evaluation of this values is called its fitness value (Fitness-oriented); and 3)

Variation-driven.

1.4.2 Optimization methods

This subsection aims to describe the methods, techniques or strategies used to

solve the optimization problems in many fields of application. According to the

quality of solution guarantee, these could be classified in exact and approximation

or heuristics as in the next paragraphs.

1.4.2.1 Exact methods

This sub-section describes the exact methods that aimed to guarantee the optimal

solution, even if it takes greater computational efforts regarding the resources and

time. The exact methods include the Branch and Bound, the Branch and cut,

the Simplex, etc. Several examples are described below in addition to the linear

programming used in this work.

Linear Programming The common form of the linear programming is as

follows: Maximize

f(x1, ..., xn) = c1x1 + c2x2...+ cnxn (1.1)

Subject to :

n∑
i=1

aijxi ≤ bj∀j = 1, ...,m (1.2)
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0 ≤ xi∀i = 1, ..., n (1.3)

where m and n are given natural numbers, ci, bj and aij are constants and xi are

decision variables. Expression (1.1) is the objective function to be maximized or

minimized and expressions (1.2) and (1.3) are constraints. With one more charac-

teristic that both the objective function and the constraints are linear equations or

inequalities [68] [69]. For a linear programming problem with two variables as the

simplest case, the optimal solution can be obtained by using a graphical method

as in figure 1.17

a b

c

d Optimal

Figure 1.17: Graphical method for simple LP - unique solution.

In some cases, the optimum solution may not be unique for example in the case

of parallel function as in figure 1.18.
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a b

c

d

Figure 1.18: Graphical method for simple LP - parallel function.

Branch and Bound The branch and bound method is one of the main strate-

gies used for solving discrete and combinational optimization problems. Regarding

a combinatorial optimization problem a finite set of feasible solutions, the branch-

and-bound deals with these feasible solutions in a systematic manner to find the

optimal solution of the problem. It tries to solve the combinatorial problem by di-

viding it into smaller problems and computing an upper and lower bounds for each

of the smaller problems that may be employed to exclude parts of the solution set

out of consideration [67]. The branch and bound method has three main steps: 1)

selection, 2) branching and 3) bound, with an appropriate rule or function should

be defined for each step. See [70] for applied branch and bound example.

1.4.2.2 Heuristics and meta-heuristics

For hard problems, the exact algorithm that can guarantee the global optimal

solution within an acceptable time might not be possible. Thus many heuristic

algorithms have been developed for finding faster near-optimal solutions. Heuristic

algorithms can quickly generate a solution with acceptable quality. But there is

no guarantee for an optimal solution can be obtained and the time to derive a

solution is also long in some worst cases [64]. Recent years have brought out a

significant growth in the development of heuristic procedures to solve optimization
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problems. There are many motivations and reasons for using heuristic methods.

1) No method to resolve the problem to optimality is known; even if there exists an

exact method to solve the problem, it cannot be implementable on the available

computing hardware. 2) The flexibility of the heuristic methods compared to

the exact methods. 3) The heuristic method could be used as part of a global

procedure that aims to find the optimum solution to the problem. The good

heuristic algorithms should have the following characteristics: 1) It can obtain the

solution within reasonable computational effort; 2) The quality of solution should

be high and should have a high probability to find the near optimal solution; 3) The

probability of obtaining a far from optimal or a bad solution should be very low.

The heuristics and meta-heuristics include the Genetic Algorithms, the Greedy

Algorithms, the Simulated Annealing, etc. [67]. It is important to highlight some

of them in the next subsection, especially the genetic algorithm that we developed

and implemented in this work.

Genetic Algorithm It is common in computer science to search for a fea-

sible and acceptable solution of a decision support problem among a collection

of candidate solutions. The genetic algorithm (GA) is an approach to solution

search introduced by Holland in the 1960s [14]. Compared to the evolutionary

programming strategies, Holland’s goal was not only to design algorithms to solve

complex problems but also to study and develop methods inspired by the natural

adaptation processes applied to computing. Thus, the GAs have become the most

modern evolutionary computation research technique. All the genetic information

in humans is stored in 23 pairs of chromosomes. Each of these chromosomes is

composed of several parts called genes as in figure 1.19. The genes code the prop-

erties and the characteristics of an individual and determine the characteristics of

the next generations, an interesting aspect of evolution [71].
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Figure 1.19: Genes and chromosomes

The GA simply executes a number of iterations or generations of selection, mod-

ification and update of a set of candidate solutions or population [72] as basic

evolution cycle in figure 1.20

Selected parents

Present generation

New generation

Selection

Modification and mutation

Replacement

Figure 1.20: A simple evolution cycle.

The principles of a simple genetic algorithm is an integration of terminologies

(subfunction and steps) includes the encoding, populations, individuals, crossover,
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mutation, selection, fitness, evaluation and iterations that are used in a specific

way to formulate a GA based method [73].

• The encoding process:

This is used to represent the solution into individual genes and chromosomes

so as to be processed using GA operators and functions. It can be performed

using bits (binary), octal encoding, numbers (integer, real), arrays or any

other objects.

• Population:

A population is a set of individuals or candidate solutions. The initial pop-

ulation generation consists of a given number of individuals equal to the

population size. This initial population is usually created randomly in GAs

to be used as starting point of the searching process.

• Fitness and selection:

The fitness function is used in genetic algorithms to calculate the value of the

objective function or constraints for its individual. To calculate the fitness,

the chromosome has to be decoded first, then use the objective function for

the evaluation. The assessment gives an indicator, which corresponds to

how the chromosome is close to the optimal solution. The purpose of the

selection process is to find fitter individuals of the population to be used as

parents for reproduction of the next generation.

• Crossover:

The crossover is the reproduction operator used for producing new children

based on the selected parents. The parent’s offspring is typically composed of

three steps: selects a pair of individual strings as parents, select the crossing

at random along the chromosome length and finally, exchange the position

values between the two strings according to the crossing points. Different

types of crossover are developed such as single point crossover, two-point

crossover, N-point crossover, uniform crossover, three parent crossover, or-

dered crossover, partially matched crossover, etc. The single point crossover

and two point crossover are depicted in figure 1.21
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Parent 1

Parent 2

0 1 1 0 0 1 0 1

1 1 0 1 0 0 0 1

Parent 1

Parent 2

0 1 1 0 0 1 0 1

1 1 0 1 0 0 0 1

Parent 1

Parent 2

0 1 1 0 0 0 0 1

1 1 0 1 0 1 0 1

Parent 1

Parent 2

0 1 1 1 0 0 0 1

1 1 0 0 0 1 0 1

Figure 1.21: Single point crossover and two point crossover

For the partially matched crossover, for two with the same length, two

crossover points are selected randomly and uniformly along the length. These

crossover points give a possibility for a matching selection used to affect a

crossover operator through position exchanges as in figure 1.22

Parent 1

Parent 2

0 1 1 0 0 1 0 1

1 1 0 1 0 0 0 1

Parent 1

Parent 2

0 1 1 1 0 0 0 1

1 1 0 0 0 1 0 1

Parent 1

Parent 2

0 1 0 1 0 0 0 O

1 1 1 0 0 1 1 1

Figure 1.22: The partially matched crossover



Yousif Elhadi Elsideeg Ahmed 35

• Mutation:

The mutation is used for preventing the algorithm from being trapped in a

local optimal search. Different forms of mutation according to the various

types of representation such as: reversing, interchanging, replacement, etc.

[71]. The mutation can be done in general in two steps: genes selection and

genes modification. The genes selection process is typically random, and

many different modification functions are used according to problem nature

and coding.

Many versions of GAs were developed such as parallel distributed GA, fine-grained

parallel GAs (cellular GAs), multiple-deme parallel GAs, hybrid GA, adaptive

AG, fast messy GA and independent sampling GA [71]. The principles of a simple

genetic algorithm is depicted in figure 1.23.

Many heuristics were introduced and implemented in the literature including meth-

ods such as, Greedy Algorithm, Ant Colony, and simulated annealing for example.

Simulated Annealing: This method was imported from the physical anneal-

ing process of heating up and cooling down solid metals. The method was defined

in combinatorial optimization and developed to finding a solution with a mini-

mal cost from a large number of solutions. Thus, the simulated annealing (SA,

for short) is a method designed for solving problems in the field of combinatorial

optimization, by simulating the physical annealing process. The SA has many

features such as the possibility of finding a high-quality solution, simple mathe-

matical modeling and not need large computer memory. Furthermore, it is possible

to start the SA with any given solution and try to enhance it which could be used

to improve a solution obtained by other heuristic methods [66]. The exact, as well

as the heuristic methods, have been suggested by researchers and implemented for

solving the WSNs lifetime optimization problems, as will be presented in the next

chapter.

Considering that the heuristics could not grantee the optimal solutions, there are

many possibilities for the quality assessment of the heuristic base solutions. The



Yousif Elhadi Elsideeg Ahmed 36

Start

Randomly generate the initial population

Fitness and selection

Crossover

Mutation

New generation

Stop

Yes

No

End

Figure 1.23: The simple genetic algorithm

later could be compared to an optimal solution, to an appropriate bound, or to

other heuristics solutions [74]
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1.5 Conclusion

Regarding the WSNs research challenges and the capabilities of the scheduling

models and optimization techniques, the WSN is one of the most recent popular

fields of scheduling and optimization application. The optimization methods are

widely implemented to solve a WSNs research problem. The optimal deployment

[75], data aggregation [76], optimal mobile sink node positioning [77] and lifetime

optimization [77] are only some examples of the optimization methods application

to WSNs research challenges. The problem of WSNs lifetime is a scheduling and

optimization problem as described in many research work [78], especially, when a

limited number of sensing node with a limited energy reserve are used. Limited

resources ”sensor nodes” are aimed to be optimally utilized to achieve an opti-

mal coverage period ”lifetime”. The lifetime modelizes the objective function to

be optimized, and the restrictions on the resources utilization stand for the con-

straints. This kind of limited resources problems is suitably modeled by LP if it

is possible to model both the objective function and the constraints with linear

equations or inequalities. The performance and efficiency of GAs put it as the

highest priority to be used for solving such kind of problems within reasonable

computational efforts compared to the other evolutionary strategies. This work

is aimed to formulate the problem of WSNs lifetime optimization considering its

limited energy resources into ILP mathematical model and find the optimal so-

lution of this problem. The ILP optimization tools are used to find the exact

solution and the GA-based algorithms with different configurations of crossover

and mutation operators are used to search for near-optimal solutions in reason-

able computational efforts. More description about WSNs lifetime formulations

and the methods used to solve this problem in the literature are mentioned in the

next chapter.
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Chapter 2

Problem Statement as Disjoint

Set Covers Maximization

2.1 Overview

This chapter describes the problem of WSNs lifetime optimization considering

the limited initial energy reserve. First, it explores the previous works on this

issue, the definitions, and theorems required for a good understanding of this

problem. The WSNs lifetime optimization problem is widely addressed in the

recent years. In a significant amount of the research work, this problem has been

formulated as a disjoint set covers (DSC) maximization problem, as mentioned in

the next subsection. Other researchers have preferred to formulate this problem

by a mathematical model, then, they have suggested exact and heuristic methods

to find an optimal or near-optimal solution. We prefer to review this works in

the following subsections considering the Problem statement declaration and the

methods used.

39
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2.2 Problem statements and description

This section explains the problem of lifetime optimization in WSNs and its re-

lated basic definition. Also, it presents the utilization of DSC maximization, and

the latter was used in WSNs lifetime optimization. Then, it describes how can

the WSNs lifetime be formulated as a scheduling problem, and finally, it gives an

overview of the objective function to maximize and the constraints to be consid-

ered. Table 2.1 describes the notations used to formulate the problem for a set S

= {s1, s2, ..., sm} of sensors used to monitor a set T= {t1, t2, ..., tn} of targets.

Table 2.1: Problem notations

S Set of sensors {s1, s2, ..., sm}
T Set of targets {t1, t2, ..., tn}
m Card(S) = number of sensors in S
n Card(T) = number of targets in T
i Sensors index ⊂ S, i ∈ {1, 2, ...,m}
j Targets index ⊂ T , j ∈ {1, 2, ..., n}
S(tj) Set of sensors that can cover target j
T (si) Set of targets that sensor i can cover
Ei Initial energy of sensor i
C A collection of subsets of sensors that can cover all

the targets in T
q Card(C) =number of covers in C
l Covers index ⊂ C, l ∈ {1, 2, 3, ..., q}
S(Cl) Set of sensors included in cover Cl

T (Cl) Set of targets covered by cover Cl

L Network lifetime

Each sensor si ∈ S has the capability to cover a subset of targets T (si) ⊂ T .

T (si) could be all or part of T , Card(T (si)) ≤ n, and each target tj ∈ T could be

covered by a set of sensors from S, S(tj) ⊂ S, this S(tj) could be all or part of

S, Card(S(tj)) ≤ m. The coverage relation between a sensor si ∈ S and targets

tj ∈ T is δij could be represented by the binary matrix ∆ below.
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∆ = (δij) =



δ11 δ12 ... δ1n

δ21 δ22 ... δ2n

. . . .

. . . .

. . . .

δm1 δm2 ... δmn



δij =

 1 if sensor i can cover target j

0 otherwise

Each sensor si has a limited initial energy reserve and the energy consumption rate

for every monitoring period k equal to Ei(k). The network lifetime L is aimed to be

maximized regarding all the environment restrictions and the energy constraints.

This lifetime could be defined and represented as an optimization problem with

the WSNs lifetime maximization as an objective function. The WSN is normally

assumed as dead when the available sensors failed to satisfy the required coverage.

Therefore, in the case of all sensors available in S can monitor all targets in T ,

T (S) = T , then, activating all sensors can guarantee one monitoring season till

all sensors run out of energy “if the sensors have the same initial energy and

energy consumption rates”. To prolong the WSNs lifetime, it is preferable to

find a collection or subsets, Cu and Cv of sensors with T (Cu) = T (Cv) = T and

Cu∩Cv = Φ, that guarantee several monitoring seasons “as more subsets will result

in more monitoring seasons”. Or, if there is a collection C of subsets of sensors,

C = {C1, C2, ?, Cq} with T (Cl) = T (Cl+1) = T regardless of Cl ∩ Cl+1 = Φ, a

sensor can be activated on different monitoring seasons for a part of its energy.

Also, the energy utilization could be optimally scheduled to guarantee a greater

sum of monitoring seasons and optimize the WSNs lifetime. The subsets of sensors

could be considered as covers, according to the following definition.

Definition 1. Cover of targets

Given a finite set S = {s1, s2, · · · , sm} ofm sensors and a finite set T = {t1, t2, · · · , tn}
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of n targets, the collection of elements of S denoted Cl is a cover for the subset of

targets denoted T (Cl), if it can sense all the targets of T (Cl) ⊆ T , where:

1. Each target tj is covered by at least one sensor of S.

2. Each sensor si senses a subset T (si) ⊆ T of targets.

3. For all i 6= j, T (si) ∪ T (sj) = T (si, sj) is a subset of targets sensed by the

pair (si, sj).

4. A subset Cl should be considered as a cover if T (Cl) = T .

Example 1: Sensors and targets coverage relation

Let S be a set of sensors with m = 10, S = {s0, s1, s2, ..., s9} used to monitor a

set T of targets with n = 10, T = {t0, t1, ..., t9} as in figure 2.1. One can see that

s1, s2 and s3 can cover all targets as an example.

The deployment of sensors in two-dimensional area consists exactly is finding the

pair (xi, yi) for all i = 1, 2, ...,m and the targets positions in represented by the

pair (xj, yj) for all j = 1, 2, ..., n. The sensors deployment and the targets positions

could be available, the deployment data in table 2.2 is randomly generated for this

example.

Table 2.2: The sensor deployment and the targets positions

Index Sensor Targets
x y x y

1 2 2 3 3
2 7 4 6 8
3 8 8 6 1
4 7 8 4 5
5 8 2 5 5
6 5 2 3 7
7 4 6 7 6
8 8 4 9 5
9 2 8 5 8
10 3 4 7 2

According to the sensors deployment, a sensor can cover the targets that are

located within its coverage range and the coverage relations will be known while
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Figure 2.1: Sensors and targets relation.

the positions and sensing ranges are known for all sensors and targets. Therefore,

the problem of target coverage is to find the subsets of sensors that can cover all

targets to be scheduled to maximize the lifetime, considering the initial battery

lifetime constraint to be satisfied regarding the energy consumption of all sensors.

Regarding the position of a target i, (xj, yj) and the distance dij between si and

tj, the coverage relation value δij is equal to 1 if sensor si can cover the target

tj. That is the position of the target tj is in the coverage range of sensor si or

the distance d between the sensor si and the target tj is less than or equal the

coverage range ri of sensor si, as:

dij =

√
(xi − xj)2 + (yi − yj)2
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dij ≤ ri

and the relation matrix ∆ for the sensors (m = 10) and targets (n = 10) is:

∆ = (δij) =



1 0 0 0 0 0 1 1 1 0

0 0 0 0 1 0 1 1 0 1

0 1 0 0 0 0 1 0 1 0

0 1 0 0 0 0 1 0 1 0

0 0 1 0 0 0 0 0 0 1

1 0 1 0 1 0 0 0 0 1

0 1 0 1 1 1 1 0 1 0

0 0 0 0 0 0 1 1 0 0

0 0 0 0 0 1 0 0 1 0

1 0 0 1 1 1 0 0 0 0


The ∆ matrix explains for every sensor i ∈ S the targets that allocated in its

coverage range T (si) as the ith row and the sensors that can cover every target

j ∈ T “S(tj)” as the jth column.

2.3 Related works

Target coverage problem in WSNs is investigated as maximizing the lifetime of

the network that must continuously monitor a set of targets. The sensors have

limited battery power life and it is necessary to efficiently utilize the energy while

monitoring all targets for maximum duration. This section mainly introduces

the techniques used for sensors activity scheduling and optimization in a sensor

network lifetime. There are several methods used to solve this problem. We

organized these methods, as described in the following subsections, into categories

namely: DSC based methods, exact methods and heuristics methods.



Yousif Elhadi Elsideeg Ahmed 45

2.3.1 Disjoint Set Cover based methods

The problem of WSNs lifetime maximization is widely solved by transformation

to a DSC maximization problem as in [10], [79], [80], [81], [82] and [83]. The DSC

maximization problem is defined as it follows:

Considering a set S = {s1, s2, ..., sm} of sensors used to monitor a set T =

{t1, t2, ..., tn} of targets. The objective function to be optimized is the maximal

number of disjoint set covers as a representation of the network lifespan under the

following restrictions:

1. A sensor can be included into one set cover at most.

2. Sensors in each disjoint set cover should be able to monitor all the targets.

Definition 1. Cover

Given a collection C = {C1, C2, ..., Cq} of subsets of a finite set S of sensors, find

the maximum number of disjoint covers for set T of targets. Every cover Ci is

a subset of S, S(Ci) ⊆ S, such that every element of T belongs to at least one

sensor of S(Ci) , and for any two covers Ci and Cj, Ci ∩ Cj = ∅ [79].

Definition 2. Disjoint Set Covers DSC

Given a collection C of subsets of S, a disjoint set cover Cl ⊆ C is an element of C

such that all elements of S belong to one and only one cover Cl (l = 1, · · · , q ≤ m),

i.e. for all l 6= h, Cl ∩ Ch = ∅ [79].

If a number of DSCs is found, the expected scenario of DCSs utilization will be

as in figure 2.2 below. From a set of sensors deployed to monitor a set of targets

in figure 2.2.a, a subset of four sensors is activated to monitor all targets while

the other sensors are in sleep mode as in figure 2.2.b. Figure 2.2.c explains that

after the first subset is dead anther subset of five sensors is activated for another

monitoring season.
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Figure 2.2: Sensors selection in covers.

Lemma 1. Solving the WSNs lifetime optimization problem as DSC problem is

finding the maximum number of DSC for S.

Proof. From Definition 1, T (Cu) = T (Cv) = T , and from to definition 2, S(Cu)∩

S(Cv) = Φ, S(Cu) and S(Cv) are partitions of S with v 6= u. Assuming that all

sensors are identical, it is then obvious that the collection of all the sensors can

sense all the targets on only one time period while consuming the energy of all

the sensors. Assume now that there is a partition of S into two covers C1 and

C2 such that T (C1) = T (C2) = T with T (C1) ∩ T (C2) = ∅, then the covers C1

and C2 can be scheduled to sense all the targets during two periods of time. Thus

by increasing the number of disjoint set covers will correspondingly increase the

number of period of operation of disjoint subsets of sensors.

Example 2: DSC illustration

Given the set of sensors and targets in example 1, let us try finding the maximal

number of DSCs and the including relation IR matrix between covers and sensors.

From the figure 2.1, the target t1 is in the coverage area of only two sensors.

Therefore, the maximum possible number of DSCs is two and the possible including
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relation IR could be:

IR = (irli) =

 0 0 0 0 0 1 1 1 0 0

0 0 0 1 1 0 0 0 0 1



irli =

 1 if cover l includes sensor i

0 otherwise

Through all the methods used to solve the WSN lifetime optimization problem

formulated as DSC problem, there is a valid number of sensors that have never

been included in a cover or never used. Therefore, a valid amount of the WSN

energy is not used. So, trying to implement all or part of this amount can extend

the WSN lifetime.

The DSC problem has been proven in [79] NP-Complete, on the basis of partition

properties in set theory. Through all these methods, a valid number of sensors is

not included. In [10], a period iteration and sequential assignment heuristics were

developed to maximize the network lifetime by using the maximum DSC, based

on the sensors deployment and the sink node mobility. They have formulated the

WSN lifetime maximization into a mathematical model considering the optimal

sensor deployment, sensors activation scheduling, data routing and sink node mo-

bility decisions. Also, they have provided two heuristics for the solution of this

integrated formulation of the problem.

The authors in [79] mentioned that the number of the disjoint set covers increases

when the number of sensors and the sensing range increase. The genetic algorithm

is used in [83] to find the maximum number of covers for DSC problems using crit-

ical targets to find an upper bound. The sensors were randomly distributed into

groups as candidate covers. Genetic algorithm with an operator called reconfigu-

ration operator, considering the fitness and objective functions, was used to find

better solutions and enhance WSNs lifetime [84]. Binary integer programming for-

mulation and heuristics were also used in [80] to compute the maximum number of

disjoint set covers for maximizing the WSNs lifetime. In [81], the targets system is
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an indoor area divided into fields of points according to a finite resolution, where

each sensor can cover one or more fields. The authors provided their heuristic

for this problem to create the k-covers set. The authors in [79] transformed the

problem of disjoint set covers maximization into maximum-flow problem (MFP)

for maximizing the number of DSCs.

Example 3: the DSCs and NDSCs scheduling

Let T = {t1, t2, t3, t4} and S = {s1, s2, s3}, where T (s1) = {t1, t2, t4}, T (s2) =

{t2, t3, t4} and T (s3) = {t1, t3, t4}. As in figure 2.3, there are three possible covers.

C1={s1, s3} C2={s1, s2} C3={s2, s3}

t1

t2

t3t3 t3

t1 t1

t2 t2

s1
s2

s3s3 s3

s1 s1
s2 s2

t4t4 t4

Figure 2.3: Sensors and possible covers.

It is clear that the maximum number of disjoint set covers is 1 “either C1, C2 or

C3” and therefore the network lifetime is 1 monitoring season with one sensor not

included as in figure 2.4.a. While, if the sensors operated regardless of DSC as

follows: C1 = {s1, s3} for T (C1) = 0.5 unit of time, C2 = {s1, s2} for T (C2) = 0.5

unit of time, and C3 = {s2, s3} for T (C3) = 0.5 unit of time, the lifetime is 1.5

time unit as in figure 2.4.b [85].

Therefore, the schedule of sensors can be formulated as: S = {s1, s2, s3} and T =

{t1, t2, t3, t4}, where T (s1) = {t1, t2, t4}, T (s2) = {t2, t3, t4} and T (s3) = {t1, t3, t4}.

The maximum possible covers number q = 3 from figure 2.3. These covers can

be scheduled as explained in figure 2.4.b. So, the sum of t(Cl), l = 1, 2, 3, is

the objective function, considering the sum of energy consumption Ei(Cl), where

xil=1if sensor i is included and the energy of each sensor i must not exceeds Ei.

Thus the problem is formulated as follows:

Maximize

L =
3∑

l=1

t(Cl) (2.1)
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C1

T1

T2

T3

T4

0.5 1 1.5

a.DSCscheduling

T1

T2

T3

T4

C3C2C1

0.5 1 1.5
a.NDSCscheduling

Figure 2.4: Covers scheduling.

subject to :

3∑
l=1

xilEi(t(Cl)) ≤ Ei for l = 1, 2, and 3 (2.2)

E1(t(C1)) + E1(t(C2)) ≤ E1

E2(t(C1)) + E2(t(C3)) ≤ E2

E3(t(C2)) + E3(t(C3)) ≤ E3

When the schedule satisfies this constraint, then the WSN lifetime is:

L =
3∑

l=1

t(Cl) = t(C1) + t(C2) + t(C3) (2.3)
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The optimal solution is

L = 1.5E with t(C1) = t(C2) = t(C3) = 0.5E.

When the DSCs are used, it is clear that the maximum number of DSCs (and

therefore network lifetime) is E with one sensor never included.

Example 1 gives an indicator that the lifetime can be extended better than using

DSC if there is a possibility for a sensor or more to be used for a part of its

lifetime while consuming a part of its energy in a cover, then the remaining part

of its lifetime with the remaining part of its energy on another cover, as non

disjoint covers or non-disjoint set covers (NDSC).

The proposed methods in this work aims to consider all possible covers to find out

the optimal scheduling solution with possibility for sensors to be included in one

or more covers.

2.3.2 Exact methods

Exact methods guarantee that the optimal solution could be found if a sufficient

time is given for the algorithm. As stated earlier, a simple calculation explains

that even if the exact methods used are based on more efficient techniques, the

worst case of running time for NP-Hard problems are still going to be high [86].

In [87], the problem of maximizing the sensors network lifetime is formulated as

a linear programming model, considering the energy cost for data sensing, receiv-

ing and transmitting. The linear programming technique is used to compute the

maximal lifetime of the surveillance system and a workload matrix. Then, the

workload matrix decomposed into a sequence of schedule matrices of monitoring

seasons that can achieve the maximal lifetime.

In [68], linear programming is used to figure out the operational status of each

sensor node either active or asleep considering the network coverage and minimiz-

ing energy consumption by minimizing the active nodes at a time as an objective
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function. The linear programming mathematical model is formulated as equation

2.4 and 2.5.

minimize
m∑
i=1

Xi (2.4)

subject to :
m∑

i∈Qu

Xi ≥ 1 ∀u = 1, 2, ..., w; (2.5)

Xi ∈ 0, 1

Considering that Xi refers to sensor status “active 1 or sleep 0”, Qu is the set of

subscripts of nodes which can cover the area and w is the number of available set

covers.

The authors used to search in 2n possible combinations to find the one with the

lowest energy consumption for this NP-hard problem, where n is the number of

sensors. They show that linear programming can find the fewest number of nodes

in working condition and achieve maximum network coverage thereby effectively

extending the lifecycle of the networks. The ILP is also used in [88] to formulate

the maximum lifetime broadcasting problems in WSNs. The authors show that a

tool like ILP, often regarded as over-theoretical and unrealistic, are indeed suitable

frameworks to include the latest advances in energy consumption and communi-

cation models in WSNs. The branch and bound (B&B) method is used in [70]

to optimize the WSNs lifetime via DSCs maximization. A corresponding rule or

function is defined for each step the three main steps: selection, branching and

bound.

The authors have proven the B&B used is better in both maximum life time and

running execution time compared to a Greedy-MSC algorithm proposed in [89].

Many researchers prefer supporting the exact method with heuristics to minimize

the execution time and the computational effort required. Integer programming

and greedy based heuristics are used in [90] to maximize the lifetime in a WSN

with adjustable sensing ranges. Authors indicate that adjustable sensing ranges
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have great impact on the network lifetime. Sensors with two coverage ranges and

the possibility for a sensor to be included in more than one cover have been consid-

ered. In this case the sensors and targets coverage relation depends on the active

sensing range as in the bipartite graph in figure 2.5, and also, the energy consump-

tion rate. Mixed Integer is used in [90] for WSN lifetime maximization considering

r1

r2

Figure 2.5: Two sensing ranges sensors and targets relations.

this two sensing ranges sensors and the base station mobility optimization

In [91], ILP approach is used alone and combined with GA as GA+ILP to address

the problem of lifetime maximization of directional sensor networks. The authors

found that the GA+ILP approach is about 4.74 times faster in average over all

instances than the approach, which uses the ILP alone. The mathematical formu-

lation of the problem of maximizing lifetime using a set of P covers as sum of the

time τl assigned to each cover l considering the sensing directions d is illustrated

in equations 2.6, 2.7 and 2.8.

maximize :
P∑
l=1

τl (2.6)

subject to

P∑
l=1

ailτl ≤ Ei ∀i ∈ {1, 2, ...,m} (2.7)
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P∑
l=1

am+g+d(i−1)lτl ≤ Ei ∀i ∈ {1, 2, ...,m}, ∀g ∈ {1, 2, ..., d} (2.8)

τl ≥ 0, ∀l ∈ {1, 2, ..., p}

The ail explains that the sensor i is a part of cover l considering the directions

and an+g+d(i−1),l is equal to 1 if and only if sensor i is part of Cl using its sector g

for all (i, g) ∈ {1, ...,m} × {1, ..., d}.

2.3.3 Heuristics and Meta-heuristics based methods

Heuristics are typical methods that can relatively quickly select a better candidate

from feasible solutions with reasonable quality. There are no guarantees about the

solution quality, though it can be arbitrarily bad. The heuristics are experimen-

tally evaluated, and comments can be made about their quality of the heuristic

solutions based on these experiments. Heuristics are typically used for solving real

life problems because of their speed and their ability to handle large instances [86].

An optimal algorithm and heuristics are used in [92] for sensors activation/deacti-

vation as depicted in figure 2.6 considering the coverage constraint and the target

system health condition monitoring, to maximize the targets coverage time.

Figure 2.6: Sensors activation/deactivation.
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A scheduling algorithm that allows to select just a minimum set of sensors to be

activated considering the required coverage is developed in [93] to maximize the

WSN lifetime considering the faults tolerance. Accordingly, the sensor node status

is either asleep, work, dead or in test as in figure 2.7.

Sleep

Probing

Dead

Working

Figure 2.7: Sensors node status.

Authors in [94] consider the area coverage or maintaining, in which a full cover-

age of the monitoring area is required. The data request propagates through a

broadcasting form the base stations to the sensing nodes and the data aggregation

through which the sensing nodes transmit the information to the base stations.

The author’s effort is oriented to insure an energy efficient data propagation from

nodes to the monitoring center. Authors in [80] developed a graph-based algo-

rithm to be used for optimizing WSNs lifetime via solving the DSC maximization

problem using specific mathematical formulation. They used the bipartite graph

to find the optimal number of disjoint set covers through the following step:

• Step 1: Create the bipartite directed graph G = (N,A): the node set is

sensors and targets N = S ∪ T and the arc is the coverage relation δij.

• Step 2: Find the target with a minimum number of sensors to cover (minimal

S(tj)) as a critical target tj.

• Step 3: Based on, create a source node s0 and create intermediate nodes s0i

for each sensor then create two sink nodes as an end points Y1 and Y2.
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A genetic algorithm combined with a genetic replacement algorithm is used in [95]

to increase the number of active nodes considering reduces the rate of data loss

and reduces the rate of energy consumption that increases the WSN lifetime. The

GA-based algorithm is used based on binary-coded genes in a chromosome with a

number of genes equal to the number of sensors.

The greedy algorithm is used in [96] for targets coverage scheduling in directional

sensor networks (DSN). The authors have addressed the lifetime maximization via

the maximum set covers for DSN then presented their targets coverage scheme,

based on the following mathematical model used is:

maximize :
P∑
l=1

τl (2.9)

subject to :

k∑
k=1

d∑
j=1

xiglτl ≤ Li ∀si ∈ S (2.10)

d∑
g=1

xigl ≤ 1 ∀si ∈ S, l = 1, 2, ..., P (2.11)

∑
Dig

xigl ≥ 1 ∀rm ∈ R, l = 1, 2, ..., P (2.12)

The objective function in equation 2.9 illustrates the sum of the active time τl for

all covers P which represents the covers in the DSN. Equation 2.10 is the sensors

life constraint should be considered, it explains that the sum of the active times

for all sensors “i = {1, ...,m}” included in all covers “l = {1, ..., P}” using all

directions “g = {1, ..., d}” could not exeade the sensors life Li.

Heuristic procedure is introduced in [97] for solving WSNs lifetime maximization

problem using directional sensors as in figure 2.8. The authors have developed

two greedy-based algorithms for solving the targets coverage problem in WSNs

with adjustable sensing ranges. They used the critical targets as a bottleneck for
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network lifetime to identify an upper bound on the maximum operation time of

the network.

d1,1 d2,1

d3,1

Targets Sensors

Figure 2.8: Directional sensors.

The figure illustrates a WSN with directional sensors m = 3 each sensor has a

number of direction and monitoring sectors d = g = 4. Donato et al. [82] have

compared greedy-based heuristics to an exact while considering an upper bound

similar to that used in [97].

The column generation (CG) based heuristics were introduced by [98] and [99] for

WSNs lifetime maximization. The (CG) is used in [98] for NDSCs WSNs lifetime

maximization formulated in LP model and [99] have considered both coverage and

connectivity.

2.4 Conclusion

Now, the problem is to find the optimal lifetime for the WSNs with a set of sensors

S = {s1, s2..., sm} used to monitor a set of targets T = {t1, t2, ..., tn}, given the

followings hypotheses:

1. The targets positions (xj, yj) for j = {1, ..., n}.
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2. The sensors deployment data (xi, yi) for i = {1, ...,m}.

3. Sensors initial amount of energy reserve Ei for all i = {1, ...,m}.

4. Sensors energy consumption rate for the monitoring season k, Ei(k) for all

i = {1, ...,m}.

5. Sensors limited sensing ranges di for all i = {1, ...,m}.

Considering works on DSC for WSNs lifetime maximization introduced previously,

the maximum lifetime obtained is not always the optimal energy utilization and

lifetime for this network as depicted in example 3. that in addition to the obli-

gation of using identical sensors in term of initial energy and energy consumption

rates.

Solving this problem into NDSC investigated in this work removes the DSC con-

straint that gives the opportunity for a sensor to participate in more than one

cover could perform better energy utilization and optimal lifetime for this net-

work. This operating process offers: 1) the possibility to get longer lifetime using

suitable algorithms, 2) the possibility for the algorithms to be implemented for

not-identical sensor working in one group and 3) the possibility to reduce a sensor

failure effect on the network lifetime and to maximize the network availability.

In NDSC, a sensor can participate in one or more covers. In this case, a sensor

can spend part of its energy within a cover and another part within another one.

Then, finding the optimal lifetime here produces two sub problems:

• Finding the optimal number of NDSC:

given the set S of sensors, set T of targets and the coverage relation matrix

∆, find the maximum number of NDSC q and the including relation matrix

IR This problem of the maximum number of such cover sets, has been proved

to be NP-complete as Zorbas et al. reported in [100].

• Find scheduling manner that optimize the WSNs lifetime:

based on the result from stage 1, given a collection C = {c1, c2, ..., Cq} of
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NDSC, the initial energy Ei and the energy consumption for every moni-

toring season k for all sensors Ei(k) find the optimal number of monitoring

seasons that each cover in q should be scheduled Y = {y1, y2, ..., yq} that op-

timize the WSNs lifetime L considering the coverage required and the energy

consumption constraint satisfaction.

This work aims to find and investigate the optimal solution for the WSNs lifetime

through the previous two subproblems. A binary representation and GA based

heuristic are implemented to find the maximum possible number of NDSC. Then,

for determining the optimize the WSNs lifetime, an integer linear programming

model is formulated and GA-based algorithms are developed as will be described

in the next chapter.



Chapter 3

Methods for Solving the Problem

as Non-Disjoint Set Covers

3.1 Introduction

This chapter describes the methods that we developed to solve the problem of

WSNs lifetime optimization, based on non-disjoint set covers approach. Different

techniques were associated, for building an integrated method allowing to resolve

this problem. The contribution of this work could be seen behind the formula-

tion of the WSNs lifetime maximization as a scheduling problem, the mathemat-

ical modeling and the methods developed to solve this problem. Regarding the

scheduling problem, we consider the environment as m non-identical parallel ma-

chine “sensors S” with limited availability as a constraint and the objective is to

maximize the number of jobs that executed on this environment. We represent

a monitoring as a job over a time period k. That means the processing time for

all jobs is equal to k, the period through which all targets should be monitored.

Each job could be executed on one machine or more machines in parallel accord-

ing to the subtasks; one sensor can monitor all targets or a subset of sensors is

involved into the surveillance if one sensor could not. The subtasks st executed

in parallel on all the machines must include all subtasks for the job in progress

59



Yousif Elhadi Elsideeg Ahmed 60

“all targets T”. Let us consider an environment with m non-identical machines,

m = 5, used for jobs with 5 subtasks, n = 5 “Card(T )”. Let’s define st(mi),

the set of subtasks that could be scheduled for execution on machine i. For in-

stance, st(m1) = {st1, st3, st4}, st(m2) = {st2, st3, st5}, st(m3) = {st1, st4, st5},

st(m4) = {st2, st3, st5}, and st(m5) = {st1, st4}. This environment contains 5 ma-

chines with limited availability for each machine li for i = 1, ..., 5 as in figure 3.1.a.

The possibility of each subtask of all jobs to be executed on each of the machines

could be presented as a bipartite graph G(v, a) in figure 3.1.b. The vertex v is the

machines and subtasks m+n and the arches represent the possibility of execution

relation. Considering that the processing time of each job is k, the jobs could be

scheduled as in 3.1.c.

The objective function is the number of jobs that could be executed in this envi-

ronment and must be maximized. As constraints for each job, all subtask should

be performed in parallel as in equation 3.1.

m⋃
i=1

st(mi) = Jj, ∀j = 1 to max (3.1)

For all machines, the processing time for assigned jobs should not exceed the

limited availability as in equation 3.2.

max∑
j=1

vijk ≤ Li, ∀i = 1, ...,m (3.2)

vij is a logical variable that explains the participation of machine i in executing job

j. Thus, vij = 1 if participate or 0 if not. Regarding j1 in figure 3.1.a, j1 is executed

on m1 and m2, the first constraint from equation 3.1 become st(m1) + st(m2) = T

which should be satisfied for all jobs. In this phase, one must search for subsets

of machines “sensors” that could handle a job as non-disjoint sets. The second

constraint in equation 3.2 and the objective function describe the mathematical

formulation of the optimal utilization of limited resources, which we have formu-

lated as an integer linear programming mathematical model (ILP). Then, different

approaches to the solution are investigated to reach for the optimal solution, by
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Figure 3.1: a schduling formulation of WSNs lifetime optimization

using both an exact method and heuristics. The problem is then solved in two

stages: 1) finding the maximum number of NDSCs; and, 2) finding the optimal

scheduling approach that maximizes the WSNs lifetime while considering its lim-

ited initial energy reserve. For the first stage, we have developed two methods:

1) the binary representation based method and 2) the GA-based method. Then,

for the second stage, we have developed the mathematical model considering the

number of non-disjoint set covers (NDSCs) generated using the first stage and

a number of sensors with a limited initial energy. In this mathematical model,

the objective function, to be maximized, is represented by the summation of the
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number of monitoring seasons on that all covers are scheduled, considering that

the energy consumption for all sensors included in all covers cannot exceed the

initial energy stored in these sensors as a constraint. Then, to find the optimal

solution we investigated two methods: 1) the integer linear programming algo-

rithm to seek an exact solution, using the mathematical model of the problem;

and, 2) the GA-based heuristics, used to reach the optimal solution in a reason-

able time. Different GA-based heuristics are investigated, compared to different

crossover and mutation operators. Also, a GA based on the DSC from the litera-

ture is described in this chapter and used for the evaluation of the optimal solution

obtained using our methods. Figure 3.2 explains the comprehensive vision of the

methods implemented. These methods will be described with more details in the

next subsections.

3.2 Non-Disjoint Set Covers finding strategies

In NDSC, a sensor can participate in one or more covers. In this case, a sensor can

spend part of its energy within a cover and another part within another one. Then,

finding the optimal lifetime amounts to find the optimal number of NDSC and to

optimize the lifetime by scheduling by utilizing of these covers. The problem of

finding the maximum number of such cover sets has been proved to be NP-complete

as reported in [100]. Indeed, authors proposed a centralized heuristic algorithm

that efficiently generates cover sets, each of these covers is capable of covering all

the targets.

3.2.1 The NDSC contribution to the DSC

In DSC, when a sensor i is classified to a cover C, this cover will be activated

once until all the included sensors run out of energy “if the sensors were initially

identically loaded”. Therefore, the total lifetime of this network is the sum of the

lifetime of all DSCs and finding the optimal lifetime amount to finding the optimal
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Figure 3.2: The method owerview

number of DSCs regardless of the schedule in which these covers will be used. This

is completely different from NDSC, where a sensor may enter one or more covers.

An efficient coverage algorithm that can produce both disjoint cover sets, i.e. cover

sets with no common sensor node, as well as non-disjoint cover sets were proposed

in [101]. Moreover, the authors in [102] suggested their method that aims to

reach the optimal lifetime for WSN organized as DSC. The main disadvantage of

using DSC for WSNs lifetime maximization is that the maximum lifetime obtained

based on DSC is not always the optimal lifetime for this network. We recall

the example in [85] to explain this. Let T = {t1, t2, t3, t4} and S = {s1, s2, s3},

where T (s1) = {t1, t2, t4}, T (s2) = {t2, t3, t4} and T (s3) = {t1, t3, t4}. Clearly, the
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maximum number of disjoint set covers (and therefore network lifetime) is 1 unit

of time with one sensor not included, while the sensors operated regardless of DSC

as it follows: s1; s2 for 0.5 unit of time, s2; s3 for 0.5 unit of time, and s1; s3 for

0.5 unit of time, the lifetime is 1.5 time unit. Besides, in case of non-identically

loaded sensors, the lifetime of the cover ends when a sensor expires, which means

it depends on the sensor with the minimal initial energy or the sensor with max

energy consumption rate.

For a set S of sensors used to monitor a set T of targets, the maximum lifetime

coverage problem (MLCP) is defined as it follows: to find the optimal scheduling

of covers to be activated and that maximizes the network lifetime, considering

that all targets are continually covered by at least one sensor in the active cover

and that the energy consumed by each sensor could not exceed its initial energy

reserve. It is clear that removing the DSC constraint gives the opportunity for

a sensor to participate in more than one cover. This operating process offers 1)

the possibility to get longer lifetime using suitable algorithms 2) the possibility for

the algorithms to be implemented for non-identical sensors working in one group

3) the possibility to reduce a sensor failure effect on the network lifetime and to

maximize the network availability as mentioned before.

3.2.2 The binary representation based method

This method is used for sorting the deployed network to find all possible covers.

For every sensor si ∈ S and target tj ∈ T , there is a pair (xi, yi) and (xj, yj)

coordinates that should be known for sensors and targets location. Therefore, tj

is covered by si if the distance between them is less than or equal to the coverage

range di of si. For a set S of sensors distributed for monitoring a set T of targets,

each sensor si can cover a set T (si) ∈ T of targets. Here, one aims to find q cover

sets from the deployed sensors set S. These q cover sets could be found through

the following steps.

1. Create the individual cover relations matrix ∆:

Based on the known sensors deployment data, targets positions and the
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sensing range, the coverage relation between n sensors and m targets could

be represented in binary matrix ∆ as:

∆ = (δij) =



δ11 δ12 ... δ1n

δ21 δ22 ... δ2n

. . . .

. . . .

. . . .

δm1 δm2 ... δmn



δij =

 1 if sensor i can cover target j

0 otherwise

δij is equal to 1 if the distance dij between sensor si and target tj is less than

or equal the coverage di range of sensor si. In this matrix, a row i represents

the set of targets T (si) covered by sensor si and each column j represents

the set of sensors S(Tj) that can cover target tj.

2. Create the set cover matrix V , which models the relations between sensors

and covers for m sensors and the targeted q covers:

To find the q covers, let us find all the feasible candidate covers or search

space. This search space includes all possible permutations of the m sensors

included into covers, starting from one sensor included representing a cover,

to all sensors included in one cover, which corresponds to 2m−1 candidates.

The candidate covers could be represented in temporary binary matrix W

as:

W = (wli) =



w11 w12 ... w1m

w21 w22 ... w2m

. . . .

. . . .

. . . .

w(2m−1)1 w(2m−1)2 ... w(2m−1)m
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vli =

 1 if sensor i is included in cover l

0 otherwise

Assuming that q is the number of possible covers q ≤ 2m − 1 then, each

candidate will be considered as a cover and moved into the final including

relation matrix V if the sensors included in this cover are capable of moni-

toring all targets in T . The final including relation matrix V between the q

covers and the m sensors could be represented as:

V = (vli) =



v11 v12 ... v1m

v21 v22 ... v2m

. . . .

. . . .

. . . .

vq1 vq2 ... vqm



vli =

 1 if sensor i is included in cover l

0 otherwise

Now, finding a cover set with a minimum number of sensors in V is possible. From

the previous step, each row covers completely the targets. The summation of each

row in V gives the number of sensors in this cover. So, finding the cover with

minimum sensors amounts to finding the row with minimum sum.

3.2.3 Genetic Algorithm based method

For m sensors used to monitor n targets, there are 2m − 1 possibilities of sensors

clustering into covers as in W matrix. Referring to the coverage relation matrix de-

fined in the ∆ matrix, a row i denoted T (si) represents the targets covered by sen-

sor si and each column j represents the set of sensors denoted S(Tj) that can cover

target j. Then, the including set cover matrix V should be created to expresses the

including relations between the sensors m and the targeted covers q as in V matris.
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According to the binary representation of sensors into covers, from one sensor in-

cluded up to all sensors included, without empty cover, (2m−1) is the total number

of possible covers to be evaluated. This method is applicable for small number of

sensors (for 5, 10 and 20, the solutions in (25−1), (210−1)and(220−1 = 1048575)

because of the exponential growth of the problem complexity. For such problems,

heuristic or meta-heuristic algorithms are efficient for searching the optimal solu-

tion in reasonable time as it is well known.

For the optimal solution search to this problem, a GA-based heuristic was devel-

oped to 1) offer the network extension possibility, 2) get benefit from heuristics

and its capability to find a near-optimal solution in reasonable time, 3) get the

advantages of GA as an efficient technique for solving such kind of problems.

This method could be integrated into an efficient scheduling algorithm or strategy

to reach a satisfactory near-optimal lifetime for WSN clustered into NDSC. We

propose a genetic algorithm for nun-DSC problem as follows:

1. Coding and initialization: For a set S of sensors used to monitor a set T

of targets, the input of this algorithm is the coverage relation matrix which

synthesizes the targets T (si) from T that are covered by each sensor si from

S. The output of this algorithm is the maximum number q of covers and

the including relation matrix that explain the sensors from S included in

each cover Cl from q that. This considering that for all Cu and Cv ∈ C with

Cu 6= Cv, it is possible for cu ∩ cv to be φ or more. For GA, we generate

chromosomes with a number of genes equal to the number of sensors as

a candidate cover. Each gene in the chromosome corresponds to a sensor

from S, and its value expresses as its membership of this cover. The gene

value is equal to 1 if the sensor is included in this candidate cover and 0

otherwise. The initial set of candidate covers is randomly generated using

specific population size.

2. Fitness: The number of targets that a candidate can cover is considered as

fitness value of this candidate. The candidate will be with two as a cover

if the fitness value of this candidate is equal to T as illustrated in equation
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3.3.
m⋃
i=1

vliT (si) = T (3.3)

3. Selection: The candidates with greater fitness value T will be selected as

covers to the cover set. Then, all the population members are considered to

be involved in the next stages of the GA for more covers to be added to the

covers set in initial including matrix V .

4. Crossover and new candidate covers generations: Crossover is generally

used to generate the new population from selected parents. In our approach,

we used it to generate the next generation for all population taking every

two members as parents.

5. Mutation: The mutation aims at enhancing the inherited value of the so-

lutions. While the gene value is either 0 or 1, a randomly selected gene can

be inserted. But, one can say it is better to a gene with value 0 to be 1 to

increase the number of sensors in the candidate, which increases the possi-

bility to get cover. The strategy used is randomly select a gene and set it to

1 to specify inclusion of the selected sensor into this cover.

Repeat step 2 and 5 for a specific number of iterations and add the new fit can-

didates in each iteration to the including matrix V with duplicate avoidance to

generate the final version of the including matrix V as a result.

Recalling back the DSC, when the covers are found, there are no additional ef-

forts required for scheduling and finding the optimal energy distribution through

the covers because the DSC guarantees that there are no shared sensors. Now,

removing the DSC constraint, a sensor can join more than one cover. Thus, there

is another subproblem to be solved; that is how much of time or monitoring sea-

sons a sensor from S should spend with each cover to achieve the optimal WSNs

lifetime. The following subsections mathematically formulate this problem and

propose exact and heuristic methods to solve it.
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Example 1: The GA based method illustration

Let T = {t1, t2, t3, t4, t5} and S = {s1, s2, s3, s4, s5}, where T (s1) = {t1, t3, t5},

T (s2) = {t2, t3, t4}, T (s3) = {t1, t4, t5}, T (s4) = {t2, t4, t5} and T (s5) = {t1, t2, t3}

with Card(T ) = n = 5 and Card(S) = m = 5.

The voverage relation matrix is:

CR = (crij) =



1 0 1 0 1

0 1 1 1 0

1 0 0 1 1

0 1 0 1 1

1 1 1 0 0


(3.4)

The approach we proposed based on GA could be used as follows:

1. Coding and Initial population:

A chromosome with 5 genes should be used for randomly generated initial

population with known size “assume 10” as in the In pop matrix below.

In pop =



1 0 0 1 0

1 0 0 0 1

1 0 1 0 0

1 0 0 1 0

0 1 1 0 0

1 0 1 0 0

0 0 1 0 1

0 1 0 0 0

0 0 0 1 1

0 1 1 1 0



(3.5)

2. Fitness and selection

From the initial population in the In. pop matrix, select the candidate with

the fitness value equal to T using the following function.
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5⋃
i=1

vliT (si) = T (3.6)

According to equation 3.6 some of the candidates from In. pop in equation

3.5 could be selected to the first version of the including relation matrix V

V = (vli) =


1 0 1 0 0

0 0 0 1 1

0 1 1 1 0

 (3.7)

3. Crossover and mutation

Consider every two of the population as parents and apply a one-point

crossover and one-point mutation to update the population.

Repeat step 2 and 3 for a given number of iterations and add the new fit candidates

in each iteration to the including matrix V with duplicate avoidance to generate

the final version of the including matrix V as a result.

3.3 Scheduling and optimization strategies

In all the methods developed to solve the WSN lifetime optimization problem

formulated as DSC problem, there is a valid number of sensors that have never

been included in a cover or never used. Therefore, a valid amount of the WSN

energy is not consumed. So, trying to consume all or part of this amount of energy

via NDSCs can extend the WSN lifetime. We introduced in the previous subsection

the methods for generating a number q of NDSCs with corresponding the including

relation matrix V . The present subsection aims to describe the methods used

to search for the suitable period of time that each of the q covers should be

scheduled, so as to optimize the WSNs lifetime, considering the limited initial

energy reserved for all sensors. The method suggested a small period of time k for

the monitoring season. Thus, each cover Cl for l ∈ {1, 2, ..., q} can be scheduled for

an number of monitoring seasons yl. Then, the lifetime to be optimized is the sum
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of the monitoring seasons yl scheduled for all cover in q. The sum is aimed to be

maximized considering that the energy consumption though all sensors included

in all covers must not exceed the initial energy of these sensors. The following

subsections explain the mathematical model, the exact method based on the ILP

and the and the heuristics based on GA which we developed to find the optimal

solution for this problem.

3.3.1 The mathematical model

For the mathematical modeling of the WSN lifetime, let S = {s1, s2, ..., sm} be

the set of sensors used to monitor a set of targets T = {t1, t2, ..., tm}. Each sensor

si ∈ S can cover a set of targets T (si) ≤ T and loaded with a given amount of

energy Ei. In the previous subsection we showed the methods used to generate a

collection of covers C = {C1, C2, ..., Cq} with the corresponding including relation

matrix V . A row from V incorporates the sensors from S that each cover Cl

includes: the sensor si is included in cover Cl if vli = 1. Each cover Cl ∈ C,

and so the included sensors, can be scheduled for a number of monitoring seasons

yl. Therefore, the energy consumption of a sensor si included in cover cl that is

scheduled for a number of monitoring seasons yl is Ei(yl) can be computed. On

this base, the WSNs lifetime is determined by the summation of the scheduled

monitoring yl for all l = {1, 2, ..., q}, the objective function to be maximized being

the lifetime. The energy consumption for a sensor si ∈ S that is included in one or

more covers from C is the summation of all Ei(yl) where si is included “vli = 1”.

The objective function and the energy constraint could be formulated as follows:

For a set S of sensors (S = {s1, s2, ..., sm}) used to cover a set T of targets (T =

{t1, t2, ..., Tn}), the problem of maximizing the network lifetime amounts to find

the optimal number of monitoring seasons yl for the cover Cl for all l ∈ {1, 2, ..., q}

that can cover all the targets in T .

The Objective Function

If cover Cl is scheduled to monitor the targets T for a number of period k of time

units equal to yl and the maximum possible number of covers is q, then the lifetime
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maximization problem can be written as in equation 3.8.

Maximize k ×
q∑

l=1

yl (3.8)

Constraints

The total energy consumed by each sensor si cannot exceed its initial energy

reserve Ei.

If the total energy consumed by a sensor si on the period of time k is Ei(k) and

sensor si can be included in every cover cl of q ”whenvli = 1” which can be

scheduled for a number of periods yl, then the energy constraint can be written as

in equation 3.9.

q∑
l=1

vliEi(yl) ≤ Ei i = 1, 2, · · · ,m (3.9)

with

vli =

 1 if sensor i is included in cover l

0 otherwise

Therefore, the optimal solution is the solution that can give the values of y1, y2, ..., yq

with the maximum sum, while considering not exceeding the sensors initial energy

Ei. We used the ILP and GA for exact and heuristic methods respectively to solve

this problem as described in the next subsections. The example below helps to

figure out the problem.

Example 2: the NDSC illustration

Let T = {t1, t2, t3, t4} and S = {s1, s2, s3}, where T (s1) = {t1, t2, t4}, T (s2) =

{t2, t3, t4} and T (s3) = {t1, t3, t4}. The coverage relation matrix ∆ is:

∆ = (δij) =


1 1 0 1

0 1 1 1

1 0 1 1
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To find the number of NDSCs q and the including relation matrix V , the binary

representation or GA based method are used to search in the 23 − 1 possible

candidates in W as:

W = (wli) =



0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1


The including relation matrix V found from the W is

V = (vli) =


1 1 0

1 0 1

0 1 1



Therefore, the maximum possible number of covers q = 3. These covers can be

scheduled as depicted in figure 3.3.

s1
t(C1) t(C2)

t(C1) t(C3)

t(C2) t(C3)

s2

s3
t1 t2 t3

Figure 3.3: Covers scheduling.

So, the sum of t(Cl) “yl × k” is the objective function to be optimized, admitting

that the sum of energy Ei(Cl) consumed by the sensor si involved in Cl such that

vli = 1, is less than or equal to the initial energy Ei for each sensor i, as constraint.

The objective function to be optimized and the energy consumption constraints
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for this example become in equation 3.10 and 3.11

L =
3∑

l=1

t(Cl) =
3∑

l=1

k × yl = k ×
3∑

l=1

yl (3.10)

subject to:

3∑
l=1

vliEi(t(Cl)) ≤ Ei for i = 1, 2, and 3 (3.11)

E1(k × y1) + E1(k × y2) ≤ E1

E2(k × y1) + E2(k × y3) ≤ E2

E3(k × y2) + E3(k × y3) ≤ E3

Or:

y1 + y2 ≤ E1/E1(k)

y1 + y3 ≤ E2/E2(k)

y2 + y3 ≤ E3/E3(k)

When the DSCs based method is used, it is clear that the maximum number of

DSCs (and therefore network lifetime) is 1E with one sensor never included.

Example 2 gives an indicator that the lifetime can be extended better with NDSCs

than using DSC. The possibility for a sensor or more to be used for a part of its

lifetime with a part of its energy in a cover, then the other part of its lifetime

with the other part of its energy in another cover as non-disjoint set covers could

prolong the lifetime. The proposed methods consider all possible covers to find

out the optimal scheduling with the possibility for sensors to be included in one

or more covers as depicted in the next subsections by using respectively ILP and

GA.
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3.3.2 Integer Linear Programming based method

Integer linear programming refers to the class of combinatorial constrained opti-

mization problems with integer variables, where the objective function is a linear

function and the constraints are linear inequalities [103]. Based on the previous

subsections, there is a set of q covers generated for a WSN with a set S of sen-

sors used to monitor a set T of targets that should be scheduled to maximize

the lifetime of this WSN. As mentioned before, different methods are used in the

literature to solve the lifetime maximization problem represented into DSCs max-

imization problem with various strategies such as GAs. We have designed a linear

model for the lifetime as an objective function to be maximized and the energy

consumption for each sensor as constraints not to be exceeded as in the previous

subsection.

Let us consider a small period of time k as a monitoring season and the energy

consumption of a sensor si ∈ S activated for this season is Ei(k). For a cover Cl

scheduled to monitor the targets T for a number of monitoring seasons yl with k

units of time for each season and the maximum possible number of covers is q,

then the lifetime can be calculated as illustrated in equation 3.12.

L = k ×
q∑

l=1

yl (3.12)

Considering that the energy consumed by a sensor si for a period of time k is

Ei(k) and every sensor si ∈ S can be included in every cover Cl ∈ C, then the

energy consumed by a sensor si on all periods over which cover l is scheduled is

Ei(yl). Considering that the summation of energy consumption cannot exceed its

initially reserved energy Ei then:

q∑
l=1

Ei(k × yl)Vli ≤ Ei i = 1, 2, ...,m (3.13)

Given a WSN with m sensors and q possible covers, equation 3.13 comprises m

constraints expressed in form of linear inequations with q unknowns (q 6 m).
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Therefore, the optimization technique through linear programming can be used to

find out the values of the unknowns that optimize the linear objective function L

in equation 3.12.

When the initial energy of each sensor si ∈ S is constant Ei and the energy con-

sumed by each sensor si on a period of time k is constant Ei(k), the maximum

possible number of sensing periods for sensor si to be used is Ei/Ei(k). Therefore,

the cover l ∈ {1, 2, ..., q} that includes sensor si could not be used for more than

this limit. Thus, for all cover l ∈ {1, 2, ..., q}, the number of periods yl on which

cover Cl can be scheduled is bounded between 0 and Ei/Ei(k) as illustrated in

equation 3.14.

0 ≤ yl ≤ Ei/Ei(k) l = 1, 2, ..., q (3.14)

Equation 3.14 explains that y1 is zero or positive value y1 ≤ Ei/Ei(k).

All the decision variables in equations 3.12, 3.13 and 3.14 are integers and the

equations are linear. Therefore, the ILP is implemented to find the exact solution

for this problem.

Example 3: the ILP illustration

Let a WSN with 3 sensors and 5 targets, i.e. S = {s1, s2, s3} T = {t1, t2, t3, t4, t5},

with sensor covers T (s1) = {t1, t3, t4}, T (s2) = {t2, t3, t4, t5} and T (s3) = {t1, t2, t5}

as in example 1. The maximum possible number of covers q = 3: C1 = {s1, s2},

C2 = {s1, s3} and C3 = {s2, s3}. Therefore the lifetime to be optimized can be

represented as:

L = k ∗
3∑

l=1

(yl) = (y1 + y2 + y3) ∗ k (3.15)

Considering the energy consumption constraint in equation (3.11) which can be

represented with 3 linear inequalities of 3 unknowns.

3∑
l=1

Ei(yl)Vli ≤ Ei i = 1, 2, 3 (3.16)

E1(y1) + E1(y2) ≤ E1
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E2(y1) + E2(y3) ≤ E2

E3(y2) + E3(y3) ≤ E3

For all cover l ∈ {1, 2, 3}, yl should be bounded as:

0 ≤ yl ≤ Ei/Ei(k) l = 1, 2 and 3

The optimal solution can be found out by solving this linear system (3.15) and

(3.16).

Enhancement and simplification

When the number of covers increases, the number of unknowns increases. We used

the following lemma 2 to reduce the number of covers. We ignored part of the

covers to enhance and simplify the method without affecting its efficiency.

Lemma 2: For all covers Cu and Cv ∈ C with S(Cu) 6= S(Cv) and S(Cu)∩S(Cv) =

S(Cu), it is better to use Cu and ignore Cv to achieve minimum energy consump-

tion.

Proof: Considering the energy cost for monitoring the T targets for a period

of time ∆t, the energy consumption using cover Cu and Cv is ES(Cu)(∆t) and

ES(Cv)(∆t) respectively, where ES(Cu) = Ei(k) for all si ∈ S(Cu) and ES(Cv) =

Ei(k) for all si ∈ S(Cv). Therefore, ES(Cv)(∆t) > ES(Cu)(∆t) while the sensors in

S(Cu) are are a part of S(Cv) but not all.

Example 4: the Enhancement and simplification method illustration

For S = {s1, s2, s3, s4, s5} and T = {t1, t2, t3, t4, t5} randomly deployed in 10× 10

area, that is m = 5 and n = 5, the coverage relation matrix is:

CR = (crli) =



1 0 0 1 0

0 1 0 0 1

0 1 1 0 1

1 1 0 1 0

0 1 1 0 0
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There are 25 − 1 = 31 possible arrangements of sensors into covers distribution.

Only 15 of them are covers as in the including relations matrix:

V T =



1 1 0 1 0 1 1 1 1 0 1 0 1 0 1

1 1 1 1 1 1 1 0 1 1 1 0 0 1 1

0 1 0 0 1 1 0 1 1 0 0 1 1 1 1

0 0 1 1 1 1 0 1 0 1 1 1 1 1 1

0 0 0 0 0 0 1 1 1 1 1 1 1 1 1


By applying the enhancement and simplification method, the cover relations ma-

trix V becomes:

V =


0 0 0 1 1

0 1 0 1 0

1 1 1 0 0


in which the number q of NDSCs is decreased from 15 to 4 using the enhancement

and simplification method. The decrement could decrease the model complexity

by decreasing the number of decision variables as illustrated by equation 3.12.

3.3.3 Genetic Algorithm based method

In general evolutionary algorithms vision, genetic programming began as a general

model for an adaptive process but has since become effective optimization strat-

egy [72]. By the end of the previous subsection, we obtain a number q of covers

that should be scheduled to maximize the network lifetime. As mentioned ear-

lier, different methods are used in the literature to solve the lifetime maximization

problem such as DSC linear programming, with many strategies.

In this subsection, we introduce the GA-based scheduling method for WSNs life-

time optimization using NDSCs. The number q of NDSCs generated using the bi-

nary representation, or GA-based method, and the previous mathematical model

are used. The WSNs lifetime to be optimized is represented as a summation of

the number of monitoring seasons yl scheduled for each cover Cl ∈ C consider-

ing the energy consumption constraint. The value of yl is bounded between zero



Yousif Elhadi Elsideeg Ahmed 79

and Ei/Ei(k). The exact solution for this problem is not reachable for greater in-

stances because of the effort required in terms of execution time and computation

resources. Normally, heuristics and meta-heuristics are used to obtain a near-

optimal solution in reasonable time with the available computation resources.

A simple effective scheduling method using genetic algorithm is developed to search

for the optimal values of yl scheduled for all covers Cl ∈ C that maximize the

WSNs, considering the energy consumption constraint as follows:

1. Coding

The chromosome is represented as a vector of integer values of yl between

zero and Ei/Ei(k) “the sensors initial energy Ei divided by the energy cost

of sensor activation for a period of time k (Ei(k) is the battery lifespan”.

The number of genes, which is the vector length is equal to the number of

covers q, and each gene represents the number of periods for each cover to

be scheduled as in figure 3.4.

Periods for C1 Periods for C2 … Periods for Cq 

Figure 3.4: Genetic algorithm chromosome creation.

2. Initialization

The initial population of a limited number of chromosomes is randomly gen-

erated. A gene represents the number of seasons scheduled for each cover.

Therefore, the sum of genes in the chromosome represents the total number

of seasons that all covers are scheduled, which is the WSNs lifetime in sea-

sons. Thus, for each chromosome, the lifetime can be calculated by the sum

of genes in the chromosome multiplied by the period’s length of time k.

3. Fitness

The fitness has to ensure that all sensors in the candidate solution did not

exceed the energy constraint. For a sensor si ∈ S, the sum of the energy

consumption through all covers in a schedule should not exceed the initial
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y1y2 yq

y1y2 yq

y1y2 yq

y1y2 yq

y1y2 yq

y1y2 yq

a. Single Crossover

y1y2 yq

y1y2 yq

y1y2 yq

y1y2 yq

b. Dual Crossover

Figure 3.5: Genetic algorithm crossover strategies.

energy Ei. The fitness function will exclude the candidate schedule in the

population that not meet this constraint from the next GA processes.

4. Selection

From the fit population members, select the best two candidate schedules

with the maximum sum of genes (lifetime) as parents.

5. Crossover

A suitable crossover is applied to generate children for the next genera-

tion and update the population. Single and dual points crossovers are used

as in figure 3.5.a and 3.5.b respectively. The crossover points are selected

randomly as normally used in GAs. Different crossover operators are inves-

tigated as mentioned in the next paragraphs.

6. Mutation

A suitable mutation is applied to enhance the children and avoid the local

optimal solution. One or more genes are selected randomly and updated. We

consider that the enhancement increases the genes value, and thus, increases

the sum of the chromosome. The mutation genes are selected randomly. We

have investigated different increasing strategies and operators generate the

new value of the selected gene.

7. Children fitness

Regarding the energy consumption in equation (3.11), the fitness function is
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applied again for the children “new chromosomes” to make sure that no sen-

sor exceeds its initial energy. The parents updated if new enhanced childrens

have better sum of genes or lifetime.

New generations may be obtained by continuously repeating the above stages until

reaching a specific upper bound, or the specified number of iterations.

3.3.3.1 Crossover operators

The GA crossover and mutation operators are presented in figure 3.6 with the

possible permutations, considering the initialization, fitness, selection, mutation

and crossovers.

Figure 3.6: The Genetic algorithm Combinations
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The simple crossover (SX), partially matched crossover (PMX), rotated crossover

(RX) and order crossover (OX) described in the next paragraph are used.

• Simple crossover (SX)

For the SX, as the traditional one-point crossover, one crossing point is

randomly selected and the parents exchange their parts to generate new

children for the next GA processes.

• Partially matched crossover (PMX)

For both PMX and OX, when two strings A = y0, y1, y2, ..., yq−1 and B =

y0, y1, y2, ..., yq−1 chromosomes are also selected, two random crossover points

c1 and c2 are selected. The chromosome has now three parts: y0 to yc1 , yc1

to yc2 and yc2 to yq−1. Then, in PMX, crossover strategy is:

- the parents crossing: the part yc1 to yc2 are exchanged.

- position exchange: genes from the parts y0 to yc1 and yc2 to yq−1 are

randomly selected to exchange their positions.

• Order crossover (OX)

The first stage is the same as in PMX, but, for the OX crossover strategy is:

- the parents crossing: the part yc1 to yc2 are exchanged.

- sliding motion: for the parent A and B, randomly selected places are set to

holes, then sliding motion started from one of the crossover points is used

to fill the holes as in figure 3.7.

• Rotated Crossover (RX)

For the RX proposed in this work, the parent crossing points could be one

or more crossing points. The rotation operator we proposed is a closed

loop shifting for genes in the chromosome for one or more positions. For

example, with two-points crossover, parent A is rotated one-gene to the left

while parent B is rotated one-gene to the right as in figure 3.8.

Applying a suitable mutation could enhance the children to update the popula-

tion. One-point, two-points, randomized and deterministic mutation methods are

proposed to be concatenated with simple, RX, PMX and OX crossover.
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Parent 1

Parent 2

0 1 1 0 0 1 0 1

1 1 0 1 0 0 0 1

Parent 1

Parent 2

0 1 1 1 0 0 0 1

1 1 0 0 0 1 0 1

Parent 1

Parent 2

0 1 h 0 0 1 0 h

1 1 h 1 0 0 h 1

Parent 1

Parent 2

0 1 h h 1 0 0 0

1 1 h h 0 0 1 1

Parent 1

Parent 2

0 1 0 1 1 0 0 0

1 1 0 0 0 0 1 1

Figure 3.7: The order crossover

3.3.3.2 Mutation operators

To enhance the children, one or more genes could be randomly selected. If the

new value of the selected gene is greater than the current value, the sum of all will

be greater and so better solution. We have investigated four mutation operators
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Parent 1

Parent 2

0 1 1 0 0 1 0 1

1 1 0 1 0 0 0 1

Parent 1

Parent 2

0 1 1 1 0 0 0 1

1 1 0 0 0 1 0 1

Parent 1

Parent 2

0 1 1 1 0 0 0 1

1 1 0 0 0 1 0 1

Parent 1

Parent 2

1 1 1 0 0 0 1

1 1 0 0 0 1 0

0

1

Parent 1

Parent 2

1 1 1 0 0 0 1 0

1 1 1 0 0 0 1 0

Figure 3.8: Rotated Crossover

and increasing strategies: one-point, two-points, deterministic and randomized.

By merging each two of this four, we obtain the following mutations:

1. One-point deterministic

Randomly select one gene for mutation. The new value of the selected gene
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is equal to the current value plus a constant value.

2. One-point randomized

Randomly select one gene for mutation. The new value of the selected gene

is equal to the current value plus a random value.

3. Two-points deterministic

Randomly select two genes for mutation. The new value of the selected gene

is equal to the current value plus a constant value.

4. Two-points randomized

Randomly select two genes for mutation. The new value of the selected gene

is equal to the current value plus a random value.

Example 5: the GA illustration

Consider example 1 with S = {s1, s2, s3}, T = {t1, t2, t3, t4}, T (s1) = {t1, t2, t4},

T (s2) = {t2, t3, t4} and T (s3) = {t1, t3, t4}.

Before starting, the initial energy Ei and the energy cost of this period Ei(k) for

each sensor si are assumed to be known in addition to the monitoring season k.

Step 1: Sort the data to get all possible covers with the minimum number of

sensors: C1 = {s1, s3}, C2 = {s1, s2} and C3 = {s2, s3}, considering that each of

C1, C2 and C3 must cover all the targets in T .

Step 2: Assume that the period is k and the energy cost is Ei(k), and let the

initial energy be 10Ei(k). Therefore, sensor si and so cover cl can be scheduled

for 10 periods max as illustrated in equation 3.14. The number yl of monitoring

seasons could be scheduled fot a cover Cl ∈ C is bounded as 0 ≤ yl ≤ Ei/Ei(k)

which 0 ≤ yl ≤ 10 for l = 1, 2, and3 and the GA is implemented as follows:

1. The total available energy 30Ei(k) divided by the minimum period energy

cost 2Ei(k) equal to 15 periods as an optimal possible solution.

2. Initialization

Randomly generate an initial population with a limited size of candidate

schedule with covers’ number of periods between 1 and 10 as in table II.
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Table 3.1: Initial population

Schedules y1 y2 y3 Sum
1 2 3 4 9
2 4 7 5 16
3 6 4 8 18
4 4 5 7 16
5 5 4 3 12

3. Fitness and evaluation

When the energy consumption constraint is applied on the initial population

as a fitness procedure, some of them can meet this constraint. Only schedule

1 and 5 met the constraint as in figure 3.9.a. The objective function is used

to evaluate and select two parents. The candidate with the greatest sum

(“max”) among those which satisfy the constraint are selected.

4. Crossover

Consider the two selected parents, then, crossover using the suitable number

of points (single or multiple), i.e. generate a random number to identify the

crossover point, then, crossover the chromosomes. Considering schedule 1

and 5 as parents, then run suitable single-point crossover as in figure 3.9.b

for example.

5. Mutation

Again, generate a random number to identify the mutation point(s), then

realize the mutation by increasing in a deterministic or random way the

selected gene(s) to produce new enhanced children as in figure 3.9.c.

6. Children’s evaluation and population update

Regarding the energy consumption in equation 3.9, the fitness and evalua-

tion are applied to the new enhanced children to update the parents if new

enhanced children are better.

Consider the energy consumption constraint, repeat the crossover, mutation and

Children’s evaluation in step 4, 5 and 6 until the sum of genes of a chromosome

is equal to the found upper bound or the limit number of generations is reached.



Yousif Elhadi Elsideeg Ahmed 87

2 3 4 

4 4 4 

2 3 4 

4 3 5 

4 3 5 

2 3 5 

4 3 4 

a. First generation 

Crossover After Crossover 

b. Crossover and new generation 

3 3 5 

4 4 4 

Mutation After Mutation 
c. Mutation and enhanced new generation 

d. Reaching the upper bound 

5 5 5 

2 3 5 

4 3 4 

Figure 3.9: Genetic algorithm main stages.

Then, stop generating new chromosomes. Regarding the second chromosome in

figure 3.9.d, the sum of genes is 15, which is equal to the upper bound. Therefore,

no new generations of chromosomes are required.

3.3.3.3 GA configurations

Regarding the four crossover operators and the four mutation operators, the GA-

based algorithm could be built using every crossover from the four, with every

mutation operator from the four. Therefore, we have 16 different permutations

and GA-based algorithms configurations, (see figure 3.10).
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Figure 3.10: GA Configurations

3.4 An existing DSC based method

Let us recall that the authors, in [83], proposed a GA-based method, called scatter-

ing, to be used for DSC maximization (GA-DSC), where the chromosome represen-

tation, selection, crossover, mutation, and operator were applied on the offspring.

The sensors were randomly distributed into groups as candidate covers, as in figure

3.11 .

s1 s2 s3 s4 s5

t1 t2 t3 t4

2 1 2 1 1

Figure 3.11: DSC encoding in GA.
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1. Initially, each sensor randomly joins a group among prescribed groups. Then

a group forms a cover if it can cover all targets. They considered that there

is a limited number of DSC or upper bound “ub” related to the target tj with

the minimum S(tj). It is impossible to find more than ub disjoint covers if

a target is only covered by card(S(tj)) = ub sensors as a minimum. Thus,

the number of the prescribed groups is used as an upper bound ub of the

number of covers.

2. The fitness of a chromosome is defined as the number of disjoint covers that

can be found by the grouping combination represented by the chromosome.

3. Uniform crossover exchanges each gene of the two parents and mutation

changes a randomly selected gene to a random value from 0 to ub to the new

generation.

repeat the crossover, mutation and Children’s evaluation in step 2 and 3 until the

number of DSC of a chromosome be equal to the found upper bound or the limit

number of generations be reached.

3.5 Conclusion

This chapter provides an integrated vision for the proposed methods for WSNs

lifetime optimization. It describes a method that contributes to solving the prob-

lem of WSNs lifetime optimization based on NDSCs. Also, it describes and uses

an existing method from the literature to evaluate the proposed method. This

problem is solved through two phases: by seeking the number of NDSCs and de-

termining the optimal scheduling and utilization of the NDSCs that maximize

the WSNs lifetime. We developed a binary representation based method and GA

based method for the first phase. Then, we worked out the mathematical model

for the WSNs lifetime scheduling and optimization for the second phase using an

ILP model that could also be used to find the exact solution to this problem.

Also, we developed a GA-based scheduling method to search the optimal solution
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in reasonable execution time compared to the execution time required for the ex-

act method. For a set S of sensors used to monitor a set T of targets, the first

phase generates a set q of NDSCs. Then, the second phase has allowed to finding

the optimal number of monitoring season for each cover yl for all l ∈ {1, 2, ..., q},

that maximize the WSNs lifetime. The proposed method aims to find the exact

and optimal solution, using the integer linear programming mathematical model

developed for this problem. For the near-optimal solution, we mentioned that we

had developed a GA-based method with different crossover and mutation oper-

ators. The SX, OX, PMX, and RX are suggested to be implemented with the

one-point, two-points, statistic and randomize mutation operators.

In the next chapter, we will describe the utilization of the proposed method to

search for the solution of the WSNs maximum lifetime based on NDSCs. We

will present the results of the experimental investigations obtained using these

methods, as well as the evaluation of DSC-based method from the literature.



Chapter 4

Evaluation of the Methods

through Numerical Simulation

4.1 Overview

This chapter describes the simulation environment used for all methods devel-

oped for WSNs lifetime optimization, comprising the ILP-based exact methods

and the GA based heuristics. We describe briefly the experimental results for each

method, with different instances. Then, the results obtained by the GA-based

heuristics are compared to the exact method results obtained by the ILP on the

same instances. Additional evaluation and comparison to GA based method for

WSNs lifetime optimization represented into DSCs maximization (GA-DSC), as

existing method from the literature, is briefly described. The previous chapter has

shown that the problem of WSNs lifetime optimization is investigated using the

NDSCs-based approach. The problem is split into two sub-problems: finding the

optimal number of NDSCs and finding the optimal number of monitoring seasons

for each cover to be implemented, to optimize the WSNs lifetime considering the

available initial energy. As explained, the number of NDSCs aimed to be found

using a binary representation method and GA based method. Then, the WSNs

lifetime optimization problem has been designed to be solved using the ILP and

91
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the GA-based heuristic. All these methods are programmed and applied on dif-

ferent instances so as to evaluate digital experimental results and the methods

effectiveness. Then, the experiment results from numerical simulations are used

for investigating the performances of the algorithms and quality of solutions, con-

sidering the instances and the capability of these algorithms to obtain the optimal

solutions. This section describes the environment and the raw data used for all al-

gorithms implementation regarding the machine and the programming languages.

All methods were implemented on HP Elite Book 8770w work-station with Intel

CORETM i7 2.70GHz processor, 16GB RAM, and Microsoft windows7 -64bit op-

erating system. The proposed methods have been programmed using C language

environment. For the programs execution, the primary scheduling data (the num-

ber of sensors, the number of covers, the set cover matrix V , the initial energy Ei

and the energy consumption Ei(k) for a given period k) are required. Also, the

linear optimization algorithm was implemented in Eclipse development environ-

ment and using the Cplex linear optimization libraries and the Java Development

Kit (JDK).

Before implementing the algorithms, it is necessary to explain that the input

data including the sensors deployment and the targeted positions are randomly

generated. Regarding a sets of sensors composed of {5, 10, 20, 30, 40, 50, 100, 200,

300, 400, 500}, there are (xi, yi) of each sensor si ∈ S position and the coverage

range di of these sensors. The random data for sets of sensors are saved in files.

4.2 The binary representation method for find-

ing the NDSCs

Initially, the sensor network is deployed randomly to monitor targets as follows:

1. Sensors deployment and targets positioning

In this stage, each sensor from S and target from T are located in a two-

dimensional space by assignment of a random value to the pair elements
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(x, y) in 10× 10l.unit for example.

2. Creation of the individual cover relations matrix ∆

Based on the sensors and targets locations and the coverage range of each

sensor si ∈ S, the matrix ∆ is constructed according to targets j from T in

the coverage area of sensor si from S.

∆ = (δij) =



δ11 δ12 ... δ1n

δ21 δ22 ... δ2n

. . . .

. . . .

. . . .

δm1 δm2 ... δmn



δij =

 1 if sensor i can cover target j

0 otherwise

3. Finding all possible covers and construct the matrix V

To find all possible sensors distribution into covers, we consider all the pos-

sibilities of each sensor i in S to be included in the 2m − 1 possible covers,

as in W matrix.

W = (wij) =



v11 v12 ... v1m

v21 v22 ... v2m

. . . .

. . . .

. . . .

v(2m−1)1 v(2m−1)2 ... v(2m−1)m
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Then, search for each of these candidate possible covers in W matrix that can

monitor all the targets in T to be selected into V.

V = (vli) =



v11 v12 ... v1m

v21 v22 ... v2m

. . . .

. . . .

. . . .

vq1 vq2 ... vqm



vli =

 1 if sensor i is included in cover l

0 otherwise

q : the number of possible covers

4.3 The GA based method for finding the ND-

SCs

The algorithms were coded using the C programming language for experimental

study. The programs were implemented on a randomly deployed set of sensors

(S = {10, 20, 30, ..., 500}), and used to monitor a set T of targets. We investigated

different numbers of generations ng ∈ {1, 2, . . . , 30} with different population sizes

ps = {100, 200, 300, 400, 500, 600}. The table 4.1 presents the number of NDSCs

found using different numbers of sensors used to monitor a set T of targets n = 5.

The numbers ng of generations is equal to 20, and the population size is equal to

500.

Table 4.1: The relation between the population size and number of NDSCs

Number of Sensors 10 20 30 40 50
Number of NDSCs 561 1603 2059 2239 2979

For the study of the effect of the sizes of the populations, figure 4.1 shows different
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numbers of generations with a constant number of targets and sensors equal to 5

and 10 with population size equal to 200 and 500.

Figure 4.1: The number of cover for small and greater population size

The experimental results brought out the significance of the population size effect

on the results obtained with the same number of generations. The Table 4.2

highlights this effect using number of generation equal to 20.

Table 4.2: The relation between the population size and number of NDSCs
(ng=20)

Population Size 100 200 300 400 500 600

Number of NDSCs 374 506 591 647 687 716

Considering the extensibility, it is now possible to find the NDSCs for the larger

number of sensors. The Table 4.3 shows the number of covers for 50 to 500 sensors,

the number of generations and population size are equal to 20 and 500 respectively.

Table 4.3: The WSN expandability

Number of Sensors 50 100 200 300 400 500

Number of NDSCs 2979 3924 5443 6650 7781 9013

Regarding the execution times, both, the number of sensors and the number of

generations should be considered. The Table 4.4 shows the execution time in

milliseconds for the number of sensors respectively equal to 100, 200, 300, 400 and

500 with a number of generations equal to 500, 1000, 1500 and 2000.
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Table 4.4: GAMSC and GANDSC in ms

Num. of generations Num. of Sensors

100 200 300 400 500

500 3830 15091 35274 68535 111176

1000 7568 33064 66793 136534 233428

1500 11789 44259 96843 226906 351211

2000 15883 58241 150573 301891 470178

The mathematical model of this scheduling problem of the covers is formulated

through integer linear programming to find out an exact solution. Combining

the exact method and the genetic algorithm heuristic allowed us to reach the

optimal lifetime and to evaluate the effect of NDSC based method on the WSN

lifetime. Then, we compared the results to DSC-based GA from the literature for

evaluation. Using the NDSC based GA, we obtain the number q of covers that

must be scheduled to maximize the WSNs lifetime.

4.4 ILP based method simulation and results

Considering the number q of NDSCs obtained using either the binary represen-

tation method or the GA based method, the optimal lifetime of the WSNs is

achieved by finding the optimal utilization of the NDSCs. The optimal schedul-

ing aims at finding the optimal number of monitoring seasons yl for each cover

Cl ∈ C. As mentioned in the previous chapter, the solutions of both the ex-

act algorithms and the heuristics are targeted. This subsection explains how

to obtain the exact solution for this problem, through the ILP model and us-

ing Cplex. Numerical experiments have been carried out on random data based

networks with card(S ∈ {5, 10, 20} and card(T ) = 5. Considering the initial

energy Ei = 10, 20, ..., 60 and energy consumption on all sensor for a period k

Ei(k) = 2, 4, 8, 16, fourteen instances have been investigated. Eclipse supported
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software program with the linear optimization libraries of Cplex and Java Develop-

ment Kit (JDK) were used to design the linear optimization algorithm, using the

computation resources and the environment described before. Experimental re-

sults are obtained for WSNs with different numbers of sensors and different energy

situations. For S = {s1, s2, s3, s4, s5} and T = {t1, t2, t3, t4, t5} randomly deployed

in 10× 10 area, that is m = 5 and n = 5, the coverage relations matrix is

∆ =



1 0 0 1 0

0 1 0 0 1

0 1 1 0 1

1 1 0 1 0

0 1 1 0 0


There are 25−1 = 31 possible arrangements of the sensors into covers distribution

in the tembV matrix. Only 15 of them are covers as in the cover relations matrix

as:

V T =



1 1 0 1 0 1 1 1 1 0 1 0 1 0 1

1 1 1 1 1 1 1 0 1 1 1 0 0 1 1

0 1 0 0 1 1 0 1 1 0 0 1 1 1 1

0 0 1 1 1 1 0 1 0 1 1 1 1 1 1

0 0 0 0 0 0 1 1 1 1 1 1 1 1 1


Therefore, the objective function from equation 4 becomes:

L = k ×
15∑
l=1

yl (4.1)

Subject to :
15∑
l=1

Ei(yl)vil ≤ Ei i = 1, 2, · · · , 5 (4.2)

One seeks to maximize an objective function subjected to 5 inequality constraint

equations involving 15 unknowns. Therefore, this problem can be formulated lin-

early as follows:
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y1 + y2 + y3 + y4 + y5 + y6 + y7 + y8 + y9 + y10 + y11 + y12 + y13 + y14 + y15 (4.3)

Subject to :

y1 + y2 + y4 + y6 + y7 + y8 + y9 + y11 + y13 + y15 ≤ E1/E1(k)

y1 + y2 + y3 + y4 + y5 + y6 + y7 + y9 + y10 + y11 + y14 + y15 ≤ E2/E2(k)

y2 + y5 + y6 + y8 + y9 + y12 + y13 + y14 + y15 ≤ E3/E3(k)

y3 + y4 + y5 + y6 + y10 + y11 + y12 + y13 + y14 + y15 ≤ E4/E4(k)

y7 + y8 + y9 + y10 + y11 + y12 + y13 + y14 + y15 ≤ E5/E5(k)

For all cover l ∈ {1, 2, ..., 15}, yl are bounded as:

0 ≤ yl ≤ Ei/Ei(k) l = 1, 2, ..., 15 (4.4)

Applying this enhancement and simplification method on the matrix V , each row

covers completely the targets. Therefore, one can find the covers with the minimum

number of sensors. The sum of each row in V gives the number of sensors in this

cover. So, finding the cover with minimum sensors amounts to finding the row

with minimum sum. When a cover is selected, this cover can’t be included in next

covers, which discards covers that include small size covers as the previous lemma

2.

1) For S={s1, s2, s3, s4, s5} and T = {t1, t2, t3, t4, t5} randomly deployed in 10×10

area, that is m = 5 and n = 5, as in example 2, the cover relations matrix V

becomes

V =


1 1 0 0 0

0 1 0 1 0

1 0 1 0 1

0 0 1 1 1
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The objective function from equation 4.1 and the inequality constraint in equation

4.2 become:

L = k ∗
4∑

l=1

yl (4.5)

Subject to :
4∑

l=1

Ei(yl)Vil ≤ Ei for all i = 1, 2, . . . , 5 (4.6)

Here, one seeks to maximize an objective function subjected to 5 inequality con-

straint equations with 4 unknowns instead of 15. Therefore, this problem can be

formulated linearly as follows:

y1 + y2 + y3 + y4 (4.7)

Subject to :

E1(y1) + E1(y3) ≤ E1

E2(y1) + E2(y2) ≤ E2

E3(y3) + E3(y4) ≤ E3

E4(y2) + E3(y4) ≤ E4

E5(y3) + E5(y4) ≤ E5

For all cover l ∈ {1, 2, 3, 4}, yl are bounded as

0 ≤ yl ≤ Ei/Ei(k) l = 1, 2, 3 and 4

Then, the simplified and integer linear scheduling and optimization strategy (SIL-

SOM) applied and compared to integer linear scheduling and optimization strat-

egy (ILSOM) for the same instances. The Table 4.5 shows the results provided by

both integer linear scheduling and optimization method ILSOM and the simplified

integer linear scheduling and optimization method SILSOM. It is clear that the

enhancement has simplified the problem without affecting the optimal solutions.

2) For S = {s1, s2, ..., s10} and T = {t1, t2, t3, t4, t5} randomly deployed in 1 × 10
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Table 4.5: SILSOM and ILSOM

Sensors Network SILSOM ILSOM
Sensors Ei Ei(k) Covers C1 C2 C3 C4 Opt. (∗k) Covers Opt. (∗k)

5 160 2 4 0 80 80 0 160 15 160
5 160 4 4 0 40 40 0 80 15 80
5 160 8 4 0 20 20 0 40 15 40
5 160 16 4 0 10 10 0 20 15 20

area, that is m = 10 and n = 5 as in example 2, the cover relations matrix is

CR =



1 0 0 1 0 1 0 0 1 1

0 1 0 0 1 1 1 0 0 1

0 1 1 0 1 0 1 1 0 0

1 1 0 1 0 1 0 0 1 1

0 1 1 0 0 0 1 1 0 0


There is 210−1 = 1023 possibilities of sensors sets distribution in theW matrix, but

only 784 are covers according to the binary representation method. Therefore, this

problem is formulated linearly with an objective function, 10 inequality constraint

equations, and 784 unknowns. This problem is solved and the optimal lifetime

for different energy situations are shown in Table 4.6 according to the ILSOM

method.

Table 4.6: ILSOM for 10 sensors

Sensors Network ILSOM
Sensors Ei Ei(k) Covers Optimal (∗k)

10 10 2 784 15
10 20 2 784 30
10 30 2 784 45
10 40 2 784 60
10 50 2 784 75

Using the SILOM for the same 10 sensors, the objective function can be represented

as the sum of 26 unknowns
26∑
l=1

yl (4.8)
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In this case, the constraints reduce to 10 inequalities with 26 unknowns such as:

y1 + y3 + y7 + y11 + y14 ≤ Ei/Ei(k)

y1 + y2 + y5 + y10 + y16 + y18 + y22 <= Ei/Ei(k)

y3 + y4 + y6 + y23 <= Ei/Ei(k)

y2 + y4 + y8 + y10 + y12 + y15 + y24 <= Ei/Ei(k)

y3 + y4 + y11 + y12 + y19 + y24 <= Ei/Ei(k)

y5 + y6 + y9 + y13 + y20 <= Ei/Ei(k)

y7 + y8 + y9 + y14 + y15 + y17 + y21 + y25 <= Ei/Ei(k)

y10 + y11 + y12 + y13 + y14 + y15 + y18 + y19 + y20 + y26 <= Ei/Ei(k)

y16 + y17 + y18 + y19 + y20 + y21 <= Ei/Ei(k)

y22 + y23 + y24 + y25 + y26 <= Ei/Ei(k)

Considering the initial energy Ei and the energy consumption Ei(k), yl cannot be

more than Ei/Ei(k). This can be bounded as

0 ≤ yl ≤ Ei/Ei(k)

This model is very simple, compared with a model composed of an objective

function and 10 inequality constraints with 784 unknowns.

3) For S = {s1, s2, ..., s20} and T = {t1, t2, t3, t4, t5} randomly deployed in 10x×10

area, that is m = 20 and n = 5 as in example 2, there are 220 − 1 = 1048576

possibilities of sensors sets arrangements, and 910336 of them are covers according

to definition 1. This problem is investigated and the optimal lifetime for different

energy situations are shown in table 4.7 according to ILSOM method.
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Table 4.7: ILSOM for 20 sensors

Sensors Network ILSOM

Sensors Ei Ei(k) Covers Optimal (∗k)

20 10 2 910336 15

20 20 2 910336 30

20 30 2 910336 45

20 40 2 910336 60

20 50 2 910336 75

The exponential growth of the ILP model and the complexity of the problem when

the number of sensors increases in table 4.8 makes the WSNs expansion unreach-

able. The computational efforts considering the resources and the execution time

are limited to find the exact solution for a greater number of sensors.

Table 4.8: ILP model computation time samples

Number of sensors number of covers Execution time
5 15 0.02
20 910336 6.02

The execution time increased from 0.02 to 6.04 seconds (302 times) when the

number of sensors increased from 5 to 20.

4.5 GA based method simulation and results

The GA-based method is used for its heuristics capability to yield an acceptable

solution in a reasonable time in addition to its efficiency. The GA is used to max-

imize the WSNs lifetime, starting from the deployment data and targets positions

and by searching the NDSCs. The C language program runs the GA for a given

number of generations to determine the maximum number of monitoring seasons

for each NDSC, corresponding to the lifetime. This subsection shows the results

obtained using the GA with different crossover and mutation operators on various

instances.
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As in the Table 4.9, a WSNs with 10 sensors monitoring 5 targets are deployed

randomly in a 10 × 10 area. The initial energy of each sensor is Ei unit and the

energy consumption for a specified period k unit of time is Ei(k). The possible

number of covers found is 644. Each cover Cl can be scheduled for zero or more

monitoring seasons yl and the sum of scheduled monitoring seasons for all covers

are laid out in the column “lifetime”, in the table. The lifetime can be calculated

by multiplying the value in this column by k as mentioned earlier. The Table 4.9

displays the maximum lifetime for 160 units initial energy with different rates of

energy consumption. We tested the GAs based on the following strategies: the

GA11 (single point crossover, and single point mutation), the GA12 (single point

crossover, and dual point mutation), the GA12 (dual point crossover, and single

point mutation), the GA21 (dual point crossover, and dual point mutation), and

the GA22 (deterministic and randomized mutation). While the population size

can affect the efficiency and performance of GA [72], small size population of 50

to 1200 generations and larger size population of 100 to 1200 generations were

investigated.
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A simple comparison is made between the mutation strategies regarding the num-

ber of generations and the closeness of the solution to the optimal. Considering

the one point mutation, GA11, and two points mutation, GA12, the investigation

have shown that the GA12 gives better results than GA11, for the same number of

generations, as depicted in figure 4.2. The GA12 takes 1250 generations to obtain

the optimal solution while GA11 takes 2250 generations.
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Figure 4.2: GA11 vs GA12.

Considering the deterministic and randomized mutation strategies, we have made a

simple comparison between them depending on the number of generations and the

closeness of the solution to the optimal. It is clear that the randomized GA11 gives

better results than the deterministic GA11 for the same number of generations as
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in figure 4.3. The deterministic GA11 takes 1250 generation to obtain the optimal

while the randomized GA11 takes 2250.
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Figure 4.3: Deterministic vs Randomize GA11.

It is clear from these results that the performance of the GA is not critically depen-

dent on the strategy of crossover and mutation when a large number of generations

used ”more than 2500 for example”. Indeed, one can observe that the single mu-

tation provides the best results for a small size population, while the results by

the randomized mutation give greater lifetime than the deterministic mutation,

for a large size population as mentioned in table 4.9.

Considering the effect of the great number of generations on the execution time, the

number of generations with a reasonable execution time that provides an accept-

able solution can be found for all strategies. The number of generation required

for GA11 to get the optimal is not less than 2250 and 1250 for GA12. In addition,
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other ways of crossover and mutation can be investigated in addition to different

ways of initializing and generating the chromosomes for more enhancements, in

order to choose the best strategy for this problem.

With referring to the crossover operators: SX, OX, PMX and RX mentioned in

chapter 3, an investigation is made to assess the performance of each operator.

Using the binary representation method, q = 21 covers were found from m = 10

sensors. The lifetime optimization is investigated using the SX, PMX, RX and OX

crossovers, for small population size (p = 10). The initial energy is assumed to be

60 units, and the energy consumption rate is 2 units for the 10 sensors. Figure 4.4

points out the efficiency of the SX, PMX, RX and OX crossovers to optimize the

lifetime with a number of generations equal to 50, 100, 150 and 200 respectively.

Figure 4.4: The WSNs lifetime using SX, PMX, RX and OX crossover with
p=10.

To study the effect of the population size using the SX, PMX, RX and OX

crossovers, we used a greater population size (p = 100), for the same instances

used for figure 4.4, and the lifetime obtained is displayed in figure 4.5.

Figure 4.5: WSNs lifetime using SX, PMX, RX and OX crossover with p=100.

We used different mutation strategies jointly with the simple, PMX, RX and OX

crossovers, to implement different GA algorithms. The lifetime obtained using the
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SX, PMX, RX and OX crossovers, jointly with one point or two points mutation,

for the same instances, is presented in figure 4.6.

Figure 4.6: The lifetime using one and two points mutations.

The lifetime obtained using the SX, PMX, RX and OX crossovers, jointly with one

point deterministic and randomized mutations for the same instances is presented

in figure 4.7.

Figure 4.7: The lifetime using deterministic and randomized mutations.

Then, the energy consumption for all sensors used in the covers are investigated

with all crossover and mutation operators for different instances. The energy

consumed by solutions obtained using simple crossover for different numbers of

generations {10, 100, 1000} is presented in figure 4.8 considering 10 sensors with

initial energy equal to 60 units.
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Figure 4.8: The energy consumption via all sensors.

The covers utilization by solutions using simple crossover for different number of

generations is presented in figure 4.9.

Figure 4.9: The 21 covers utilization via different number of generations.

The energy consumed by solutions obtained using the SX, PMX, RX and OX

crossovers, for a number of generations equal to 200 is presented in figure 4.10

considering 10 sensors with initial energy equal to 60 units.

Figure 4.10: Energy consumption by all sensors using SX, PMX, RX and OX
crossovers.

The covers utilization via solutions obtained using the SX, PMX, RX and OX

crossovers, for a number of generations equal to 200 is presented in figure 4.11.
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Figure 4.11: The 21 covers utilization via different number of generations
using SX, PMX, RX and OX crossovers.

Then, we investigate the opportunity of implementing the algorithms for a WSN

composed of sensors with different initial energy and different energy consumption

rate. For a WSN with 10 sensors, with initial energy Ei = {60, 110, 150, 80, 72, 130,

50, 120, 90, 100} and the energy consumption rate Ei(k) = {2, 5, 3, 4, 6, 5, 2, 4, 3, 5},

the optimal lifetime obtained by all the algorithms is presented in figure 4.12.

Figure 4.12: The lifetime for WSN with not identical sensors.

We have also investigated the performance of the algorithms we developed for

WSNs lifetime optimization, based on NDSCs, considering both NDSCs search

and scheduling. We obtained the optimal solution for this problem using the ILP

mathematical model we developed by exploiting either the binary representation

method or GA-based method for the NDSCs search. The next subsection explores

the result obtained by the DSC-based GA from the literature to be compared with

the results we achieved with our algorithms.
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4.6 The existing method simulation and results

The GA based method used of WSNs lifetime optimization represented into DSCs

maximization problem developed in [83] is programmed using C programming

language. The results obtained using the method is compared against our results.

For a number of sensors (m = {10, 50, 100, 200, 300, 400, 500}), the upper bound

for the number of DSCs and the optimal solutions obtained are depicted in figure

4.13 with the number of iterations equal to 100.

Figure 4.13: The DSCs for different numbers of sensors.

For a number of sensors equal to 500, the enhancement of the solution by increasing

the number of iterations is depicted in figure 4.14. The upper bound for the number

of DSCs is 107, and the near optimal obtained is 101 in 10000 iterations.
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Figure 4.14: The DSCs for different numbers of iterations.

4.7 Results analysis and evaluation

Based on the randomly deployed sensors and targets, the binary representation

method and the GA based method were used to generate the maximum possible

number q of covers. Then, these covers were scheduled using the GA based heuris-

tic methods with different strategies (NDSCGA) and the ILP method to find a

near-optimal heuristic solution and optimal solution respectively for the WSNs life-

time optimization. Again, the GA-based method used in the literature to find the

optimal solution for the WSNs lifetime formulated as DSC maximization problem.

The analysis and evaluation of the related results could be presented and evalu-

ated at three levels: 1) the different GA-based methods that we developed, for

NDSC maximization (NDSCGA) and used for WSNs lifetime optimization, have

been assessed and compared to each other, 2) the NDSCGA heuristic solutions

have been evaluated and compared to the ILP based exact solutions and 3) the

NDSCGA heuristics solutions have been assessed and compared to DSC based GA

(DSCGA) from the literature. The following subsections analyze the results.
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4.7.1 Evaluating the GA based strategies results

This subsection investigates the different crossover operators used in the differ-

ent GA: SX, CX, OX and PMX implemented jointly with the mutation op-

erators: one point, two points, deterministic and randomized. To investigate

the enhancements of the crossover operators regarding the number of iterations,

we used 10 non-identically loaded sensors with an initial energy vector (Ei =

{60, 110, 150, 80, 72, 130, 50, 120, 90, 100}) and a energy consumption rate vector

(Ei(k) = {2, 5, 3, 4, 6, 5, 2, 4, 3, 5}). The crossover operators are evaluated, jointly

with the different mutation operators. The results obtained using all crossover

operators with the one-point randomized mutation for a number of iterations up

to 500 are shown in figure 4.15.

Figure 4.15: Crossover one-point randomized with different number of itera-
tions.

The results obtained using all crossover operators, jointly with the two-point ran-

domized mutation for a number of iterations up to 500 are shown in figure 4.16,

for 10 non-identical sensors.
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Figure 4.16: Crossover two-point randomized with different number of itera-
tions..

The results obtained (with 10 non-identical sensors are used) using all crossover

operators with one point deterministic mutation for a number of iterations up to

500 are shown in figure 4.17.

Figure 4.17: Crossover one-point deterministic with different number of iter-
ations..

The results obtained (with 10 non-identical sensors are used) using all crossover

operators with two-point deterministic mutation for a number of iterations up to

500 are shown s in figure 4.18.
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Figure 4.18: Crossover two-point deterministic with different number of iter-
ations..

4.7.2 Evaluating the GA to the Optimal

In this subsection, the solution obtained using our GA-based method is compared

to the exact solution obtained using the ILP considering the quality of the solutions

and the execution times. The Table 4.10 highlights a simple comparison between

the GA-based method and the ILP-based method using eight instances with S ∈

{5, 10} and energy consumption cost Ei(k) ∈ {2, 4, 8, 16}, coverage range r = 3 and

initially charged with 160 energy units used to monitor 5 targets. The execution

time in seconds and the optimal lifetime as multiples of k are obtained using both

methods for all instances.
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Table 4.10: GA and ILP based mettods comparison

Instances Lifetime = ( optimal value * k )

ILP GA

S, T, r, Ei, Ei(k) Ex. time (s) Opt. value Ex. time (s) Opt. value

5, 5, 3, 160, 16 0.03 20 0.010 20

5, 5, 3, 160, 8 0.02 40 0.010 40

5, 5, 3, 160, 4 0.02 80 0.010 80

5, 5, 3, 160, 2 0.02 160 0.010 160

10, 5, 3, 160, 16 0.02 30 0.051 30

10, 5, 3, 160, 8 0.02 60 0.041 59

10, 5, 3, 160, 4 0.02 120 0.055 117

10, 5, 3, 160, 2 0.02 240 0.068 238

Consider the execution time for both methods and the closeness of the lifetime

reached by the solution provided by the heuristics based on the GAs, the experi-

mental results support the followings observations:

• It is possible to find the optimal solution using all suggested GA-based strate-

gies, but with different numbers of generations and so different execution

time.

• It is possible to extend the WSN size and lifetime by increasing the number of

sensors, considering the increase of the execution time. The execution time

rose from 0.02 to 6.04 seconds while the number of sensors has increased

from 5 to 20.

• It is the same for the linear programming model execution time, which rose

from 0.02 to 2.53 seconds when the number of sensors increased from 5 to

20. Therefore, the total execution time rose from 0.04 to 8.57 seconds when

the number of sensors increased from 5 to 20.
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• Additional time is required for the WSN random deployment and sorting to

build the matrix V .

• Our new encoding method and mathematical model can be used as a basis for

more advanced investigations to enhance the performance of the GA-based

method.

• Regarding the optimal solution obtained using GA-based heuristic and the

exact solution values, the GA-based heuristic has found the optimal solution

in 5 out of 8 instances, which is greater than 50% ”. The worst case is 117

of 120 which is 97.5%.

• Our linear programming based method can be used as an exact method to

evaluate new heuristics for the randomly deployed WSNs lifetime maximiza-

tion problem.

4.7.3 Evaluating the NDSCGA to the DSCGA

In the GA-based method proposed for WSNs lifetime optimization problem through

DSC maximization using GA, the chromosomes representation, selection, crossover

and mutation operators in addition to an operator called scattering is applied on

the offspring. Initially, each sensor randomly joins a group among prescribed

groups. Then a group forms a cover if it can cover all targets. They considered

that it is impossible to find more than z disjoint covers if z sensors only cover a

target as a required minimum number of sensors S(T ). Thus, the number of the

prescribed groups is used as an upper bound (ub) of the number of covers. The

fitness of a chromosome is defined as the number of disjoint covers that can be

found by the grouping combination represented by the chromosome. The uniform

crossover exchanges each gene of the two parents and the mutation exchanges a

randomly selected gene to a random value from 1 to ub to the new generation. We

programmed this existing DSC based method and applied it in parallel with our

GA-based scheduling method incorporating NDSC GA, to improve the lifetime for

the same instances. Regarding the number of covers generated by the DSCGA and
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the NDSCGA, the table 4.11 synthesizes this comparison for different numbers of

sensors.

Table 4.11: MSCGA and NDSCGA

Num. of Sensors 100 200 300 400 500
Num ofNDSC 3924 5443 6650 7781 9013

DSC-upper bound 25 52 64 84 107
Num of DSC 23 46 73 77 99

It is clear that the number of NDSC is greater than DSC, but additional effort is

required to schedule this larger number for a lifetime greater than or equal to the

lifetime obtained by the DSC method. Therefore, the maximum number of NDSC

generated by NDSCGA is optimally scheduled using the genetic algorithm based

scheduling method to reach the optimal wireless sensor network lifetime. The four

strategies of GA explained and the DSCGA are applied to the same instances as

in figure 4.19. It is clear that our NDSCGA gives better solutions compared to

DSCGA for the same instances.

Figure 4.19: GA with NDSC via GA with DSC.

The DSC based method is applied with our genetic algorithm to calculate the

lifetime for the same instances. For the NDSCGA, the average of all the strategies

GA11, GA12, GA21, and GA22 is used to be compared to the result obtained by

DSCGA as in table 4.12.
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Table 4.12: DSCGA and NDSCGA

Sensors Ei Ei(k) MSCGA NDSCGA percentage

10 160 2 240 298 24.17

10 160 4 120 146 21.67

10 160 6 80 98 22.5

10 160 8 60 75 25

10 160 10 48 61 27.08

Average 24.08

The NDSCs based GA brought out an average enhancement about 24.08 percent

compared to the GA based on DSCs.

4.8 Conclusion

In this chapter, we have described the results obtained for the proposed methods

used with WSNs lifetime optimization. We have investigated the proposed meth-

ods for this problem specified using NDSCs and solved in two subproblems: 1)

the NDSCs finding subproblem and 2) the NDSCs scheduling and lifetime opti-

mization subproblem. For the first subproblem, two methods are investigated: the

binary representation based method and the GA based method. The GA based

method has successfully avoided the limitation of the binary representation based

method in term of scalability. The investigation has proven that the number of

sensors could be expanded, which gives the method we developed the capabil-

ity to be used in scalable surveillance systems. The NDSCs covers generated in

subproblem one are implemented in subproblem two to be scheduled for WSNs

lifetime optimization. The optimal solution for this problem is found using ILP

mathematical model and the Cplex software for the exact solution and GA based

method for faster solution. The investigation has proven that one can find high-

quality solutions compared to the exact solutions. The different mutation and
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crossover operators have been implemented to investigate and evaluate these GA-

based strategies on various instances. The integration of the two subproblems has

provided the capability to use the mathematical model provided in this work to

find the optimal solution for this problem specified with NDSC. The investigation

has proved that the NDSC based method can find better solutions compared to

an existing DSC based method. This work has provided one additional efficient

method for WSNS lifetime optimization problem with more advantages. One of

these advantages is the possibility for the different types of sensing nodes with dif-

ferent characteristics, operational energy behavior, and functions, to be efficiently

used together in the same WSNs based system.



General conclusion and

perspectives

Our work investigates the scheduling and optimization techniques applicable to

optimize the WSNs lifespan under energy constraints. In the existing literature,

this problem has been formulated as disjoint sets cover (DSCs) to maximizing the

network lifetime under limited energy reserve. Among the works in the literature,

the linear programming, genetic algorithms, and other optimization methods have

been used to maximize WSN lifetime based on DSC. The investigations have shown

that the valid amount of energy was not used because of the DSC constraints. In

our work, we consider the problem of WSNs lifespan optimization as scheduling of

non-disjoint sets covers NDSCs. We have formulated this problem, using the inte-

ger linear programming (ILP) mathematical model, then we developed a method

based on genetic algorithm GA to find the optimal lifespan. First, we used the

Cplex to find the exact solution for small size instances, while the sensors have

initial energy reserve and energy consumption rate. The results we obtained ex-

plained that the NDSCs is promising compared to the DSCs based methods.

Then, as a contribution, due to the complexity of the problem, we have developed a

GA-based scheduling method to solve efficiently this problem to extending the life-

time, under different operation conditions, while considering sensors with different

initial energy reserve and energy consumption rate. Also, we proposed heuristics

based on GA considering different crossover and mutation strategies. The algo-

rithm of the proposed method has been coded and simulated using C language

programming. One can find the results in the Proceedings of IEEE IDAACS’2015
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international conference on Advanced Data Acquisition and Intelligent Data Pro-

cessing.

We have also developed an integer linear programming model for scheduling and

maximizing the WSN lifespan successfully for NDSCs. For that purpose, we con-

sidered a set S of sensors, randomly deployed to monitor a set T of targets. We

determined the set of q NDSCs, and we proposed a method that aims at finding

the optimal scheduling for extending the WSN lifetime. The method has been

applied using eclipse-supported program with the linear optimization libraries of

Cplex and Java Development Kit (JDK) to obtain the optimal solution for this

problem on different operating conditions through numerical experiments. The

results were presented in the proceedings of CIE45 international conference on

Computers and Industrial Engineering.

Also, we proposed an exact method and GA-based heuristics, aiming at maximiz-

ing WSNs lifespan through scheduling, with a comparative study of both methods

regarding execution time and quality of solution for different instances. Then, we

developed a new GA-based method that can find the optimal number of NDSCs

to be scheduled using the previous method.

The DSC from the literature and the last NDSC-based methods were programmed

for evaluation. Our NDSCs based method used for solving WSNs lifetime opti-

mization problems under constraints of limited reserve of energy and has provided

promising results that were presented at the 3rd IEEE IDAACS?s SWS?2016 Sym-

posium on Wireless Systems.

Further work on the GA-based method involving new crossover and mutation

operators have brought out better performances. The results were included in

the proceedings of the 14th IFAC PDeS?2016 International Conference on Pro-

grammable Devices and Embedded Systems. As perspectives we would propose

further investigations regarding the followings:

• WSNs lifetime modeling: Several factors affect the WSNs lifetime beside its

energy constraints, such as failure hazard, component performance degrada-

tion through time and environmental influences. The model proposed in this
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work could be extended to include further realistic influent factors to bring

out an integrated vision of WSNs lifetime.

• Study of WSNs reliability and resiliency: this study would rely on the ND-

SCs’ properties offering the possibility to a sensor to participate in one or

more covers. The results will then be utilized for repairing and reconfiguring

covers in case of some sensors failure and thus enhance the reliability and

resilience of the WSNs.

• Scheduling: The model and method proposed in this work could extend to

solving scheduling problems with resources availability constraints.

• Optimization: Lastly, a further works could focus on reducing the complexity

of the proposed exact method to deal with larger size instances.
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Conclusion générale

Notre travail est consacré à l’étude des techniques d’optimisation de la durée de vie

des réseaux de capteurs sans fil (RCSF) sous contrainte d’énergie. Ce problème a

été formulé dans la littérature existante sous forme d’ordonnancement d’ensembles

de couvertures disjoints (DSC) pour maximiser la durée de vie du réseau avec

une réserve limitée d’énergie. Parmi les travaux en cours, la programmation

linéaire, les algorithmes génétiques et d’autres méthodes d’optimisation ont été

utilisées pour maximiser la durée de vie WSN à l’aide de DSCs. Les recherches

ont montré que toute la quantité d’énergie disponible n’est pas utilisée au max-

imum en raison des contraintes des DSC. Dans notre travail, nous considérons

le problème d’optimisation de la durée de vie des RCSFs comme un problème

d’ordonnancement des ensembles couvertures non-disjoints (ECND). Nous avons

utilisé un modèle mathématique de programmation linéaire en nombres entiers

(ILP) pour résoudre ce problème, puis, nous avons développé une méthode basée

sur les algorithmes génétiques (GA) pour obtenir une durée de vie optimale du

réseau. D’abord, nous avons utilisé le Cplex pour trouver une solution exacte pour

les instances de petite taille, avec des capteurs ayant les mêmes réserves initiales

d’énergie et le même taux de consommation d’énergie. Les résultats obtenus ont

montré que le NDSC est prometteur par rapport aux méthodes basées les DSCs.

Ensuite, en raison de la complexité du problème, nous avons développé une méthode

d’ordonnancement basée les GA pour résoudre efficacement le problème d’extension

de la durée de vie, sous différentes conditions de fonctionnement, tout en tenant

compte des capteurs avec différentes réserves initiales et taux de consommation

d’énergie. En outre, nous avons proposé des heuristiques basées sur les GA suivant
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différentes stratégies de croisement et de mutation. L’algorithme de la méthode

proposée a été codé, programmé et simulé en utilisant le langage C. Les résultats

de cette contribution sont accessibles dans les actes de la conférence internationale

IDAACS’2015 (Advanced Data Acquisition and Intelligent Data Processing).

Nous avons également développé avec succès un modèle d’ordonnancement et de

maximisation de la durée de vie de RCSFs par programmation linéaire pour ND-

SCs. Pour cela, nous avons considéré un ensemble S de capteurs, déployés au

hasard pour suivre un ensemble T de cibles. Nous avons pu déterminé l’ensemble

des q NDSCs, et nous avons proposé une méthode visant à déterminer l’ordonnancement

optimal permettant de prolonger la durée de vie de WSN. La méthode a été ap-

pliquée en utilisant le programme dans un environnement Eclipse soutenu par des

bibliothèques d’optimisation linéaires de Cplex et Java Development Kit (JDK)

pour obtenir la solution optimale à ce problème dans différentes conditions de fonc-

tionnement grâce à des expérimentations numériques. Les résultats sont publiés

dans les actes de la conférence internationale CIE45 (Computers and Industrial En-

gineering). En outre, nous avons proposé une méthode exacte et des heuristiques à

base des GA, visant à maximiser la durée de vie des RCSFs par ordonnancement,

avec une étude comparative des deux méthodes développées, en termes de temps

d’exécution et de qualité de solution pour les différentes instances. Ensuite, nous

avons développé une nouvelle méthodes basées les GA permettant trouver le nom-

bre optimal de NDSCs à ordonnancer à l’aide de la méthode précédente. Aussi

bien les méthodes basées sur les DSCs dans la littérature que les nôtres basées sur

les NDSCs ont été programmées et évaluées. Notre méthode, basée sur les NDSCs,

a été appliquée à la résolution des problèmes d’optimisation de la durée de vie des

RCSFs sous contraintes de réserve limitée d’énergie avec succès. Elle a fourni des

résultats prometteurs, exposés dans les actes du 3ème symposium IEEE IDAACS

SWS’2016 (Symposium on Wireless Systems). Des travaux complémentaires sur

la méthode basée sur GA impliquant de nouveaux opérateurs de croisement et

de mutation ont mis en évidence de meilleures performances. Les résultats ont

été inclus dans les actes de la 14ème Conférence internationale PDeS’2016 IFAC

(Programmable Devices and Embedded Systems).
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Comme perspectives, nous proposerons d’autres travaux sur les points suivants:

• Modélisation de la durée de vie du RCSFs: Plusieurs facteurs affectent la

durée de vie des RCSFs en dehors des contraintes d’énergie, tels que le

risque de défaillance, la dégradation des composants et les influences de

l’environnement. Le modèle proposé dans ce travail pourrait être étendu

afin d’inclure d’autres facteurs d’influence plus réalistes pour faire ressortir

une vision intégrée de la durée de vie des RCSFs.

• Fiabilité et résilience des RCSFs: Cette étude s’appuiera sur les propriétés

des NDSC offrant la possibilité, à un capteur de participer à une ou plusieurs

couvertures. Les résultats seront ensuite utilisés pour la réparation et la

reconfiguration des couvertures en cas de défaillance de certains capteurs, et

améliorer ainsi la fiabilité et la résilience des RCSFs.

• Planification: Le modèle et la méthode proposés dans ce travail pourraient

s’étendre aux problèmes d’ordonnancement, avec des contraintes de disponi-

bilitédes ressources.

• Optimisation: Enfin, d’autres travaux futurs pourraient s’intéresser réduire

la complexité de la méthode exacte proposée afin de traiter les instances de

plus grande taille.



Bibliography

[1] G. J. Pottie, “Wireless sensor networks,” in Proc. of the IEEE Information

Theory Workshop, pp. 139–140, 1998.

[2] G. Xu, W. Shen, and X. Wang, “Applications of wireless sensor networks

in marine environment monitoring: A survey,” Sensors, vol. 14, pp. 16932–

16954, 2014.

[3] Q. Wang and I. Balasingham, Wireless Sensor Networks - An Introduction,

ch. 1. In Tech, 2010.

[4] M. Won, C. Yang, W. Zhou, and R. Stoleru, “Energy efficient multi-channel

media access control for dense wireless ad hoc and sensor networks,” Wireless

Networks, vol. 19, pp. 1537–1551, 2013.

[5] L. M. Borges, S. Member, F. J. Velez, S. Member, and A. S. Lebres, “Survey

on the characterization and classification of wireless sensor network applica-

tions,” IEEE Communication Surveys and Tutorials, vol. 16, no. 4, pp. 1860

– 1890, 2014.

[6] O. Vermesan and P. Friess, Internet of things from research and innovation

to market and deployment. River Publishers, 2014.

[7] D. Miorandi, S. Sicari, F. D. Pellegrini, and I. Chlamtac, “Survey paper-

internet of things: Vision, applications and research challenges,” Ad Hoc

Networks, vol. 2012, pp. 1497–1516, 2012.

128



References 129

[8] N. Nidal and Y. Chen, “Secure and energy-efficient multipath routing proto-

col for wireless sensor networks,” Computer Communications, vol. 30, no. 11,

pp. 2401–2412, 2007.

[9] F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless

sensor network: A survey,” IEEE Communications Magazine, vol. 40, no. 8,

pp. 707–718, 2002.

[10] M. E. Keskin, I. K. Altınel, N. Aras, and C. Ersoy, “Wireless sensor network

lifetime maximization by optimal sensor deployment, activity scheduling,

data routing and sink mobility,” Ad Hoc Networks, vol. 17, pp. 18–36, 2014.

[11] A. Dhawan, Maximum Lifetime Scheduling in Wireless Sensor Networks,

ch. 2. InTech, 2012.

[12] J. Yick, B. Mukherjee, and D. Ghosal, “Wireless sensor network survey,”

Computer Networks, vol. 52, no. 12, pp. 2292–2330, 2008.

[13] S. S. Rao, Engineering Optimization: Theory and Practice. John Wiley, 4th

edition ed., 2009.

[14] M. Mitchell, An Introduction to Genetic algorithms. MIT Press, 5th print-

ing ed., 1998.

[15] W. Dargie and C. Poellabauer, Fundamentals of Wireless Sensor Networks.

John Wiley, 2010.

[16] J.-H. Kim, D.-H. Kim, H.-Y. Kwak, and Y.-C. Byun, “Integration between

WSNs and internet based on address internetworking for Web service, com-

puting and informatics,” Computing and Informatics, vol. 27, pp. 707–718,

2008.

[17] S. P. Singh and S. C. Sharma, “A survey on research issues in wireless

sensor networks,” Open Transactions on Wireless Sensor Network, vol. 2,

no. 1, pp. 1–18, 2015.



References 130

[18] K. Kaushal, T. Kaur, and J. Kaur, “Zigbee based wireless sensor networks,”

International Journal of Computer Science and Information Technologies,

vol. 5, no. 6, pp. 7752–7755, 2012.

[19] N. A. Somani and Y. Patel, “Zigbee: A low power wireless technology for

industrial applications,” International Journal of Control Theory and Com-

puter Modelling, vol. 2, no. 3, pp. 27–33, 2012.

[20] B. A. Mahmood and D. Manivannan, “Position based and hybrid routing

protocols for mobile ad hoc networks: A survey,” Wireless Personal Com-

munication, vol. 83, pp. 1009–1033, 2015.

[21] M. M. Qabajeh, A. H. Abdalla, O. O. Khalifa, and L. K. Qabajeh, “A sur-

vey on scalable multicasting in mobile ad hoc networks,” Wireless Personal

Communication, vol. 80, pp. 369–393, 2014.

[22] C. F. Garćıa-Hernández, P. H. Ibargüengoytia-González, J. Garćıa-
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