

AVERTISSEMENT

Ce document est le fruit d'un long travail approuvé par le jury de
soutenance et mis à disposition de l'ensemble de la
communauté universitaire élargie.

Il est soumis à la propriété intellectuelle de l'auteur. Ceci
implique une obligation de citation et de référencement lors de
l’utilisation de ce document.

D'autre part, toute contrefaçon, plagiat, reproduction illicite
encourt une poursuite pénale.

Contact : ddoc-theses-contact@univ-lorraine.fr

LIENS

Code de la Propriété Intellectuelle. articles L 122. 4
Code de la Propriété Intellectuelle. articles L 335.2- L 335.10
http://www.cfcopies.com/V2/leg/leg_droi.php
http://www.culture.gouv.fr/culture/infos-pratiques/droits/protection.htm

École doctorale IAEM Lorraine

Analyse du DNS et Analyse
Sémantique pour la Détection de

l’Hameçonnage
(DNS and Semantic Analysis for

Phishing Detection)

THÈSE

présentée et soutenue publiquement le 22 Juin 2015

pour l’obtention du

Doctorat de l’Université de Lorraine

(mention informatique)

par

Samuel MARCHAL

Composition du jury

Rapporteurs : Prof. Dr. Eric FILIOL ESEIA
Prof. Dr. Eric TOTEL Supélec Rennes

Examinateurs : Prof. Dr. Ulrich SORGER Université du Luxembourg
Prof. Dr. Thomas ENGEL Université du Luxembourg
Prof. Dr. Olivier FESTOR TELECOM Nancy - Université de Lorraine
Prof. Dr. Claude GODART Université de Lorraine

Invités : Dr. Habil. Radu STATE Interdisciplinary Centre for Security, Reliability and Trust
Dr. Vijay GURBANI Bell Laboratories

Laboratoire Lorrain de Recherche en Informatique et ses Applications — UMR 7503

Mis en page avec la classe thesul.

Remerciements

My first thanks go to the reviewers of this document and to the jury members who accepted to
evaluate it. I thank them for the time they spent to read it, for the interest they showed to my
work and for the constructive reviews and comment I got out of their evaluation. These helped
me to improve this manuscript, to identify some improvements that can be brought to this work
and new research perspectives that can be explored.

I faithfully thank my two co-supervisors, Thomas Engel and Olivier Festor for welcoming me
in their team at SnT and LORIA during the four years of my Ph.D.. They both provided me
a very good support and wise advices while I was doing my research activities. I thank them
for their listening, their help and the constructive feedback they gave me. Their supervision has
been a key element for the achievement of this Ph.D.

I also want to thank Radu State and Jérôme François. I met Radu Sate while he was
my professor at TELECOM Nancy. I discovered and started to do research activities under
his supervision. He gave me the taste and the motivation to do research by sharing his work
and passion with me. I thanks him for the opportunity he gave me to work with him, for his
support and the help he provided me during the past four years. I thank Jérôme François for the
supervision and the help he provided me when I started my Ph.D. He put me on the right track
from the beginning and we collaborated on many research activities afterwards. It has been a
pleasure to work with both of them and they were of great help to produce the results presented
in this document.

I want to thank all the people from the SecanLab team (SnT) and the MADYNES team
(LORIA). Working within these teams is a great environment to carry research, exchange ideas
and produce high quality work. It has been a pleasure for me to work in both during my Ph.D.
and I am happy to have spend time there. I address a special thanks to my office mates for
the good working environment they provided me. I thank as well people from LORIA and SnT,
I interacted with a lot of different people along these years and I am glad that some of them
became good friends.

I thank CETREL, the industrial partner for my Ph.D. and more specifically Sam Gabbaï and
Jean-Yves Decker. It has been a pleasure to work with them and to carry research activities to
solve concrete problems. Sam and Jean-Yves have always been of great help and I thank them
for the precious time they gave me and their availability during our collaboration.

Finally, I address a special thank to my family and in first place my parents who supported
me all along my studies. I thank as well my friends with who I spent good times out of office
which helped me to relax and work more efficiently.

To you all, thank you.

i

ii

À mes parents,
ma famille.

iii

iv

Contents

General Introduction 1

1 Context . 1

2 Issues and Challenges in Phishing . 4

3 Organization of Contributions . 5

Part I State of The Art and Background 7

Chapter 1 Phishing and Protection Techniques 9

1.1 Phishing: an Online Con Game . 10

1.1.1 Definition and History . 10

1.1.2 Phishing Vectors . 12

1.1.3 Economic Impact and Evolution . 14

1.1.4 Challenges to Fight Phishing . 15

1.2 Phishing Prevention Techniques . 16

1.2.1 Strong Authentication Schemes . 17

1.2.2 Security Toolbars . 18

1.2.3 Blacklists . 19

1.3 Phishing Detection Techniques . 20

1.3.1 Phishing Emails Detection . 21

1.3.2 Web Page Content Analysis . 22

1.3.3 URL Analysis . 23

Chapter 2 Domain Name System Monitoring 29

2.1 The Domain Name System . 30

2.1.1 Organization and Implementation . 30

2.1.2 DNS Usage . 33

2.1.3 DNS Misuses and Security Issues . 35

2.2 DNS Monitoring . 39

2.2.1 DNS Monitoring Strategies . 39

v

Contents

2.2.2 Performance Evaluation and Anomaly Detection 41

2.2.3 Malicious Activity Detection . 43

Part II Phishing Domain Names and URLs Detection 47

Chapter 3 Large Scale Passive DNS Monitoring for Identifying Malicious Domains 49

3.1 Passive DNS Monitoring Architecture . 50

3.1.1 DNS Data Gathering . 50

3.1.2 Distributed Storage and Processing System 53

3.2 Data Mining in DNS Space . 54

3.2.1 DNS Features Extraction . 54

3.2.2 Domain Names Clustering . 56

3.3 Experimental Evaluation . 58

3.3.1 Dataset . 58

3.3.2 Feature Analysis . 59

3.3.3 K-means Clustering Evaluation . 61

Chapter 4 Phishing Domain Name Identification Based on Word Relatedness 67

4.1 Phishing URL Obfuscation . 68

4.1.1 Obfuscation Techniques . 69

4.1.2 Obfuscation Words Semantic . 70

4.2 Semantic Analysis of Domain Names . 71

4.2.1 Word Extraction . 72

4.2.2 Word Relatedness Computation . 73

4.2.3 Similarity Metrics . 74

4.3 Domain Sets Comparison . 76

4.3.1 Dataset . 76

4.3.2 Similarity Metrics Evaluation . 77

4.3.3 Domains Set Size and Composition 80

Chapter 5 Semantic Based Phishing URLs Rating 85

5.1 Intra-URL Relatedness Analysis . 86

5.1.1 URL Word Extraction . 87

5.1.2 Shortcomings of Word Relatedness Evaluation Tools 87

5.1.3 Search Engine Query Data . 89

vi

5.1.4 Feature Computation . 90

5.2 Implementation . 92

5.2.1 Distributed Word Relatedness Inference 92

5.2.2 Bloom Filter for Features Computation 93

5.3 Phishing URL Detection . 95

5.3.1 Dataset . 95

5.3.2 Features Analysis . 96

5.3.3 URL Classification . 98

5.3.4 URL Rating . 101

Part III Semantic Based Phishing Domain Names Prediction 103

Chapter 6 Semantic DNS Probing 105

6.1 Smart DNS Probing . 106

6.1.1 Hostnames Composition Schemes . 106

6.1.2 System Overview . 108

6.1.3 Smart DNS Brute Forcer . 108

6.2 Semantic Discovery of Subdomains . 110

6.2.1 Similar Names . 110

6.2.2 Incremental Discovery . 112

6.2.3 Splitter . 112

6.3 DNS Probing Evaluation . 113

6.3.1 Methodology . 113

6.3.2 Exploration Parameters . 114

6.3.3 Performance Evaluation . 116

Chapter 7 Proactive Discovery of Phishing Domain Names 123

7.1 Modeling a Phisher’s Language . 124

7.1.1 Domain Names Features . 125

7.1.2 Domain Names Generation Model . 126

7.2 Domain Names Features Evaluation . 129

7.2.1 Dataset . 129

7.2.2 Features Analysis . 130

7.3 Phishing Domain Names Generation . 133

7.3.1 Types of Generated Domains . 134

7.3.2 Efficiency and Steadiness of Generation 136

7.3.3 Predictability and Strategy . 138

vii

Contents

General Conclusion 143

1 Summary of Contributions . 143

2 Research Perspectives . 145

List of Figures 149

List of Tables 151

Bibliography 153

viii

General Introduction

1 Context

The power of persuasion has been used for thousands of years to convince people to do things
dictated by a leader employing persuasion. This ancestral art is used by politicians, salesmen or
lawyers for instance, in order to spread ideas, to sell products or convince a jury, respectively.
Even though these examples are legal practices, one may find the ratio of power unfair between
people mastering this technique and their gullible victims. The power of persuasion has also been
used to perpetrate other activities considered as illegal such as swindling. In a swindle, a crook
uses his skills to abuse people credulity in order to make them do actions for his own benefit.
This can consist in lending money without warranty, provide services or products without paying,
give advance payment for fake sales, etc. These practices have been used by unscrupulous people
for centuries in order to make easy money. These tricks were initially performed using direct
interaction with victims through convincing speeches. However, time changes and the way to
perpetrate swindles as well as their targets changes. Nowadays, other means of communications
than direct talk are available through electronic communications like phone calls, emails, instant
messaging, etc. Moreover, the direct getting of money is not necessarily the first objective of
modern swindling and the acquisition of others valuable immaterial things, like data that can be
sold or used to steal money, became more common.

Phishing is an example of modern swindles that targets electronic communications users
such as phones and computers users. The same objectives are aimed by e-crooks, who are
named phishers, namely to persuade their victims to perform some actions using electronic
communications means. Phishers use their power of persuasion to tailor convincing socially
engineered emails or websites to manipulate their victims. They use carefully chosen words and
sentences to establish a trust atmosphere with their victims in order to push them to perform
some actions. Rather than targeting the direct stealing of money or delivery of products for free,
phishing mostly aims to steal the victim’s confidential electronic data that has became valuable.

The Internet has made it easy to use services that in the past required a more intimate contact
between the people conducting the transaction. Some general services such as news providers,
education services or science libraries are now available on the Internet. Personalized services
such as payment services, banking management services or retail services are also proposed.
These personalized services are sensitive because usually dealing with money management and
user’s confidential information. Hence, the access to these services is valuable in order to steal
the information and/or the money stored. For instance, gaining enough personal information
about a victim can be used to impersonate him through identity theft. A stolen identity can
be used to pose as a person in others swindles in order to hide and protect the identity of the
real crook, or to access personal electronic services in order to act in his name. This represents
actually the main goal sought by phishers: to steal the required information in order to access
sensitive services.

1

General Introduction

Figure 1: Phishing attacks and phishing domain names recorded every year (source:APWG)

Phishing appeared almost 20 years ago and its first victims were ISP users from which phishers
tried to steal the account access information using spoofed emails alleging having been sent by
administrators. Phishing attacks usually target users of a given sensitive service related to a
brand. Phishers lure the brand clients by alleging to be some brand’s representatives in order
to ask information related to their usage of the service. This information mostly consists in
credentials for a given website or credit card numbers. Several vectors are used for phishing
while the mostly used are emails and websites that mimic the ones of legitimate services and
alleged to be related to them. Despite this diversity, a common point of many vectors is the
use of link misdirecting victims to phishing contents. The use of obfuscated URLs and domain
names is widespread in phishing attacks and the use of malicious domain names as a support for
attacks is increasing as depicted in Figure 1, showing the relevancy to identify URLs and domain
names to fight phishing. This figure shows the evolution of the number of phishing attacks and
phishing domain names in use every year between 2008 and 2014. We can see that the count
of registered phishing attacks fluctuates between 100,000 and 250,000 globally along the period.
However, we can see a regular increase in the count of domain names used as a support for
phishing attacks starting from around 50,000 in 2008 and reaching almost 170,000 in 2014.

Over the years, phishing activities dramatically increased in terms of attacks and number of
targeted brands [apw04, AR14]. This augmentation of phishing attacks is depicted by an ever
increasing financial damage that reached US $5.9 billion in 2013 [rsa14]. This increase is ongoing
since phishing appeared and according to the current trend, this progression will continue. We
identified four main reasons explaining this increase and the installation of phishing as a continual
threat:

• The first is the increasing of the phishing attack surface. Over the years, the number of
Internet users, being potential victims, increased to reach about three billions currently,
compared to only half a billion in 2001 [int15]. The same observation can be done for the
number of Internet connected devices that is estimated to tens of billions and this number
will double by 2020 [cis]. This raises the number of physical phishing vectors that are not
limited anymore to desktops or phones but include as well laptops, smartphones or tablets.
Finally more and more services that can be targeted by phishing attacks are available on

2

1. Context

the Internet, as highlighted by the raise of online websites, reaching almost one billion
[net15]. Hence, many new potential victims, physical vectors and targets become available
letting space for new kind of phishing attacks to be perpetrated.

• The second reason is the variety of phishing attacks used to perpetrate phishing. Regular
phone calls, sms, emails or websites are examples of communication technologies used to
perform phishing. Protecting against this variety of vectors is difficult and existing phish-
ing prevention and detection techniques only cope with few of them. Detection techniques
for phishing emails [FST07] or phishing websites [MKK08, CDM10, CSDM14] exist for
instance, but their application is limited to few attacks compared to the tens that exist.
Hence, a global protection implies the use of several independent techniques as we can see
today with email filtering, web browser warnings and website authentication techniques
that are jointly used to protect against phishing. However, some phishing attacks still suc-
ceed to bypass this cumulated protections in order that phishing impact is still progressing.

• The third reason is the increasing number of phishers and attacks perpetrated. The former
is explained by the fact that phishing is an easy to perpetrate task requiring low technical
skills. The main effort to build phishing attacks is invested in the social engineering tricks
used [HCNK+14]. This can easily be performed by technically unqualified crooks thanks
to the availability of ready-to-use phishing kits [CKV08] and the availability of cheap
infrastructures to deploy the attacks. The increase of attacks performed is explained by
the decrease of gain per attack forcing phishers to launch more campaigns to keep a constant
revenue from their crime [HF08]. Phishing can be qualified as the cybercrime equivalent
of pickpocketing since many people are perpetrated it for low revenue. Hence, targeted
countermeasures against specific phishers do not cope with this cybercrime since many
other phishers would still continue their activities.

• The fourth and predominant reason is the lack of user awareness about the risk associated
with electronic communications and the value of the information stored on their several
websites accounts. Most people do not understand and are not concerned about the impact
of credential stealing, credit card number stealing or identity theft [pon14]. This lack
of concerns does not motivate them to protect their data from stealing. Security is a
secondary purpose for most users and their limited technical knowledge does not allow
them to enhance the security level of their electronic communications [WT99]. New users
of modern electronic communications means are gullible and easy targets for phishers who
can easily lure them. This widespread unawareness is the main reason of the efficiency of
phishing attacks.

Phishing is an ever growing activity that became of major concerns. Many factors explain its
expansion and the raise of its financial damage to reach several billions of dollars every year. The
variety of phishing attacks, the augmentation of potential victims and physical vectors, the ease to
perpetrate this modern swindle and the widespread unawareness of victims make it a troublesome
cybercrime activity. Beside its financial impact, phishing raise as well concerns regarding the use
of electronic communications means to communicate. People see personal information stealing
and misuse as a very-likely-to-occur event in their life [pon14]. This perception of phishing as a
fatality and not as a problem that can be prevented leads to erode the trust among electronic
communications users. A direct risk of this lose of trust is the decreasing usage of electronic
means such as emails as way of communication [HF08]. This renders the fight against phishing
paramount to preserve the widespread usage of this useful technology.

3

General Introduction

2 Issues and Challenges in Phishing

For more than ten years now, many solutions ranging from hardened authentication methods
to techniques for identifying phishing websites have been developed to fight phishing. However,
the ever increasing number of phishing attacks performed and the monetary damage caused by
phishing shows that there is still room for improvement in order to develop techniques that will
be able to reverse this increasing trend. The fight against phishing is a challenging task and to
develop efficient protection method, one must consider several factors:

• The main challenge in tailoring efficient phishing protection techniques is that phishing
cannot be treated as other security issues. Malware infection or network intrusions for
instance, rely on the exploitation by an attacker of technical security breaches that are the
result of flaws in the implementation of programs or network protocols. However, phishing
targets the most vulnerable part of any system: the user. Phishing mostly relies on the
use of social engineering tricks and the technical sophistication of phishing attacks is low
[HCNK+14]. Hence, the technical analysis of flaws exploited by phishing attacks and the
adoption of technical countermeasures is not efficient to cope with the problem. Actually,
phishing exploits one flaw of current electronic communications: the lack of authentica-
tion between users. While several strong authentication techniques exist, these are not
mandatory and not understood by most users. Most people are unable to authenticate
the identity of the entity they communicate with. Phishing protection techniques must
help people to assess the legitimacy of the entity they are communicating with in an easy
manner, in order to avoid the impersonation of legitimate entities by crooks.

• A second challenge lies on the difficulty to identify phishs. Since phishers mimic legitimate
entities behaviour by sending emails or creating websites that copy the original ones, the
differentiation between phishs and legitimate communication is difficult. Many features are
common to legitimate communications and phishs and only few differ. The identification
of these discriminating features is the main challenge to build reliable phishing protection
techniques. This reliability is paramount in order to prevent unlegitimate communications
while allowing legitimate. On these features depend the adoption and the usage of a
protection techniques by users, since users are globally not motivated to use protection
techniques [DT05] and ignore them when these are not reliable [ECH08].

• The third challenge is to develop techniques that can cope with the several phishing vectors.
Phishing detection techniques usually focus on some categories of phishing attacks like fake
websites identification or phishing emails detection. Other techniques are even more limited
and target only some specific phishing attacks like browsers windows spoofing [YS02, DT05]
or tabnabbing [DRNDJ13]. The development of too specific phishing protection techniques
does not provide a good protection against the large range of phishing attacks. To cope
with this, the accumulation of case-specific phishing protection technique is needed to
provide a wide protection coverage. To operate, these cumulated techniques require a large
computation time, introducing thus a delay in the identification of phishs. A long delay
can impact the usability of a protection technique if it aims a real-time usage.

• A last challenge lies on one characteristic of phishing attacks namely their short lifetime.
Phishing attacks last on average less than one day and often only few hours [apw14]. Even
though, this lifetime is short, the financial damage of these attacks is high. To limit this
damage, protection techniques must fast identify phishs. This requirement raises issues

4

3. Organization of Contributions

about the usage of off-line phishing detection methods in this context. Efficient phishing
protection techniques must focus more on on-the-fly identification of phishs to limit the
impact of an attack. However, such methods must be used in a context of current usage
of electronic communication means such as exchange of instant messages, or web surfing.
Hence, the proposed method must not impact users’ experience and must not introduce
large delay that would prevent their usage.

3 Organization of Contributions

Seeing the characteristics required by an efficient phishing protection method in term of speed,
coverage, reliability and ease of use, we propose in this manuscript new techniques that can cover
these requirements. We exploit the fact that phishing attacks are a kind of modern swindle.
Phishers are crooks employing there persuasion power to convince their victims to act for their
benefice. They employ carefully chosen words in their communications to establish a trust
atmosphere and delude victims. Based on this fact we propose to analyse the meaning and
semantic of words used by phishers in order to detect messages produced by them. To cover a
large set of phishing attacks, we analyse the semantic of URL and domain names. These resource
locators are used in a large range of phishing attacks to misdirect users to malicious contents. The
identification of phishing URLs leads to cope with several phishing vectors and that is why it is
currently used as phishing protection method in reactive URL blacklits [goob, mic]. However, to
cope with the slow process of crowd verification used by blacklist, we rather perform a real-time
analysis of URLs and exploit the semantic of words embedded in them. Observing the increasing
usage of malicious domain names to perform phishing attacks, as presented in Figure 1, we focus
as well the semantic analysis on domain names and explore the possibility of predicting domain
names used for phishing by analysing phishing domains composition and semantic.

This document is structured around two main research directions related to phishing URLs
and domain names detection and phishing domains prediction:

Part I: State of the Art and Background. This part gives the necessary background to
position the contributions provided in this document according to the working context of phishing
and domain name analysis. Chapter 1 defines the concept of phishing attacks and presents some
of the most used phishing vectors. We provide an overview of the phishing nefarious impact and
list the requirements to develop efficient phishing protection methods. The existing techniques
developed to cope with phishing are presented and we identify their weaknesses and their ability
to meet the formulated requirements. Chapter 2 presents the organization and functioning of
the Domain Name System. An overview of the different usage of DNS monitoring techniquesare
presented and we argue about the relevancy of using DNS monitoring to identify phishs.

Part II: Phishing Domain Names and URLs Detection. This part presents the first
contributions of this document in developing techniques to identify domain names and URLs
used in phishing attacks. Chapter 3 introduces a domain name clustering technique based on
passively captured DNS data. The method is able to group domain names according to their
activity and to discriminate phishing from legitimate domain names. This is further used in
Chapter 4 as a pre-process to group domain names. Chapter 4 introduces a technique to infer the
legitimacy or maliciousness of a set of domain names using semantic analysis. Metrics quantifying
the semantic similarity between two sets of words are introduced and used to compare words
extracted from legitimate and phishing domain names. These metrics allow to differentiate

5

General Introduction

phishing from legitimate sets of domain names. Chapter 5 introduces a URL phishing detection
technique relying on the analysis of intra-URL relatedness. Search engine query data is used
to quantify the relatedness between the registered domain name of a URL and the remaining
of it. It is showed that legitimate URLs present more intra-relatedness than phishing URLs.
The proposed technique relying on a machine learning algorithm is able to identify phishing
URLs with an accuracy of 95% and a process time of less than a second thanks to a distributed
processing architecture.

Part III: Semantic Based Phishing Domain Names Prediction. This part explores the
possibility to predict domain names that will be used by phishers. The predictable character of
domain names is explored in Chapter 6. We present a technique relying on the finding of seman-
tically related words in order to discover the different subdomains of a domain name. Based on
a set of known subdomains this techniques is able to discover new subdomains and outperforms
existing state of the art techniques showing the validity of using semantically related words to
predict domain names. A similar technique is used in Chapter 7 to generate a predictive phishing
blacklist. A domain name generator relying on a Markov Chain model using semantic extension
is introduced. Learning from a set of existing phishing domains the generator is able to produce
domain names that will be used for phishing activities and this even long time before these are
used. This work shows that phishing domain names follow specific composition schemes and use
words restricted to a limited vocabulary such that these are predictable.

The dissertation concludes that lexical and semantic analysis performed on domain names
and URLs is relevant to build phishing protection methods. This analysis combined with other
data sources such as DNS information shows good results in the identification and prevention of
phishs. It meets three essential requirements for a phishing protection that are speed, coverage
and reliability.

6

Part I

State of The Art and Background

7

Chapter 1

Phishing and Protection Techniques

Contents

1.1 Phishing: an Online Con Game 10

1.1.1 Definition and History . 10

1.1.2 Phishing Vectors . 12

1.1.3 Economic Impact and Evolution . 14

1.1.4 Challenges to Fight Phishing . 15

1.2 Phishing Prevention Techniques 16

1.2.1 Strong Authentication Schemes . 17

1.2.2 Security Toolbars . 18

1.2.3 Blacklists . 19

1.3 Phishing Detection Techniques . 20

1.3.1 Phishing Emails Detection . 21

1.3.2 Web Page Content Analysis . 22

1.3.3 URL Analysis . 23

Introduction

The increasing usage of e-services (e.g. e-banking and e-commerce) during the last decades saw
the emergence of new threats associated to these services. The valuable information handled by
these services attracted miscreants seeking to steal this data and use it for lucrative purposes.
One example of such cybercrime activities is phishing. The first appearance of this term dates
back to 1996 and refers to the attack perpetrated against America Online (AOL) where scammers
posing as AOL employees sent messages to ask customers for confidential information. Although
this was the first recorded occurrence of a phishing attack, phishing became commonly known
by ordinary people only ten years later. Now, twenty years after its appearance, phishing has
become one of the most lucrative cybercrime activities causing billions of dollars of loss every year
[gar07, str10, rsa14]. Although several techniques have been developed to cope with phishing
during previous years, its economic impact is still increasing over time [rsa14]. Methods to
perpetrate phishing evolve at the same pace as protection techniques, making it a continual
threat.

9

Chapter 1. Phishing and Protection Techniques

Phishing is a criminal mechanism employing technical subterfuges and social engineering to
abuse the credulity of uninformed users. The technique usually consists in masquerading as a
trustworthy entity in order to convince an individual to perform an action that he would only do
if asked by the impersonated entity. In most cases, this action consists in providing credentials
information for e-services access, providing credit card information, downloading and installing
malware, etc. The fight against phishing is difficult because phishing targets the most vulnerable
part of the system: the user. As described in [DT05], in phishing both system designers and
attackers battle in the user interface space to guide (or misguide) the users. Hence, the problem
cannot be tackled as a traditional system or network security issue but must heavily consider
the human factor. Most phishing attacks can be detected by experienced users but for basic
Internet users, security is a secondary purpose and they are not motivated and skilled enough to
properly identify phishs. Phishing protection methods must consider the human factor and more
precisely the limited skills of users and the "unmotivated user" property [WT99]. It is shown in
[SHK+10] that half of unexperienced users fall for phish and that even after being trained almost
a third of studied users are still tricked by phishing attacks. Thus, developing efficient protection
techniques is challenging and raise several requirements like ease of use, speed or performance.

Some automated and easy to use methods have been proposed to protect users from phish-
ing. Phishing email filtering techniques [FST07, RW12, AKS14], security toolbars [CLTM04,
GPGL11] and Web browser phishing warnings [goob, mic] are examples of such techniques.
These methods can be classified in two categories being phishing prevention methods, helping to
prevent exposition to phishing by enforcing authentication for instance, and phishing detection
methods, which analyse a given email or web page in order to assess its legitimacy. The scope
of some techniques is however limited to specific phishing attacks and the identification delay
is important. The variety of means used to perform phishing and the short lifetime of phishing
attacks make these solutions often inefficient or easy to bypass, requiring new solutions to be
proposed. Despite more than ten years of fight against phishing, its nefarious impact is still
growing.

We start in this chapter by defining in Section 1.1 what phishing is and present the means
used to perpetrate this task as well as an overview of the economic impact and evolution of
phishing activities. Based on the observations, we define the requirements to meet for efficient
phishing protection. Section 1.2 presents three techniques to prevent phishing attacks and give
some examples of implemented solutions. Methods for phishing detection are presented in Section
1.3 and we identify the strengths and weaknesses of each state of the art technique.

1.1 Phishing: an Online Con Game

Phishing has been a continual threat present for almost 20 years. The range of malicious activities
and attacks categorized as phishing is wide and some have few similarities with each others. We
first give a definition of phishing including the different aspects of the activities it includes
and provide a short history of phishing. Then, we present some phishing attacks and vectors
leveraging technical subterfuges and social engineering. We provide an analysis of the phishing
evolution in term of economic impacts, attacks performed and techniques used over the years.
Finally we present the several challenges to develop efficient phishing protection solutions.

1.1.1 Definition and History

The term phishing, which was also referred to Web spoofing at the beginning, comes from the
fact that scammers used spoofed emails and websites as baits to lure users. Hence, phishing

10

1.1. Phishing: an Online Con Game

refers to fishing. The "f" was replaced by "ph" to refer to one of the earliest form of hacking
against telephone networks and was called phone phreaking. Hence, "ph" became a common
hacking replacement pattern for the character "f".

Accurately defining phishing is difficult and available definitions provided by the literature
are inconsistent. According to PhishTank [phi]: "Phishing is a fraudulent attempt, usually made
through email, to steal your personal information". Similarly, Webster dictionary defines phishing
as "a scam by which an email user is duped into revealing personal or confidential information
which the scammer can use illicitly". The website phishing.org describes phishing as a "Process
where a targeted individual is contacted by email or telephone by someone posing as a legitimate
institution to lure the individual into providing sensitive information such as banking information,
credit card details, and passwords". In [JJJM07], a more general definition states that "Phishing
is a form of deception in which an attacker attempts to fraudulently acquire sensitive information
from a victim by impersonating a trustworthy entity".

These definitions are however too restrictive since phishing is not limited to stealing personal
information. The delivery of malware or trojan horses through phishing emails claiming for
software updates is a common phishing practice. This does not steal any personal data. Moreover,
the given definitions state that the attacker is acting on behalf of a third party, which is not
always true. Some phishing attacks consist in alleging to deliver safe contents while these actually
deliver malware, although phishers are not masquerading as a known trustworthy entity. As a
result we select the definition from [KIJ13], which covers the several aspects of phishing attacks:
"Phishing is a type of computer attack that communicates socially engineered messages to humans
via electronic communication channels to persuade to perform certain actions for the attacker’s
benefit".

The first appearance of the term phishing occurred in early 1996 [Oll05]. Following the mea-
sures taken by America Online in late 1995 to cope with the opening of AOL accounts using fake
credit card numbers, AOL crackers resorted to phishing for legitimate accounts. Masquerading
as AOL staff members, phishers started to send instant messages to legitimate AOL users asking
for "verification of account information" or "confirmation of billing information" in order to
steal their passwords. Lots of users fell for the ruse and AOL started to include warnings to
prevent users from revealing their personal information through such methods. The main use
of these stolen accounts was to send spamming emails. In 2001, after targeting Internet ser-
vice providers, phishers started to focus their attention on more profitable Internet actors like
e-payment and e-commerce services. A first attack against E-gold service, which was a digital
gold currency, was unsuccessful. However, in late 2003 phishers maliciously registered dozens
of domain names looking like belonging to eBay and PayPal. Shortly after, they used worms
to lure PayPal customers with spoofed emails. These emails contained redirection links to fake
websites and asking them to update their credit card information. This introduced the most used
phishing attack where mass mailing of spoofed emails embedding links direct to fake websites.
By 2004, phishing has been recognized as an industrialized part of the economy of crime and the
study of this underground economy started.

Since phishing appears, the original technique to perform it with emails and websites spoofing
remains the most widely used nowadays. Even though several techniques, more elaborated and
complex, have been developed, the easiest and most used means targets the unawareness of
unsavvy Internet users is still the most efficient. The technical sophistication of phishing attacks
is fairly low compared to the sophistication of the social engineering used [HCNK+14]. Hence,
the fight against phishing still mostly consists in detecting and preventing connections to fake
websites and detecting unlegitimate emails.

11

Chapter 1. Phishing and Protection Techniques

1.1.2 Phishing Vectors

The vague definition describing phishing as "a type of computer attack that communicates socially
engineered messages to humans via electronic communication channels to persuade to perform
certain actions for the attacker’s benefit" is the result of the several techniques used to perpetrate
this activity. Phishing attacks rely on combined technical subterfuges and social engineering
tricks. Techniques to perform phishing can be categorised in three categories being web-based
phishing, communication-based phishing and malware-based phishing. In addition these can
be divided in two other categories as either these perform identity spoofing or not. Figure 1.1
presents several phishing vectors according to this classification. In addition it provides the kind
of intended actions associated with these vectors i.e. information stealing or malware delivery.
It shows as well the possible redirection between the several phishing vectors. The majority
of perpetrated phishing attacks belong to web-based and communication-based phishing using
mostly identity spoofing. We describe some widespread techniques of these categories causing
the largest financial loss [rsa14] and being the ones principally targeted by phishing detection
[ZHC07, FST07, MKK08, MSSV09b].

• Emails: Emails alleging to be sent by a trustworthy entity ask receivers to perform some
actions. The email purpose is generally the update of personal information such as website
passwords or credit card information, the confirmation of a transaction requiring personal
information, etc. This was the first phishing vector used against AOL users to steal their
account information. E-services companies quickly warned users against providing personal
information within emails. This raised users awareness such that most users did not fell
for this trick anymore. Hence, phishers started to ask for software update alleging for
security issues and actually delivered malware. Email embedding URLs and links directing
to fake websites were used instead of directly asking for information in email replies. Links
directing to drive-by download are also inserted in emails. A drive-by download is the
unintended download and installation of a software, usually a malware.

The email sender address is often forged (or spoofed) to pretend to be sent from a trustwor-
thy entity. Moreover, phishing emails usually include company logos and security indicators
to make users feel confident with the legitimacy of the email. Phishing emails can target
specific entities or people but these are mostly sent to thousands or millions of users as
part of an email spamming campaign. Instant messaging services are used the same way
as emails, sending link directing to fake websites. These represents the two most common
communication-based phishing techniques with identity spoofing.

• Fake websites: Websites having a similar and sometimes identical look and feel as popu-
lar websites. These have no relation with the website being spoofed and are managed by a
phisher. Websites being copied are mostly related to banking activities, payment, retail and
software brand. People trying to log into a fake website, thinking it is legitimate, enter their
usernames and passwords, which are stolen by phishers. After login, users are sometimes
redirected to the real websites making the phish invisible. Some additional information can
be asked, like credit card information for fake payment service websites. Phishing websites
related to software providers deliver malware as updates or propose charged updates. Inter-
net users are directed to these fake websites via embedded link in emails, instant messages
or in other web pages. These links are in the form of Uniform Resource Locator (URL)
based on domain names that are not the ones of the targeted brand. Three techniques are
used to build a phishing URL leading to fake websites. These are either domain hijacking,

12

1.1. Phishing: an Online Con Game

DNS spoofing or registration of free domain names for malicious purposes, which is mostly
used.

• Low-cost product websites: Legitimate websites that propose products at low cost
or download of movies and games for free. When users pay a low amount for products
through these websites, the credit card information is stolen and no product is shipped.
Downloaded games or movies usually contain malware, crimeware or spyware that will be
installed on users’ computers.

• Content injection: A phisher changes a part of the content of a legitimate webpage. This
modified part can either embed forms were users can enter personal information or include
link directing to a fake website. Content injection can be done using cross-site scripting.

• Spoofed browser windows: This technique is similar to the content injection except that
the web page is not modified. An illegitimate browser window is placed on top of or next to
a legitimate window. This illegitimate browser window spoofs a password dialogue window
usually. While visiting a website users can enter username and passwords in the prompted
spoofed window instead in the legitimate fields and the phisher gains this information.

• Tabnabbing: An attack that employs scripts to rewrite the content of a web page of
average interest with the content of popular websites. This exploits the ability of modern
web pages to rewrite their content long time after these are loaded. Unattended open tabs
in a browser can thus change their content to adopt the look and feel of popular websites
while these are not used. When users return to the web page, which has changed in the
meantime, they may not remember it was not the web page they visited first and log into
it giving their credential and password to the phisher.

• Web proxy: A phished user on a shopping website is redirected to a server controlled
by the phisher. The server acts as a proxy between the user and the shopping website
delivering the legitimate content to the user. Once the user has finished his shopping and
wants to make the purchase, the proxy serves up a modified web page that drives the user
through a checkout process designed to extract personal information.

• Fake antivirus (AV): A malware being installed on a computer alleged to be the free
version of an antivirus software. The fake AV claims that the computer is infected with
several malware and an upgrade of the antivirus to the full version is needed to remove
the viruses. The fake AV often blocks all the functionalities of the computer and the only
possible action is to make the upgrade. The upgrade costs money and requires credit card
information to be installed. Phishers take the payment and steal the payment information.
Fake antiviruses are usually installed through drive-by download.

These represent the principal means used to perform phishing. Some other phishing scams
such as VoIP phishing (or Vishing) or SMS phishing (or SMiShing) can also be cited. However,
prevention techniques against these computer-based phishing attacks are different from the pre-
vious phishing techniques that are mainly web-based phishing attacks. Some malware products
such as key loggers, trojan horses or fake antiviruses are considered as well as part of phishing at-
tacks. The prevention and detection of these attacks rely though more on malware analysis than
on phishing detection. Moreover, these malware applications are mostly delivered to users and
installed using phishing vectors dedicated to malware delivery as presented in Figure 1.1. Phish-
ing emails are the primary vector of malware spreading [HCNK+14]. Hence, the identification
of other phishing vectors is efficient to cope with malware-based phishing.

13

Chapter 1. Phishing and Protection Techniques

Figure 1.1: Phishing vectors classification

1.1.3 Economic Impact and Evolution

A first study on the phishing impact [apw04], made by the Anti-Phishing Working Group, re-
ported some hundreds phishing attacks per month at the end of 2003. Back then, the most
targeted industry sector was financial services and only 24 brands were targeted by phishing.

In ten years, phishing activities have grown above expectations despite the effort engaged in
the fight to cope with it. The latest report [rsa14] states that around 60,000 phishing attacks
are observed every month. This increased more than twofold since 2010 where around 200,000
phishing attacks were reported for the whole year. These phishing attacks are mainly web-
based attacks since more than 40,000 unique phishing websites are detected every months and
around 60,000 unique phishing emails are reported every month in 2014 [apw14]. This proves
that phishing emails and fake websites are still mostly used in current phishing attacks. Many
domain names are registered to direct users to phishing websites since around 10,000 maliciously
registered domain names were used for phishing every month in 2014 [apw14]. This shows an
increase compared to 2012 where only 7,712 maliciously registered domains were used during
the whole first semester [AR14]. Alternative techniques to direct users to fake websites such
as domain hijacking or DNS cache poisoning are cumbersome tasks that require technical skills.
Registering free domain names for malicious purposes is a much easier task for phishers explaining
the increasing trend in the use of maliciously registered domain names.

As the Web was growing, the count of brand targeted by phishing raised. More than ten
industry sectors are targeted by phishing nowadays. These mostly consisted in ISPs (AOL) at
the beginning and started to target financial institutions few years later. Now, social network,
online gaming, government or retail websites are targeted as well. As depicted in Figure 1.2, the
most targeted industry sector is payment services (e.g. PayPal, Visa, MasterCard, etc.) that
represents almost 40% of the phishing targets. ISP and financial institutions are still targeted but
in lower proportion, 8.42% and respectively 20.2%. Compared to the initial 24 brands targeted
by phishing in 2003, around 350 different brands are currently targeted [apw14]. This renders
the protection of brands with dedicated solutions [eba] difficult since one would have to install
and use too much add-ons to stay safe.

The raise of phishing targets caused as well the raise of financial damage. No accurate
estimation is available to quantify the financial loss due to phishing. However, in 2007 a Gartner

14

1.1. Phishing: an Online Con Game

Figure 1.2: Most targeted industry sectors for the 3rd quarter 2014 (source: APWG)

survey [gar07] estimated a direct financial loss of 3.2 billion dollars over the year due to phishing.
In 2010, a report [str10] about identity theft mainly performed with phishing attacks presented
an estimation of 54 billion dollars loss as consequence of this theft. Lately, in 2013, the estimated
direct loss over the year due to phishing was of 5.9 billion dollars reaching a record [rsa14]. As
described in [AR14] the first day of a phishing attack is the most lucrative and thus fast take
down of phishing websites is paramount to limit the financial damage. Between 2010 and 2014,
the average uptime of phishing websites has been divided by two, dropping from 72 hours to 32
hours. More significant is the median uptime of phishing websites that decreased from 15 hours
in 2010 to less than 9 hours in 2014. The development of phishing detection and prevention
techniques reduced the delay of fake websites take down, thus reducing the financial loss due to
each phishing attack. While causing important loss, phishing is a low reward activity for phishers
[HF08]. Hence, the number of phishing attacks constantly increases to increase the gain, having
for consequence the increase of victims and the raise of the global financial loss. The availability
of easy-to-deploy phishing kits [CKV08] that target both users and victims makes performing
phishing attacks an easy task and explain the raise of perpetrated attacks and the increase of
phisher’s count. Phishing is the cybercrime equivalent of pickpocketing. It is easily perpetrated
with low technical skills and low cost to the attacker thanks to phishing kits and cheap criminal
hosting services.

1.1.4 Challenges to Fight Phishing

The observation of phishing evolution shows that there is still room for improvement in techniques
to cope with this cybercrime. Despite the progress made for fast take down of phishing websites,
the global damage of phishing is still increasing due to the increase of attacks. Besides the
financial damage caused by phishing attacks, phishing causes an erosion of trust among Internet
users and start to destroy emails as a way of communicating. Hence, the development of new
means to deal with this problem is an ongoing activity to reverse the loss growth trend.

The variety of phishing vectors and the ease to perform phishing attacks makes the fight
against it very challenging. We identified six requirements to develop efficient protection tech-
niques. These consider the characteristics of phishing namely the variety of vectors used, the

15

Chapter 1. Phishing and Protection Techniques

speed of phishing attacks and the human factor. The requirements are the followings:

• Speed: Since phishing attacks make large monetary damage in few time and especially
during the first hours of a phishing attack, the identification of a phish must be fast to
limit the nefarious effects. If we consider phishing detection methods, these are involved
while users are surfing the Web or consulting emails, thus a detection method must not
impact the quality of the user’s experience by introducing large delay.

• Coverage: Phishing defences must be able to prevent against as many vectors as possible
and a perfect phishing protection method would be able to deal with the several techniques
presented in Section 1.1.2 to provide the best protection.

• Information required: The best phishing detection method must be easy to implement
and must not rely on several information. Some phishing detection methods rely on several
kind of information that is not necessarily available, which limit their applicability. In
addition the retrieval of this information is often time consuming, which impacts the speed
of the methods.

• Reliability: Phishing protection methods must protect from the most phishing attacks,
as described in the coverage requirement. However, these must identify as low as possible
legitimate communications as phishing attacks. Too many false alarms can affect badly the
user experience. In addition, it can cause the loss of confidence in the protection technique
impacting the user consideration.

• Ease of use: Methods must be easy to use and to understand by users. Most users
and especially phishing victims have few technical knowledge and few knowledge of the
way phishing attacks are performed, explaining why they are trapped. Hence, phishing
protection must consider this parameter and be tailored to be easily used.

• Actual usage: This requirement is a consequence of the previous one and evaluate if the
protection method can be actually implemented and used by users or if it is just ignored
or too complicated to implement. This mostly evaluates the ability of a given method to
cope with the unmotivated user property.

Several methods have been develop to cope with phishing and have been proved efficient
in identifying attacks such that the time of phishing attacks globally decreased. Despite this
efficacy, phishing is still an ongoing problem and these did not succeed to get rid of this threat.
To understand the cause of this unsuccess, we analyse to which extent state of the art phishing
protection methods meet the introduced requirements.

1.2 Phishing Prevention Techniques

For more than ten years the research activities to develop efficient techniques to cope with
phishing have been very active. The solutions proposed can be divided in two main categories
according to their goals that are phishing prevention and phishing detection. The former methods
were the first to be introduced in order to prevent any connections to phishing websites for
users. These techniques were mainly focused on three fields that are the development of strong
authentication protocols, security toolbars to raise user awareness about phishing danger and
the implementation of blacklists.

16

1.2. Phishing Prevention Techniques

1.2.1 Strong Authentication Schemes

While accessing banking services, retail services or social network on the Internet for instance,
one is expected to enter some personal information (e.g. username, password, etc.) to prove his
identity to the web service and access his account. This is needed since the account associated
to such service contains some other more sensitive information about the user that must be
protected from access of others. This is the process of authentication required by any Internet
service dealing with personal data. This process has been implemented with some flaws letting
unauthorized users accessing this information. The use of weak passwords and their reuse by
unsavvy users make the authentication process subject to attacks. Moreover, the reverse process,
consisting in authenticating a website to a user, has been proven weak. Users cannot reliably
identify the entity they communicate with, letting space for phishing attacks to occur.

Hence, some solutions have been proposed to fight phishing by developing strong authenti-
cation processes allowing both parties (client and server) to prove their identity without having
to reveal sensitive information during the handshake.

The first proposed solutions consisted of browser extensions aiming to help users distinguish
content provided by legitimate websites from content provided by unlegitimate entities. This
is to avoid that users enter sensitive information in unlegitimate fields and to prevent thus
credentials stealing. In [YS02], a browser extension giving different colors to window boundaries
is introduced. Two kinds of windows are depicted to users according to the nature of the window
content. It allows to distinguish browser provided status from web server provided contents.
Easily distinguishable windows help users to detect malicious content provided by web servers
and prevent them for providing sensitive information to unlegitimate entities. In [DT05], a similar
solution of tuned browser windows is proposed to authenticate a web server. It uses unique
abstract images to display a dedicated password window for users to enter their credentials and
log in to a given website. The look of the window is different for every user and transaction and
generated based on a shared password between the user and the server. Hence, users can easily
see if the displayed password window is a spoofed window since such window would not have the
expected look for a given legitimate website.

Methods for improving servers authentication have been proposed like in [TH09]. DNS TXT
records are used to store the legitimate entity’s certificate and authenticate to the client. A
client plugin and a server plugin are used. The client plugin authenticates the web server by
validating the certificate stored in the DNS TXT record. Then both plugins realize a mutual
authentication using a one-time password.

One bad habit of Internet users is to use similar weak passwords for different websites. These
can be easily guessed by phishers and one stolen password can give access to several accounts.
To cope with this bad habit some techniques to strengthen and differentiate passwords have been
proposed [RJM+05, YS06, GLLA07]. For instance, Ross et al. introduce a browser extension
named PwdHash [RJM+05]. This extension transparently produces different password for each
site a user wants to sign in based on a single password. It relies on hash functions that generates
a password from the unique user password and some data associated with the website that
cannot be spoofed by a phisher: the domain name. It strengthens web password authentication
and prevents to provide user’s password to phishers in fake websites since fake websites have a
different domain name than the one they spoof.

Other techniques to strengthen the authentication process proposed the use of a second factor
authentication other than a password. Nikiforakis et al. introduce the concept of Past Activity
Tests (PACTs) to authenticate on a website [NMAM09]. A question related to past actions of
the user while he last connected is asked to log in. Phishers using stolen credentials are unable

17

Chapter 1. Phishing and Protection Techniques

to reply to this kind of questions since it is the first time they try to log in and have denied
access. The use of an additional trusted device like a cellphone for authentication is introduced
in [PKP06]. A robust authentication technique relying on javascript is presented in [BJKP14].
This relies on a token delivered with a secure channel that is stored on the web browser and
further used for every authentication.

On the one hand, the latest presented methods having for aim the strengthening of users
authentication are efficient to avoid passwords stealing and the reuse of them by phishers. Some
of the techniques proposing a second factor authentication have been adopted by sensitive services
such as e-banking services to enforce the security. On the other hand, methods for strengthening
server authentication while having good foundations did not improve the situation. Contrarily
to strong user authentication that is imposed by e-services, strong server authentication is up to
Internet users. Since most Internet users are unaware of the phishing dangers and since security
is a secondary purpose, these optional methods have not been adopted. These security solutions
[YS02, DT05] are not mandatory, difficult to understand and globally add constraints to users
for their primary purpose of surfing the Web. Other techniques [TH09] being transparently used
still have some flaws like being vulnerable to DNS cache poisoning attacks. Even though some
of these techniques would be widely implemented, most users do not understand the provided
security indicators proving authenticity of the entities they communicate with [HJ08]. This limits
the applicability of server authentication techniques.

1.2.2 Security Toolbars

To cope with the unmotivated user property to use security enhancement solutions [WT99] and
the incapacity for users to efficiently exploit security indicators provided to them by web browsers,
some browser extensions also called security toolbar were developed. Efficient indicators provided
by web browsers can be used by mature users to easily infer the legitimacy of a website. One of
these indicators is the address bar showing the URL of the consulted web page. One can easily
see whether the domain name of the web page is the expected one. Another indicator is the use
of a secure connection depicted by the use of the HTTPS protocol in the address bar. Finally,
for the authentication of the web server one communicates with, the verification of the use of
Transport Layer Security (TLS) certificates with a padlock icon is fast. Further investigation
about the issuer of the certificate can be done by a simple click. All these indicators provide
the necessary information to authenticate a website. However, a small part of users use them
and that is why browser extensions or security toolbars were developed to ease the access to this
information and give some additional information to users.

The Netcraft toolbar [net] is an example of commercial anti-phishing toolbar providing a risk
rating for a visited web page in the form of an easily understandable colour code (green = safe,
red = unsafe). SpoofGuard security toolbar [CLTM04] provides the same kind of information
with colour code. In addition, the Netcraft toolbar displays the time since the web page is
monitored, a popularity rank for the web page and the country where the web site is hosted.
Figure 1.3 shows the Netcraft toolbar with the website information it displays.

Several techniques are used to infer the likelihood that a web page is a phish and display this
information. SpoofGuard security toolbar [CLTM04] is another web browser plugin relying on
stateless web page evaluation to provide a spoof index of a website to users. Trustbar [HJ08]
provides some TLS certificate derived indicators and others users customized indicators to depict
the likelihood that a website is a phish or not. A user study shows that indicators provided by
Trustbar are more efficient in raising user awareness about danger than basic browsers security
indicators such as padlocks or HTTPS indicators. Gastellier et al. propose another security tool-

18

1.2. Phishing Prevention Techniques

Figure 1.3: Example of security toolbar (Netcraft toolbar)

bar depicting a phishing score for a website that is computed based on 20 heuristics [GPGL11].
It additionally explicitly displays if the website is phishing or legitimate and gives the country
hosting the website as well as the IP address of the server.

A slightly different approach is proposed in [WML06] with Web Wallet, which is a browser
side bar, to prevent phishing attacks and password stealing. Users can enter their sensitive
information in the side bar instead of in the web page directly. The application then checks if
the web site is legitimate and if it can receive the sensitive information. If it is the case, the data
is filled in the web page form automatically by the Web Wallet. Otherwise a warning is raised to
users and the information is not transmitted. This application significantly decreases the spoof
rate from 63% to 7%.

A limitation of these techniques is that users do not use the toolbars after installing them and
especially for Web Wallet where a user study shows that people tend to type password directly
in the web page rather than in the dedicated window. In addition the Web Wallet window can
be spoofed and many users fell for this trick. Some studies [WMG06, ECH08] show that the
global efficiency of phishing toolbar is bad since even if simplified information is provided, users
do not understand phishing attacks and the displayed information. Moreover, it is highlighted in
[ECH08] that passive phishing warning implemented in security toolbars are mostly ignored by
people while active warnings blocking access are more considered and lead to prevent almost 80%
of phishing attacks. Finally, the methods implemented in these toolbars for detecting phishing
websites are not efficient since a study of ten popular toolbars [ZECH07] shows that the best
performer reaches only 90% identification while having a false positive rate of 42%. This causes a
lot of false warnings for legitimate websites explaining why phishing toolbars warnings are often
ignored.

1.2.3 Blacklists

Due to low deployment and low usage of methods to enforce web server authentication and to the
relative inefficacy of phishing toolbars to detect phishing sites with their high false positives rate,
blacklists of phishing websites have been built. These blacklists are composed of the URLs and
domain names pointing to phishing websites and can be used for several purposes such as filtering
phishing emails or preventing connections to phishing websites. Usually a blacklist is manually
composed based on crowd verification on community websites such as PhishTank [phi]. Suspicious
URLs are submitted by users to the blacklist websites and checked by several voluntary users
before being confirmed as phishs and added to the blacklist that is made freely available. This
is the most widespread phishing detection technique and it is implemented in several browsers
through Google Safe Browsing [goob] or Microsoft Smart Screen [mic] for instance. These two
solutions have been proved quite efficient in identification of phishs, detecting almost 90% of the
phishing URLs submitted to in a study [LMKK07].

Due to this implementation based on crowd verification, the strength of phishing blacklists is

19

Chapter 1. Phishing and Protection Techniques

its expected close to zero rate of legitimate websites identified as phishing. However, an admitted
limitation of phishing blacklists is their delay to include phishing URLs in the list. It is shown in
[SCH+09] that blacklists are not efficient during the early life of phishing websites. Blacklists only
detect 20% of newly appeared phishing websites while this rate reaches between 47% and 83%
after 12 hours. Hence, Liu et al. proposed a technique to improve human verification of blacklist
entries [LXP+11]. Computational techniques including a weight voting metric and a technique
to cluster similar phishs together before being presented to users are used. An evaluation of this
technique shows that no legitimate websites were added to the blacklist and that the median time
for adding a URL to the blacklist is set down to 0.7 hour. Another solution [LLCT14] proposes
to automatically update blacklists based on a set of already known phishing URLs. The initial
set of URLs is used as seeds to extend the blacklist by tracking redirection of these links to other
URLs and extend the blacklist.

Similar methods to build predictive blacklists of potentially malicious URLs based on already
known phishing URLs were introduced in [XYA+08, PKKG10]. In [XYA+08], Xie et al. generate
signature for malicious URLs using regular expressions. URLs related to the same spam or
phishing campaign are grouped together to further extract a campaign specific URL signature
being a regular expression. Phishnet [PKKG10] similarly clusters URLs based on their shared
common domain names, IP addresses or directory structures, and extract a regular expression
from each cluster. The variable part of regular expressions is exploited to generate new URLs
instead of only comparing suspicious URLs to extracted patterns as it is done in [XYA+08].
Though this method is more proactive than the previous one since it generates new URLs likely
to be involved in a phishing campaign, both are only able to discover malicious URLs related to
already blacklisted URLs that are likely to belong to the same phishing attack. These techniques
are not able to disclose URLs of new phishing campaigns, which limits their efficacy.

Some network specific blacklists have been proposed [ZPU08, SLM10] to provide a tailor
made protection to specific network according to their activities. A centralized log sharing
architecture is used in [ZPU08], to gather and process alert logs of contributors. The relevancy
of each recorded attack is ranked according to every blacklist consumer to evaluate how related
an attack is to a victim. A page rank algorithm is used to estimate if a domain is likely to
conduct an intrusion against a particular network and thus includes it in the specific blacklist.
The produced network specific blacklists provide high attacker hit rate and good new attacker
prediction.

Based on crowd verification, blacklists should overcome the weaknesses of automatic identi-
fication techniques namely the high false positive rate as observed for security toolbars, while
introducing a delay for identifying a URL as phish. However, the evaluation of some blacklists
[SBJ08] shows that these still wrongly identify a large count of legitimate URLs as phishs while
missing a significant part of phishing URLs. The latter is expected since phishs must be reported
before being added to a blacklist and it is expected that users making reports miss some phishing
websites. To cope with the delay for adding entries in blacklist and to cover a larger range of
phishing attacks, automatic phishing identification techniques have been developed.

1.3 Phishing Detection Techniques

Phishing prevention methods consisting in strengthening authentication are conceptually good
but not used by phishing victims. The same statement holds for security toolbars providing
useful information that is not considered by web surfers. Phishing blacklists are rather efficient
to identify phishs, although their scope is limited to their content and their content is not up-to-

20

1.3. Phishing Detection Techniques

date. To cope with these limitations, phishing detection techniques being able to identify in real
time submitted phishs have been introduced. These analyse different features to give a decision
about the likelihood that a website, a mail or a link is a phish. Phishing detection techniques
target the main phishing vectors and we will present the three categories of phishing detection
techniques namely phishing emails detection, phishing websites detection based on web page
content analysis and phishing URLs detection.

1.3.1 Phishing Emails Detection

Emails were the primary used vector of phishing, phishers used socially engineered text to con-
vince people to do actions such as replying to emails and giving some personal information, going
to a website or installing malware. Emails are often the cause of the visit of a phishing website
using a link directing to it, because phishing websites are not likely to be indexed in search engine
and thus can difficultly be found this way. Hence, the detection of phishing emails can prevent
many nefarious consequences of phishing. Techniques have been developed to identify phishing
emails as soon as these are received by a mail server and automatically classify them as spam
before these reach users mailboxes, protecting users from this threat. However, some early phish-
ing emails protection methods tried to educate users in order to identify by themselves phishing
emails. Kumaraguru et al. introduced a people training method embedded in email client to
help detecting phishing emails [KRA+07]. Fake phishing emails are intently and regularly sent
by the application to users in order to test them. If users fall for the trick of these fake phishing
emails, they are warned that this was a phishing email in order to raise their awareness. This
technique is more efficient than regular passive training techniques or email security notices to
raise people awareness about phishing emails, according to the authors.

Automated techniques were proposed as well to detect phishing emails and filter them. A
popular approach relying on machine learning is proposed in [FST07]. Several features are
extracted from emails such as predominant characteristics present in phishing emails while these
are not in legitimate emails. Some of these features are the presence of "Here" links in emails
that are used to misdirect users to fake websites. Similarly, they look for HTML encoded emails,
the presence of embedded non-matching URLs i.e. URLs written in the email that are linked
to a link that does not match the displayed URL. They search for the presence of javascript,
the number of links in the email, the number of domain names, the presence of IP based URL
and other URL based features, etc. This technique presents a detection rate of 96% and a
global accuracy of 99.5% in the correct identification of emails. The same features set is used in
[BCP+08] and complemented by latent topic model features. Latent topic model features can
be seen as a cluster of words that appear together in the same email and the authors expect
that words used together in phishing emails are different than those used in legitimate emails.
Bergholz et al. use dynamic Markov chains to build two models, one of phishing emails and
another of legitimate emails to further identify unlabelled emails as belonging to one of the two
categories. This approach significantly improves the results obtained in [FST07]. Cook et al.
[CGD08] introduce 11 rules that check the content of emails and mainly the embedded URLs to
identify phishs. A clustering technique using 47 features extracted from emails is used to build
several email profiles in [HA13]. These profiles include phishing emails, and models are generated
from clusters to identify the profile of unknown emails.

The textual content of phishing emails can also be analysed to identify phishs since phishers
put a large effort in the writing of their socially engineered messages [HCNK+14]. Natural
Language Processing techniques and machine learning techniques are used in [RW12] to detect
phishing emails. It uses Probabilistic Latent Semantic Analysis (PLSA) on the text of an email

21

Chapter 1. Phishing and Protection Techniques

to build a topic model of it. All words and labels present in an email are extracted to build
the term-document-frequency (TDF) corresponding to the email. Then PLSA is used to match
the TDF matrix of terms representing the email to a smaller matrix representing the topic of
the email. Based on the extracted topic, they can conclude if the email is a phishing email or
not using a machine learning algorithm (AdaBoost) fed with the features extracted using PLSA.
One similar recent approach [AKS14] specifically targets the identification of phishing emails that
neither deliver any malicious content nor contain any link but try to extract information with
email replies. Aggarwal et al. perform a textual analysis of these emails to detect the mention of
victim’s name, monetary incentive and reply requests using natural language processing methods.

As observed for the presented methods, phishing email detection covers only one vector of
phishing: emails, and victims can be directed to phishing websites with other means like links
present in legitimate websites for instance. Moreover, some of the presented detection techniques
only cover a subpart of phishing emails e.g. email embedding links or email asking for replies.
This makes these approaches very specific and not able to deal with the variety that presents
phishing attacks. Hence, other propositions to complement these approaches were made in order
to detect directly phishing websites.

1.3.2 Web Page Content Analysis

Phishing websites usually try to adopt the look and feel of the popular websites they spoof. Hence,
they often exhibit visual similarities with other websites or at least exhibit specific characteristics
that researchers tried to identify. Web page content analysis was used to perform this task and
identify phishing websites on the fly.

Some techniques focused on the analysis of visual similarities between phishing websites and
the legitimate websites being spoofed [MKK08, CDM10, CSDM14]. Medvet et al. [MKK08]
propose a technique to extract a signature of a web page depicting its visual composition. The
signature considers the text contained in the page, its style, color, font family and size as pre-
sented in the leaf text nodes of the HTML Document Object Model (DOM) tree. It considers
as well the images embedded in the page, their position, size and color histograms. The last
component of the signature corresponds to the global viewport of the web page rendered by the
user agent. Signatures of legitimate and phishing web pages are compared and if the similarity
is too high, an unknown web page is considered as phishing. The idea of visual similarity com-
parison is good for spoofing website detection, although the authors do not propose any solution
to previously identify the potentially spoofed website in order to find the comparison basis for
the presumed phishing web page. Another work [CSDM14] relies on the same basis of visual
similarity comparison to provide a targeted protection for a limited number of websites. Every
original web page to protect from phishing is cached in the system and when an unknown web
page is requested by the user, the rendered image is captured as an image file. The Normalized
Compression Distance (NCD [CV05]) is computed between the cached web page images and the
requested web page. A set of features is obtained and submitted to a classification algorithm to
determine if the web page is a phishing page. This technique addresses the weakness of [MKK08]
since it proposes a set of web pages to compare suspected phishs to. However, this shows that
visual similarity analysis of web pages is limited to the protection of a reduced set of predefined
websites.

More general techniques of web page content analysis have been proposed and the most
famous example is CANTINA [ZHC07]. CANTINA extracts the terms included in a web page
and apply an information retrieval algorithm (TF-IDF [SM83]) to generate a lexical signature of
the web page. The signature consists in five terms that provide the fingerprint of a web page.

22

1.3. Phishing Detection Techniques

These five terms are later fed into a search engine such as Google to look whether the web
page from which the lexical signature is extracted appear in the top n search results. If it does
not, it is considered as a phishing page. It assumes that search engines index the majority of
legitimate websites and that legitimate sites are ranked higher than phishing ones. This system
present 97% accuracy in correct identification and 6% of legitimate web pages are identified as
phishing. This approach was extended with two modules in [XHRC11] to improve its efficiency.
One module considers that several ready-to-use phishing kits are used to generate phishing web
pages. Suspicious web pages are compared to web pages from known phishing attacks and if there
is enough similarity between them, it is considered as phish. The second module detects login
forms in web pages by analysing the HTML Document Object Model and discards from analysis
pages that do not contain login forms since phishing attacks mostly contain these in the aim to
steal credentials from users. Similar web page content analysis techniques use different criterias to
identify phishing pages. Xiang and Hong [XH09] use information retrieval techniques to identify
inconsistencies between the identity a phishing web page has, and the identity of the web page
it tries to imitate. A multi-criteria approach [MTM14] identifies the use of javascript, pop-up
windows, the web traffic generated by a website, etc. From these observations, it creates features
that are fed to an artificial neural network that adapts to phishing characteristics evolution and
provides an adaptive strategy for phishing web pages detection.

Finally, a dedicated phishing detection technique [DRNDJ13] targets the detection of tabn-
abbing by detecting changes in the tabs of a browser window and highlights web page zones that
changed while the user was inactive.

Globally, visual similarity analysis [MKK08, CDM10, CSDM14] has a limited action scope
since it needs a reference web page to be applied. However, CANTINA and similar techniques
have been proved quite efficient in identifying phishing web pages reaching usually more than
90% accuracy and do not need any reference for comparison. An undisclosed parameter of these
techniques is the time these take to analyse a web page and render the decision. Since these
are real time identification techniques, these must provide fast analysis to not impact the web
surfing of users. In addition, these web page content based analysis methods are limited to the
identification of phishing websites. Hence some more general techniques that can be applied to
phishing emails, web page or drive-by download have been developed to identify phishing URLs.

1.3.3 URL Analysis

Several phishing attacks leverage links to misdirect users to websites or drive-by downloads.
These links are Uniform Resource Locators (URLs) that are embedded in emails or legitimate
web pages usually. Since URLs bring information to users about what resource one tries to
consult, phishers use obfuscation techniques to make phishing URLs look trustworthy. URLs
typically contain DNS information i.e. the domain name and hostname of the server, the path
of directories and files indicating the location of the consulted resource on the server and some
PHP information as well. Most users actually read URLs but are not knowledgeable about the
information they contain or the DNS hierarchy. Phishers use this lack of knowledge to mix terms
of legitimate URLs in order to create phishing URLs and fool users. Since URLs are used in
several phishing vectors, their identification in real time can mitigate numerous phishing attacks.
This real time identification is as well an alternative to phishing URL blacklists that does not
require any update delay.

Using the characteristics that phishers use some tricks to obfuscate URLs, several solutions
propose to perform a lexical analysis of URLs to identify phishs [BWSW10, LMF11, KIJ11,
BSHA14]. A study on the anatomy of phishing URLs regarding characters frequency [MG08]

23

Chapter 1. Phishing and Protection Techniques

shows that phishing domains use few vowels and few different characters. Some additional
observations are that long URLs with short domain names is a characteristic of phishing and
phishing domain names often embed the targeted brand. Moreover phishers often use URL
shortening services. Hence, several techniques [BWSW10, LMF11, KIJ11] rely on the extraction
of lexical features from URLs. These features are for instance the different tokens that compose
a URL as well as their relative position in the URL, the count of level domains, the length in
characters of the URL, the presence of some keywords. These features are then subjected to either
batch (e.g. SVM, Naive Bayes, Logistic Regression) or on-line machine learning techniques (e.g.
Adaptive Regularization Of Weight: AROW) to build a model of phishing and legitimate URLs
that is further used to classify unknown URLs. The advantage of on-line or semi-supervised
machine learning techniques over batch machine learning techniques is that these can learn from
mislabelled data or noisy dataset and keep a high accuracy (> 90%). One strength of URL
lexical features is that their extraction does not impact the page loading latency [LMF11] while
some techniques including additional features can impact this latency.

More elaborated techniques [GPCR07, MSSV09a, MSSV09b, GSMyG+11, FM14] use addi-
tional information that can be extracted from URLs such as host based features. This is for
instance WHOIS information for the domain name, the IP prefix of the matching IP address
of the domain name or the Autonomous System (AS) number [MSSV09b]. Other techniques
[GPCR07] use the page rank of a given web page as given by Google and classify URLs accord-
ing to several obfuscation categories. Extracted features are used, as previously, to feed machine
learning algorithms and learn a model of phishing URLs. Some systems present very good results
with identification of almost 99% of URLs correctly [MSSV09b]. To cope with scalability issues
of dealing with high dimensional feature vectors as presented in [MSSV09a], Feroz and Mengel
propose to use distributed machine learning solutions with Mahoot [FM14].

Protection methods F
ak

e
w
eb

si
te

s
L
ow

-c
os

t
p
ro

d
u
ct

w
eb

si
te

s

T
ab

n
ab

b
in

g
C
on

te
n
t
in

je
ct

io
n

S
p
o
of

ed
b
ro

w
se

r
w
in

d
ow

s

W
eb

p
ro

x
y

In
st

an
t
m

es
sa

gi
n
g

E
m

ai
ls

Authentication schemes
√ √ √

Security toolbars
√ √ √

Blacklists
√ √ √ √ √ √

Emails detection
√

Web page content analysis
√ √ √

URL analysis
√ √ √ √ √ √

Table 1.1: Phishing vectors targeted by phishing protection methods

Finally, some hybrid techniques [WRN10, TGM+11] combining URL based features and
web page content analysis have been introduced. Monarch [TGM+11] is a real-time URL filter
leveraging lexical properties of URLs and page content properties such as dynamically loaded
content or javascript events. This technique present an average analysis time of 5.54 seconds per

24

1.3. Phishing Detection Techniques

URL and an accuracy of 91%.

As presented, URL analysis provide high phishing identification rate with most techniques
having over 90% accuracy. In addition, this technique mostly requires few information since only
URLs and no additional content is needed for most techniques [BWSW10, LMF11, KIJ11]. The
analysis of URLs can also be applied to several phishing attacks including emails, fake websites,
malware delivery, etc. One issue of this technique is however that most work do not indicate the
time taken to analyse URLs and the only one providing this information [TGM+11] present high
latency over five seconds. This delay can be problematic if it has to be used in real-time while
users are surfing.

To summarize the different phishing protection approaches presented in Section 1.2 and 1.3,
Table 1.1 presents which solutions can cope with the phishing vectors presented in Section 1.1.2.
Malware-based phishing attacks are not considered since none of the presented methods can cope
with this threat and as said before, this relies more on malware detection. Vishing and SMishing
are not considered for the same former reason. Table 1.1 depicts the coverage of each solution
and we can see that blacklists and URL analysis are the solutions having the highest coverage
while phishing emails detection can only cope with one vector.

Table 1.2 evaluates each approach according to their compliance with the requirements intro-
duced in Section 1.1.4. The six requirements are presented in different columns and four levels
of compliance can be given to each;

• −−: the requirement is not satisfied

• −: the requirement is satisfied in some points

• +: the requirement is almost satisfied

• ++: the requirement is fully satisfied

URL analysis is separated in two categories to differentiate approaches using only lexical
features and techniques using additional features such as host-based features. We can see that
URL lexical analysis is the technique satisfying the most the requirements. In addition, to cope
with several phishing vectors as observed in Table 1.1, it overtops blacklists by providing faster
processing and by requiring less information. It is worth noting that phishing emails detection
and blacklists are currently the most used techniques while not satisfying all the requirements.
These are complementary techniques offering wide coverage, being easy to use and being highly
reliable.

Conclusion

Phishing is a recurrent threat that leverages many means to be perpetrated, using technical
subterfuges and social engineering. Phishing is a security problem that does not target a specific
breach in systems or networks but it targets the weaknesses of users, making it a difficult problem
to solve. Despite its 20 years of existence and the work made to raise people awareness, it is a
continuous problem that causes an increasing financial damage over the years.

Many techniques have been developed to cope with phishing during the last ten years. The
first proposition consisting in strengthening the authentication between Internet users and web
servers failed due to few concerns and knowledge of many users. For the same reason, security
toolbars providing useful information regarding the legitimacy of a website are not adopted since

25

Chapter 1. Phishing and Protection Techniques

Protection methods S
p
ee

d

C
ov

er
ag

e

In
fo

rm
at

io
n

re
q
u
ir
ed

R
el
ia
b
il
it
y

E
as

e
of

u
se

A
ct

u
al

u
sa

ge

Authentication schemes ++ − + ++ − −−
Security toolbars + − − −− + −
Blacklists −− ++ − ++ ++ ++

Emails detection + −− + ++ ++ ++

Web page content analysis − −− + + + −−
URL analysis (all features) − ++ − + ++ +

URL lexical analysis + ++ ++ − ++ +

Table 1.2: The extent to which phishing protection methods meet requirements

these imply a supplementary task to verify the legitimacy of a website. This was expected
since most current browsers already provide all the necessary information to authenticate a
website in the from of the address bar, the padlock and TLS certificate indicators. Another
weakness of security toolbars is their low efficacy in identifying phishing websites. Hence, from
the first developed methods, the only currently used is phishing blacklists since these are based
on a human verification process that avoids false alarms due to legitimate websites identified as
phishing. Blacklists are however slowly updated and they miss a lot of newly appeared phishing
websites or unreported websites.

Automated identification techniques do not have this problem of update delay since they
identify phishs on the fly. The main solutions are applied to the identification of phishing emails,
phishing websites and phishing URLs. We have seen that phishing emails and phishing websites
identification is specific since many techniques target a specific kind of phishing emails or web
sites visually similar to a reference website for instance. We are as well not informed of the delay
each technique produces. While it is not problematic for phishing emails identification since
emails are consulted a while after these are received, delay is an important parameter for the
identification of web pages while surfing. Techniques for identification of phishing websites rely
on many features extracted from the web page and the extraction time can be an issue. URL
analysis seems to be the most promising state of the art technique since this is the one having
the less limitations, especially for these relying only on lexical analysis. Lexical analysis requires
only to extract labels from the URL and to analyse its composition, which does not produce any
delay. Finally, since URLs are used in several phishing attacks, this protection method is the
one having the widest scope, allowing to provide the best protection. One limitation is lexical
analysis based methods only have lower accuracy than techniques using all the range of possible
features. Moreover, the learned identification models are based on static heuristics related to the
use of certain labels or finding a specific count of level domain, etc. This limits the adaptability
of the approach in some contexts, as for instance the use of new labels in phishing URLs related
to a newly targeted brand.

Despite having some drawbacks, the application of these techniques improved the speed to

26

1.3. Phishing Detection Techniques

take down phishing websites, thus limiting the economic impact of each phishing attack. However,
the ease to perform phishing attacks and the raise of both criminals perpetrating phishing and
potential victims, since more and more people have access to the Web, makes the financial loss
due to phishing growing. Hence, there is a need to develop new solutions to detect phishs until
Internet users starts to understand the danger of phishing. These detection solutions must be
fast, have a wide scope, be easy to understand and to use for users, be reliable and be adaptive.
Using lexical analysis methods as a basis for further improvements, especially in accuracy, seems
to be the most promising approach.

27

Chapter 1. Phishing and Protection Techniques

28

Chapter 2

Domain Name System Monitoring

Contents

2.1 The Domain Name System . 30

2.1.1 Organization and Implementation 30

2.1.2 DNS Usage . 33

2.1.3 DNS Misuses and Security Issues 35

2.2 DNS Monitoring . 39

2.2.1 DNS Monitoring Strategies . 39

2.2.2 Performance Evaluation and Anomaly Detection 41

2.2.3 Malicious Activity Detection . 43

Introduction

The Domain Name System (DNS) is a key component of today’s Internet operation. It ensures
the finding of any resource on the Internet by just knowing an easy to remember domain name.
Its main function is to map and translate domain names to IP addresses and this functionality
is used by almost every Internet connected device nowadays. Hence, the monitoring of DNS
traffic has been early used as an indicator for evaluating Internet activities. It is used to evaluate
website popularity [RMTP08, ale], quality of service [LSZ02, PAS+04], network performance
[HHW+10], etc.

The access to Internet resources with a translation mechanism to IP addresses provides great
benefit to legitimate Web services and enhances their availability by allowing to perform load
balancing between several servers and fast recovery in case of server failure. These same assets
have been also used by miscreants to maintain and develop their malicious activities. The use of
specific DNS features harden the process of malicious server tracking rendering their take down
difficult. Of major interest is DNS fluxing networks, which are used by organised phishers [ssa08]
to hide the real location of malicious servers hosting phishing websites behind an ever-changing
network of machines. These machines are usually compromised users’ hosts being part of a
botnet. Fluxing increases drastically the resistance of phishing to countermeasures.

DNS fluxing presents some characteristics from the Domain Name System point of view that
are distinctive from a normal usage of the DNS. Hence, the monitoring of DNS information
has been used recently in order to detect malicious activities. A lot of solutions were devel-
oped to propose techniques to capture, extract and analyse the relevant DNS information for

29

Chapter 2. Domain Name System Monitoring

identifying malicious activities [CLLK07, APD+10, CTD+12]. Most of the work was focused
on specific domain names activities identification such as domain names involved in botnets
communications, fluxing domain names and the differentiation from Content Delivery Network
(CDN) domain names [HGRF08, PCDL09, APD+10, BN12]. Many techniques, being too spe-
cific, missed the diversity of domain names activities and had weaknesses for differentiating
malicious and legitimate activities. Also, most techniques of DNS monitoring for malicious ac-
tivities detection only use DNS specific features that are found in DNS packets. Few researches
[YRRR10, APN+12, BG10a] are focused on the lexical analysis of domain names and none of
them considers the semantic dimension of domain names. However, domain names are composed
of domains and host names that are meaningful and the analysis of this characteristic let envision
new perspectives for extending the features set available to detect malicious domain names.

In this chapter, we start by describing the organization and functioning of the Domain Name
System in Section 2.1. We provide a detailed presentation of DNS usages, DNS misuses to
enhance malicious activities and an analysis of security issues and threats related to the DNS.
We present in Section 2.2 some state of the art work on DNS traffic monitoring and analysis,
give their applications and identify their shortcomings.

2.1 The Domain Name System

The Domain Name System [Moc87a, Moc87b, MD88] is a service having for main role to establish
a mapping between a domain name and an IP address. More generally, the DNS provides a way
to link any information to a domain name. For consistency and availability of the information
the domain name system is implemented in a distributive hierarchical manner. It is used by
many services to enhance the availability of resources over the Internet and is used for legitimate
and malicious purposes. In this section we present the functioning of the DNS and how it is
leveraged to enhance legitimate services and to strengthen malicious activities. We also present
some threats specific to the DNS and security issues in its conception.

2.1.1 Organization and Implementation

The DNS is composed of three major components that present the organization of its information,
the distribution and delegation for authority on the information it provides and finally the way
to access this information for users. These three components are the domain name space, the
name servers and the resolvers.

The Domain Name Space

The Domain Name Space is a tree structure to represent domain names and the information
associated to. Each node and leaf of the tree has a label and names a set of information that can
be extracted with queries. The labels of nodes are only composed of letters, digits, and hyphens
and have a maximum length of 63 characters. Labels are not case-sensitive. The domain name
of a node is the list of labels on the path from the node to the root of the tree. The root of
the domain name space is the "." node. Figure 2.1 represents a subtree of the domain name
space and the path from the node snt to the root is highlighted in red to deduce the domain
name snt.uni.lu.. Every node in the tree is called a level domain. Nodes at the base of the
tree are called first level domains or Top Level Domains (TLD) e.g. lu for snt.uni.lu.. Then, as
we go down in the hierarchy, nodes are called second level domains (2LD) e.g. uni, third level
domains (3LD) e.g. snt and so on. A domain name is thus a list of level domains separated

30

2.1. The Domain Name System

by dots. In the domain name space every node of the tree reports to its parent node, meaning
that snt.uni.lu. reports to the domain name uni.lu. and we say that snt is a subdomain of
uni.lu.. Understanding this hierarchy and dependency between domain names is paramount
to be protected from obfuscation URL techniques used by phishers and to prevent from being
trapped with obfuscation lures.

The querying of DNS information is made using DNS queries that must specify the domain
name of a node and the type of information requested. The type of information corresponds to
a Resource Record (RR) type. Several Resource Record types exist to provide specific matching
information for a domain name, some of the mostly used RRs with their associated information
are:

• A records: IPv4 address

• AAAA records: IPv6 address

• CNAME records: domain name alias

• MX records: domain name of the mail server

• NS records: domain name of the authoritative name server

• TXT records: any text

• PTR records: reverse DNS record giving the domain name of an IP address represented in
a domain name manner (e.g. 78.56.4.123.in-addr.arpa.)

To give an example of a DNS Resource Record, here is a DNS A RR with the information it
contains: snt.uni.lu. 22000 IN A 158.64.76.208

This record contains the queried domain name (snt.uni.lu.), the duration of validity of the
record in seconds also called Time To Live and abbreviated TTL (22000), the type of Re-
source Record (A) and the value of the record, for A Resource Records it is an IPv4 address
(158.64.76.208).

The Name Servers

The Name Servers are the repositories of the DNS tree information. The storage of the DNS
information is distributed and delegated to several servers being divided into sections called zones.
There are basically two kinds of name servers being authoritative name server responsible for
maintaining and providing the information for a given zone and recursive name servers responsible
for resolving Fully Qualified Domain Names (FQDN) using an iterative process. A FQDN is a
domain name that contains a hostname and a domain. For instance in the FQDN snt.uni.lu: snt
is the hostname and uni.lu is the domain.

An authoritative name server delegated to a given DNS zone has authority for a complete
subset of the domain name space. It is responsible to deliver the correct information for this
subset i.e. valid and up-to-date Resource Records. There are 13 authoritative root servers
responsible for the DNS root zone ("."). These root servers have the complete information about
the root zone and know where to find the nodes that are directly under their authorities namely
the Top Level Domains nodes. Root servers know the authoritative name servers for the several
TLDs and can give the information to access them when requested. The same statement holds for
accessing the information of nodes being under the TLD nodes, this information can be accessed
by requesting the authoritative name server for TLDs. There is a hierarchical delegation of the

31

Chapter 2. Domain Name System Monitoring

Figure 2.1: Domain Name Space hier-
archy and path to the node snt

Figure 2.2: DNS resolution of the domain name
www.inria.fr

DNS information implying a recursive process to resolve a domain name by querying the several
name servers authoritative for the different zones.

The recursive name servers (RDNS) are typically not authoritative for any zone and just
have a role to resolve Fully Qualified Domain Names requested by clients since these support
recursion. To perform this resolution, RDNS servers maintain a cache of Resource Records for
frequently requested domain names. These Resource Records have a validity duration (TTL) and
can only be provided during this period. If a DNS request for a domain name is not cached or
if its validity expired, the recursive DNS server must resolve the domain name with an iterative
resolution process.

The Resolvers

The Resolvers are programs implemented on client machines to extract the user’s requested DNS
information from name servers. Resolvers are able to access at least one name server in order
to answer a DNS query directly. Resolvers have usually access to recursive name servers that
do the iterative resolution process for them. These recursive name servers are usually operated
by Internet Service Providers (ISP) and Open DNS servers are also available. Recursive name
servers operate the resolution process by querying iteratively the different level domains of a do-
main name to resolve it, if it is not cached. If the requested Resource Record for a domain name
is cached, the recursive name server reply with this cached record. Figure 2.2 depicts a typical
process of iterative domain names resolution for the domain name www.inria.fr assuming that
all name servers have en empty cache. The user wants to access the resource located with the
domain name www.inria.fr. Hence, the resolver present in his machine knows a DNS recursive
server to which it addresses the DNS query with requested recursion for the A Resource Record
of the domain name www.inria.fr (1). Then, assuming that the RDNS server has an empty
cache, it first queries a known root server to get the name server authoritative for the domain
name fr. i.e. it performs an NS DNS request. Once it gets the DNS replies (3), it contacts
the authoritative name server of the domain name fr. to get the address of the authoritative

32

2.1. The Domain Name System

name server of the domain name inria.fr. (4). When it gets the reply (5) it can finally request
the needed information by performing a A DNS request for www.inria.fr (6) to the appropriate
authoritative server and forward the information to the client resolver (8).

This gives an overview of the design and the implementation of the Domain Name System.
Besides its primary function to map domain names to information, the DNS, thanks to its robust
conception, has been leveraged to enhance several Internet based services.

2.1.2 DNS Usage

Domain names are unique in the domain name space. If one wants to use a domain name and
provide some information related to this node of the domain name space, one must register a
free domain name to a domain name registrar, adding a new node in the tree. Registering a
domain name is equivalent to owning a domain name and ensures that the registrant is the one
that controls the information provided by the domain name in the DNS. Maliciously registered
domain names corresponds to domain names registered to be used for malicious purposes as for
phishing.

Basic Usage

Domain names provide an easy to remember way to locate resources on the Internet because the
different nodes of the domain name space are labels that are usually meaningful words allowing
to categorise the information. For instance the Top Level Domain .com is meant to be used for
locating commercial and for-profit business resources and services, .org is meant to be used by
non-profit organization and .edu targets educational institutions. The same observation holds
for lower level domains where for instance uni.lu is the domain name of the University (uni) of
Luxembourg (lu) or www.inria.fr is the domain name of the webserver (www) of the National
Research Institute INRIA (inria) that is located in France (fr). Hence, besides providing a
way to store and deliver the information, the DNS allows to name in a meaningful manner the
information it stores and to access it using these meaningful names as unique resource.

The mostly used service in DNS is to translate domain names to IP addresses in order to
physically locate a resource on a network using A RR (IPv4) or AAAA RR (IPv6). The reverse
process to find the domain name corresponding to an IP address is done using PTR DNS requests
to specific name servers. IP addresses must be written in reversed order in front of the domain
name in-addr.arpa for IPv4 and ip6.arpa for IPv6. The DNS also gives the domain name of
authoritative name servers for a given domain name with NS RR. Besides this usage, the DNS
is used to locate the mail servers of a given domain name through MX resource records. Each
MX RR for the same domain name has an additional feature to inform about priority of mail
server usage.

By providing an abstraction to locate physical resources, the DNS offers several advantages
to enhance the management of Internet resources. For instance several Resource Records of the
same type can be associated to a single domain name, this is called round-robin DNS (RRDNS).
This has been used to store redundant information on several servers for highly requested services.
Popular Internet websites manage their domain names and provide several A Resource Records
for the same domain name pointing to different IP addresses. This provides a set of web servers
providing the same content and user’s machine can freely choose between the several records,
one web server to request the content. This strategy avoids to have a single point of failure
by providing redundancy. Some services specialized in the delivery of content over the Internet

33

Chapter 2. Domain Name System Monitoring

exploit even more the DNS to provide highly available resources. These are called Content
Delivery Networks.

Content Delivery Network

A Content Delivery Network (CDN) [PB07] is an Internet wide distributed system of servers
deployed in multiple data centres, which provides content delivery services. CDNs provides
Internet contents with high availability and high performances to users by taking advantages of
the abstraction of resource location provided by the DNS.

When requested for a given content with a DNS request, Content Delivery Networks deliver
tailor made DNS Resource Records taking into account several parameters such as the location
of the requester, the location of the data center where the content is available or the load of
the servers part of the network providing the content. DNS requests to CDNs are for domain
name of the form user-content-info.cdn.com where user-content-info contains some user specific
and content requested coded information in order to define which servers of the CDN are the
best to quickly deliver the content. The IP addresses of the selected content delivery servers are
included as A RR in the DNS reply sent to the requesting user. Resource Records provided by
CDNs have a low Time To Live to direct users to different servers over time and to distribute
the load among the several servers. In addition the adoption of low TTL facilitates the recovery
in case a delivery server is down since a new DNS request must be done when the TTL expires
and a new delivery server can be selected.

From a DNS point of view, CDN domain names have some distinguishable characteristics:

• RRs with low TTL (from 30 seconds to 10 minutes on average).

• Ever changing A RR for the same domain name with IP addresses belonging to a fixed set.

• Several subdomains, often algorithmically generated, for the same domain name (corre-
sponding to the several contents provided and user served).

Many Internet content providers like Apple or Facebook pay CDN operators to deliver their
content. CDNs services provide high availability and high performances in content delivery. In
addition, these reduce the cost of their clients since clients do not need to own servers to host
and deliver their content themselves, thus reducing their infrastructure costs.

Other Applications

The Domain Name System is also used for other use cases than simply mapping information
to domain names. It is for instance used to prevent email spoofing through the Sender Policy
Framework (SPF) [Kit14, Kuc14]. SPF is an email sender validation system used to confirm that
an email coming from a given domain name was actually sent by an authorized server. In SPF,
a domain name uses DNS TXT RRs to publish a list of authorized hosts that can send emails
with a sender address containing the given domain name. Hence, mail receivers can make a TXT
DNS request for the domain name contained in the email sender address and confirm whether
the email is sent by an authorized mail server to confirm its legitimacy or not. This is actually
a phishing prevention technique to prevent being trapped by email spoofing.

DNS is also used as a means to distribute IP addresses and domain names blacklists [JS04].
Rather than storing a hard coded version of publicly available IP and domain blacklists, the legit-
imacy of both can be checked making DNS requests. The process is similar to the consultation of

34

2.1. The Domain Name System

PTR Resource Records. Having a domain name blacklist.org providing an IP or a domain black-
list, to determine dynamically the legitimacy of a domain name is done making a A DNS request
for blacklist.org appended to the reversed IP address or domain name to check. For instance to
check 12.34.56.7 and www.phishing.com, the following A DNS requests 7.56.34.12.blacklist.org,
and respectively, com.phishing.www.blacklist.org are made. The value of the A RR contained in
the reply gives the status of the requested resource e.g. 127.0.0.1 the resource is blacklisted,
127.0.0.2 the resource is not in the blacklist.

The domain name system is used for many additional purposes beyond domain names trans-
lation and provides enhanced availability of resources as well as some security applications for
preventing email spoofing or detecting malicious hosts. However, it has been also used to enhance
malicious activities.

2.1.3 DNS Misuses and Security Issues

When a service provides benefits to legitimate services, the same benefits can apply to malicious
activities as well. This statement holds for the DNS. While enhancing content delivery and
increasing availability of legitimate contents, it is also used to ensure the availability of malicious
contents on the Internet. As a popular and common Internet service and network protocol, the
DNS is used to convey and hide other kind of network traffic. In addition, the old conception
of this service (1987) did not consider security breaches that have been exploited for several
malicious purposes.

DNS Tunnelling

The DNS is a key element of network communications that is used in a first step before initi-
ating any other sort of communications using protocols like HTTP, SIP, SSH, etc. Due to this
paramount role, the DNS protocol is one of the few protocols that can be allowed by firewalls.
Hence, DNS has been used to encapsulate several kind of network traffic that are mostly filtered.
For instance DNS tunnelling has been used for backdoor communications where infected ma-
chines open a backdoor on the port 53 to receive messages that are not dropped by firewall or
detected by Intrusions Detection Systems (IDS). SSH traffic is usually encapsulated in the case
of backdoor communications and an attacker can control the host he compromised using this
covert channel.

Another widely used example is to encapsulate HTTP traffic in DNS packets. Wireless Access
Points (APs) are available everywhere nowadays and credentials are required to connect to these
APs. Some access points present in airports or hotels for instance are public, and allow users
to freely connect. Users are then redirected to a web page where they can usually either enter
credentials or pay for full Internet access. These kinds of open access point block HTTP traffic
to the Internet but let DNS traffic goes through so that users can be redirected to the access
point web page asking for credentials or payment. Users can exploit this free access to DNS
communications to encapsulate HTTP traffic in DNS packets and have Internet access through
public access points for free. Dan Kaminsky developed and proposed such a kit to create a DNS
tunnel [Kam04]. Basically the only requirement is to register a domain name example.tunnel.com
and to deploy a name server authoritative for this domain name. Any DNS requests made for the
domain name example.tunnel.com are addressed to the controlled name server. By encapsulating
HTTP GET requests in DNS TXT queries, the controlled DNS server receive them and can make
the requests and return the HTTP replies content in DNS TXT replies. Hence, users can surf

35

Chapter 2. Domain Name System Monitoring

the Internet through the public access point without paying any fees. HTTP GET requests are
encoded in the subdomains of the queried domain names like in http.get.example.tunnel.com.
The requested content is encoded in the response field of the TXT RR contained in the DNS
reply.

DNS Fluxing

DNS fluxing [ssa08] is an activity used to enhance the availability of malicious resources and
contents by hiding the real location of a given resources behind a network of ever changing
machines. The hidden resource is typically a server delivering malware, a phishing website or
the command and control server of a botnet (C&C).

A botnet is a network of compromised users’ machines (bots) being controlled by a botmaster.
The machines part of the botnet have been infected by malware letting a botmaster control them,
these are called zombies. The zombies of a botnet are controlled by the botmaster through a
command and control server also called a mothership. Botmasters do not know which machines
are part of the botnets, and only bots know how to contact the mothership and to ask for
instructions to execute. Hence, the mothership is the only means to control the bots and the
takedown of it causes to loose the control of the botnet. Hence, several techniques have been
developped to keep the mothership up. Similarly to protecting the mothership of a botnet, the
hiding of web servers hosting phishing websites to ensure the longevity of a phishing attack is
paramount. DNS fluxing is used to perform this activity and to counteract IP blacklisting and
easy malicious server takedown.

DNS fluxing can be of three sorts being IP fluxing, which has two categories fast flux and
double flux, and domain fluxing. Fast flux or single flux is the most common example of fluxing
and the easiest to perform. Fast flux consists in frequently changing the A RR of a registered
domain name in order that the domain name is always associated to different IP addresses. In
double flux, there is a second level of dynamics added by changing the name servers authoritative
for the domain name. The same process as for A RR is applied to NS RR and authoritative
name servers for a single domain name change over time over a set of machines.

To perform IP fluxing, one needs to have a set of Internet connected hosts over control,
as illustrated in Figure 2.3 for a user consulting a phishing website hosted on a double flux
network. The controlled hosts usually consists in bots of a botnet (zombies in Figure 2.3), to
which the phisher can associate the domain name of a phishing website in A RRs. The set of
controlled hosts appearing in A RR represent the only machines that know where is actually
hosted the phishing website (the mothership in Figure 2.3) and can forward the requests these
receive to it, acting as proxies. Figure 2.3 show the process of a user visiting a phishing website
(double.flux.com) registered by the phisher. Steps 1–7 depict the domain name resolution. Step
5 is characteristic to double fluxing in which some zombies act as authoritative name servers.
These bots are forwarding DNS requests to their mothership. The mothership provides several
A RR for double.flux.com that are frequently changing over time. In single flux, a single regular
authoritative name server is used to provide the ever-changing A RR. Once the user got the
DNS reply, it contacts a zombie home PC controlled by the phisher that redirects the packets
to the real server hosting the fake website (8–10). While single fluxing hides the hosting of
the phishing website, double fluxing hides as well the location of the authoritative name server
providing the changing Resource Records. Both techniques are used for phishing web servers
hiding and botnet command and control communication. In C&C communication the user’s
machine requests instructions to execute to its mothership. Rather than having an IP address to
contact the mothership, it has a domain name and perform the resolution process to contact the

36

2.1. The Domain Name System

Figure 2.3: Phishing web site hosting using a double flux network

mothership through proxy hosts being some selected bots used to act this way. DNS fluxing is
resistant to IP address blacklisting since the set of host serving as proxy is changing frequently.
Hence, processes for domain names blacklisting have been set up to counteract IP fluxing and
block the resolution of domain names used for IP fluxing also called fluxing domain names.

To cope with this countermeasure, domain fluxing is used, essentially for botnet command
and control communications, to avoid domain names blacklisting. Bots of the botnet have a
generation algorithm that generates several domain names every day [Ayc12] and only few are
actually registered by the botmaster and used for C&C. These domain names change often over
time and slow domain name blacklisting is inefficient to prevent malicious connections.

From a DNS point of view, IP fluxing domain names have characteristics [HGRF08] close to
CDN domain names but with some differences:

• RRs with low TTL (from 30 seconds to 10 minutes on average).

• Ever-changing A RR for the same domain name with IP addresses belonging to an evolving
set.

• Ever-changing NS RR for the same domain name with IP addresses belonging to an evolving
set (only for double flux).

• IP addresses are scattered across several networks

37

Chapter 2. Domain Name System Monitoring

Security Issues

The DNS is exposed to some security issues because it was designed to be scalable and distributed
with no security concerns. Its conception mainly lacks a technique for authenticating Resource
Records provided by name servers to resolvers. This led to develop attacks to provide fake
Resource Records to DNS users by changing the Resource Records for a given domain name.
The main application is to modify A Resource Records in order to associate the IP address of a
controlled server with a domain name that an attacker did not register. This technique is widely
used in phishing to direct users to phishing websites. The modification of delivered resource
records can be done using several techniques [AA04]. Intercepting packets with a man-in-the-
middle attack, an attacker being on the shared network can deliver fake DNS replies to a given
DNS query made by a resolver. If the attacker is on another network he can perform DNS query
prediction combined with DNS packet ID guessing to deliver a forged DNS reply to a resolver.
Name chaining attack consists in including additional Resource Record information, that is not
related to the initial query, in DNS packets. This information will though be considered by the
victim receiving the reply and further used to replace existing stored records.

These techniques are used in DNS cache poisoning attacks also called DNS spoofing. DNS
cache poisoning [TVBP10] consists in injecting fake Resource Records in the cache of DNS
resolvers and name servers serving several users. By introducing a record mapping a targeted
domain name to an IP address leading to a controlled server, the traffic is diverted to this server.
Internet users being served by the poisoned DNS recursive server and requesting the changed
Resource Records are directed to the attacker’s server when querying a spoofed domain name.
This attack is used in phishing to direct users to wake websites while using a valid domain name.

To cope with authentication issues in DNS, DNSSEC [AAL+05] an extension to DNS, has
been proposed. DNSSEC adds a means to sign and authenticate the Resource Records included
in DNS replies using public key cryptography schemes and a trusted third party. By its concep-
tion DNNSEC copes with the above mentioned issues used for DNS cache poisoning. However
DNSSEC is not widely adopted yet and it does not solve all security problems and let the DNS
vulnerable to domain hijacking for instance. Domain hijacking is the stealing of a domain name
by changing its registration information with the domain registrar. Domain hijackers usually
impersonate the original domain owner with stolen personal information and ask the registrar
either to change the registration information or to transfer the domain name to another registrar.
The hijacked domain names then belong to the attacker who can map any information to this
domain name, having the same nefarious consequences as for DNS cache poisoning. Another
flaw introduced by DNSSEC is to ease zone enumeration [AAL+05]. Zone enumeration consists
in the process of discovering all the names of a zone, which is used by attackers to map network
hosts of a given zone. Moreover, DNNSEC does not prevent DNS denial of service (DoS) attacks
and can even enhance DoS [vRDSP14].

Reflexive Denial of Service (RDoS) over DNS is a widely used technique to deny the service
of a targeted DNS server. It consists in using bots sending several DNS queries, with a spoofed
source IP address being the one of the targeted DNS server, to open recursive DNS server. The
requests are made for a domain name registered by the attacker and large amount of data is
associated with this domain names in Resource Records. Open recursive servers reply to the
targeted name server with large DNS replies making the server overwhelmed with the quantity
of data it has to treat such that it is not able to treat legitimate requests.

The DNS has an essential role in today’s network communications that exceeds the expected
usage planned at the time of its conception. Its role of domain names to IP addresses mapping is

38

2.2. DNS Monitoring

paramount but its applications to powerful content delivery or blacklist distribution are necessary
as well. Its wide adoption by Internet miscreants to enhance their attacks and the misuse of its
protocol for hidden communications render its study worth for detecting malicious activities.
Hence, several methods have been proposed to monitor the DNS traffic for several applications
related to its usage.

2.2 DNS Monitoring

As a core service of the Internet that is widely used by Internet users, the DNS traffic has
been monitored and analysed for several purposes. The first intend was the evaluation of the
quality of services provided by the DNS and the detection of anomalies in the generated traffic
[WFBc04, CWFC08, ADL+10]. Then, as a widely used service it has been used for additional
purposes like network performance evaluation [HHW+10] or lightweight websites popularity rank-
ing [RMTP08]. As the use of DNS and implication in malicious activities increased, it has finally
been used to study and detect malicious activities in order to counteract them. We start by
presenting the several strategies of DNS monitoring and then present the applications for per-
formance evaluation and anomaly detection. Finally we present state of the art techniques of
DNS monitoring applied to malicious activities detection and more precisely to detect phishing
hosting through malicious infrastructure and phishing domain names.

2.2.1 DNS Monitoring Strategies

Two kinds of DNS monitoring can be performed. The first type is active monitoring that has
been mainly used for performance evaluation since one knows what he wants to evaluate using
DNS. Active DNS probing can only be targeted and it consists in requesting a specific record
to a specific name server. Some applications are finding the delay of response between two
given machines [HHW+10] or the evaluation of the DNS resolution process from a given location
[LSZ02]. Active probing is also used for DNS specific threat detection like cache poisoning
[ADL+10].

However, the most widespread technique relies on passive DNS monitoring. Passive DNS
monitoring is rather used for anomaly detection in DNS traffic and misconfiguration disclosure
[WSS11, CWFC08], since this kind of behaviour is unexpected. It is also widely used in malicious
activities detection like malicious domain names detection [APN+12, YRRR12], botnets detec-
tion [VSB09, CL12] or flux networks detection [HGRF08, PCDL09]. Finding malicious domain
names, botnets or fluxing networks is not targeted. This detection operates in the wild without
previous knowledge about the malicious infrastructures to discover. The way to detect them is
to perform a large scale monitoring of the DNS traffic in order to intercept communications from
infected bots or phished users to flux networks. Another important point for malicious activity
detection is that passive monitoring does not allow an attacker to detect the monitoring since
he is not probed. Active probing from a single machine is detectable by an attacker and allow
him to take countermeasures to avoid the disclosure of his activity.

Passive DNS monitoring can be performed at different levels of the DNS hierarchy and we
present them in Figure 2.4. This figure presents four hierarchical levels of name servers with
from top to bottom, one root name server (RootNS), two TLD name servers (TLDNS), some
authoritative name servers for two-level-domains (AuthNS) and some recursive DNS servers
(RDNS) serving different network of machines. Five different pasive DNS monitoring locations
are presented in red and numbered (1–5):

39

Chapter 2. Domain Name System Monitoring

Figure 2.4: Different DNS probing locations

1. Recursive DNS servers level: This technique allows to gather all requested domain names
from a given set of served hosts without redundancy of DNS requests/replies. This tech-
nique is interesting for dedicated network protection for instance. In [Wei05], Weimer
introduces this technique called passive DNS replication which consists in the capture of
DNS packets at the recursive DNS server (RDNS) level, between the recursive server and
authoritative name servers. He shows the advantages of this technique compared to other
DNS monitoring techniques in term of keeping user’s privacy and avoiding redundancy of
data. Weimer describes an architecture that implements such DNS monitoring technique
and presents several application for the gathered data such as malware containment, phish-
ing prevention, botnet mitigation, etc. A community project leaded by the ISC Security
Exchange Information [isc] propose the sharing of passively gathered RDNS data through
their pDNS project. Contributors provide records from their monitored RDNS servers and
have access to a worldwide database of passive DNS records. This database has been used
in several work related to malicious activity detection [APD+10, BKKB11].

2. Below RDNS servers: A monitoring technique that provides a fine grained view of indi-
vidual users’ querying behaviour. This kind of monitoring has applications for case spe-
cific anomaly detection such as finding misconfigured hosts or botnet compromised hosts
[CLLK07]. This technique as though some law-compliance issues since this does not pre-
serve users anonymity as the latter does.

3. Authoritative name servers level: This monitors DNS packets between a given name server
authoritative for some domain names and the recursive DNS servers. This technique pre-
serves anonymity and is applied to monitor the requesting behaviour of users for a given

40

2.2. DNS Monitoring

domain name. This has applications to detect the hosting of malicious domain names by
DNS operators [APL+11] or the evaluation of CDN quality of service [PAS+04] for instance.

4. Top level domain authoritative name servers: This monitors DNS packets between a given
name server authoritative for a TLD and the recursive DNS servers. An architecture
for this DNS monitoring technique is introduced in [DTMV12] and applied to monitor
the .it ccTLD. The captured traffic is minded to analyse the trends, the evolution and
interests of Internet user of a country. The technique has lower efficiency than HTTP
traffic monitoring but DNS traffic monitoring is law-compliant. Some given applications
are name server scanning detection, identifying sources of spam by identifying DNS requests
for non-existing domain names and DNS traffic statistics [XXXB09].

5. Root name servers level: This monitors DNS packets between a given root name server and
the recursive DNS servers. The applications of this technique is quite limited and relates to
quantity and quality of DNS traffic evaluation [CWFC08]. The study leads to find global
misconfiguration in the implementation of different DNS server distributions [BCN01] for
instance.

The different passive and active DNS monitoring techniques have several purposes for security
monitoring and network management. Some of these are specifically applied to the DNS but have
as well other Internet-related applications.

2.2.2 Performance Evaluation and Anomaly Detection

The main effort put in DNS monitoring at the beginning was to analyse DNS performances,
misconfigurations and detection of threats to the service. We describe some of these applications
and give more general approaches with the kind of monitoring these rely on.

DNS Specific Applications

Some of the early studies of DNS traffic targeted the root name server level [DOK92, BCN01,
CWFC08] to disclose misconfiguration in the DNS. Danzig et al. [DOK92] focused the analysis on
the pollution on wide-area network traffic due to errors in DNS server implementation (caching,
retransmission and selection of alternative servers). They conclude that DNS consumes 20 times
more wild-area bandwidth than necessary due to misconfiguration using root server level DNS
monitoring. Castro et al. [CWFC08] draw the same conclusion showing that invalid DNS traffic
represent around 98% of the total traffic. Their analysis consisted of the largest scale simultane-
ous collection of passive DNS traffic ever gathered: one day of DNS traffic from eight root servers.
They analyse both the evolution of DNS traffic in quantity and requests count per client. Broido
et al. [BNC03] study the DNS traffic generated by DNS updates and disclose misconfiguration
in Microsoft name servers sending on the Internet updates for private IP addresses.

DNS caching strategies play a major role in order to reduce the unnecessary DNS traffic as well
as the load of name servers. In [WFBc04], a passive monitoring at the recursive DNS servers level
for queries targeting root and TLD name servers is performed. This studies the effects of DNS
caching strategies on the queries made for upper level servers to determine the overload generated
by several DNS server implementation such as BIND, DJBDNS or Windows. This study leads
to identify the strengths and weaknesses of each server implementation in distributing the query
load to upper level DNS servers. With a similar monitoring technique, Jung et al. [JSBM02]
study the impact of TTL values and cache sharing on DNS caching efficiency.

41

Chapter 2. Domain Name System Monitoring

The active probing of DNS server is performed in [LSZ02] to compare the performance of
domain name resolution from different locations in the Internet for a set of domain names.
The probing shows consistency of the provided information but a response time that varies a
lot depending on locations of the requesters. A proposition to equitably choose name servers
placement improves the response time.

Finally, DNS specific applications have been made to detect cache poisoning and DDoS
attacks with DNS queries visualization tool [RKG06]. Automated techniques that do not require
human interventions are introduced in [WHLY06, ADL+10]. For instance, Antonakakis et al.
[ADL+10] introduce Anax, a large-scale, scalable centralized DNS protection system that detects
poisoned records in the cache of name servers. The technique relies on the active probing of
300,000 open DNS recursive servers making different queries for a set of domain names that are
likely to be targeted by cache poisoning. It extracts a set of features from the DNS responses
that are subjected to a machine learning algorithm. The system identifies change in cached DNS
records and deduces cache poisoning mainly through the change in IP addresses associated to a
given domain name.

Network Traffic Measurement

Some other applications of DNS monitoring are dedicated to the evaluation of performances of
some services relying on the DNS like CDNs or blacklists delivery services that were presented
in Section 2.1.2. For instance, a study of DNS logs from Akamai name servers in [PAS+04]
show some limitations of DNS-based network traffic management as it is used in CDNs. The
DNS does not offer quick enough response to deal efficiently with link failures and performance
degradation according to the study. However, Huang et al. [HHW+10] propose an efficient
method to measure network performances using DNS queries. A DNS reflection method is used
to compute the distance between two given machines and more precisely between an end-user
and a data center providing a given content. This technique is used for global traffic management
to select the closest CDN server to deliver a content. With the increasing use of CDNs to deliver
contents, it is difficult to distinguish between content owners and content hosters. The passive
monitoring of DNS traffic [BMM+12] allows to tag traffic flows with their associated domain
names in order to understand who is the owner and the hoster of contents available in the
Internet. Hence, one can deduce which CDNs deliver a given resource or identify the different
contents delivered by a given CDN. The monitoring of DNS traffic can evaluate as well which
service generate which proportion of the traffic. For instance, the part of DNS traffic attributed
to CDN activities can be evaluated. The proportion of DNS traffic overload attributed to the
consultation of DNS blacklists (DNSBL) is evaluated [JS04] by monitoring DNS requests sent
from a given monitored network.

DNS monitoring is also used for evaluating the popularity of websites or events. For instance,
by monitoring TLD name servers, Wang et al. [WSS11] detect global anomaly in network
traffic that are characteristics to some news events. Their anomaly detection scheme relies on a
clustering analysis of the covariance change of DNS query traffic from different TLD servers of the
same TLD. The assessment of the technique shows it is able to detect a specific event happening
in China (5.19 events) by monitoring DNS traffic to the .cn TLD name servers. Rajab et al.
[RMTP08] use DNS cache probing to infer the density of clients accessing a given network service.
Studying the evolution of cached Resource Records for a given domain name in local recursive
DNS servers leads to derive an estimation of the number of clients accessing this service. DNS
cache probing can thus estimates the popularity rank of websites with a less invasive method
than the popular Alexa service [ale]. Another application of this technique is the estimation of

42

2.2. DNS Monitoring

botnet infected hosts.

2.2.3 Malicious Activity Detection

Besides the evaluation of network performances, quality of DNS service or cache poisoning de-
tection, DNS monitoring has been used to detect malicious activities leveraging this service.
The main effort has been put in tailoring methods to detect malicious flux network and botnets
related activities. Some other work however targeted the identification of general purpose mali-
cious domain names relying either on DNS specific information or on lexical analysis of domain
names.

Fluxing Networks and Botnets

The most spread malicious activity relying on DNS is flux networks since these networks are the
support of many malicious activities including phishing. Holz et al. [HGRF08] were the first to
operate passive DNS monitoring in order to identify the characteristics of domain names used
in flux networks. They defined several heuristics that we presented in Section 2.1.3, in order
to differentiate fluxing domain names from legitimate domains. The conclusion is that dynamic
in DNS is often associated with malicious activities. However, a contradictory study [BN12]
examines to what extent a legitimate activity show DNS stability. Analysing DNS traces from a
large operator network with several customers, Berger et al. define stability metrics based on IP
address association with domain names and geographic dispersion of IP addresses. This analysis
concludes that half of the DNS responses analysed are actually related to stable domain names.
However, the other half includes DNS responses for popular websites such as www.google.com or
www.facebook.com or CDNs that are considered as highly dynamic.

Hence, some more elaborated techniques relying on several features have been developed to
detect fluxing. These mostly rely on the analysis of passively gathered DNS traffic at RDNS
level [PCDL09, APD+10, BKKB11] but other techniques [CTD+12] take as well advantage of
active DNS probing in order to differentiate the activities in which different flux networks are
used (phishing, spam, botnet C&C, malware networks). Antonakakis et al. [APD+10] perform
fluxing domain detection by building an on-line reputation system for domain names. 41 features
are computed from gathered DNS data among network-based, zone-based and evidence-based
features. Evidence-based features refer to IP blacklists and honeypot data. Zone-based features
consist in lexical analysis (character + n-gram analysis) and TLD analysis of domain names.
Network-based features, being the largest set of features, represent IP addresses to domain
name mapping, the different BGP prefixes of IP addresses, their country, their AS number, the
registrars of the different IP sets, etc. Based on these features, several models corresponding to
categories of domain names are built. A two stage clustering (network-based then zone-based) is
applied to group domain names according to their different activities. Then, unknown domain
names can be rate as malicious or legitimate using a proposed reputation system, which is a
statistical classifier fed with the extracted features.

Other techniques targeted more specifically the identification of botnet command and control
architecture using DNS monitoring [CLLK07, VSB09, CL12]. Based on already known malicious
domain names, Villamarin et al. [VSB09] identify a pool of bot infected hosts. Then, by monitor-
ing the DNS traffic below RDNS servers and comparing DNS traffic similarities with previously
identified hosts, they discover other bots that query similar domains. Using the same DNS mon-
itoring technique, Choi et al. [CLLK07] study the querying behaviour of individual hosts of a
given network. Queried domain names are grouped regarding the different hosts that request

43

Chapter 2. Domain Name System Monitoring

them. Analysing the evolution of pools of hosts that request the same domain names over time,
botnet domains can be identified. The authors show that the hosts requesting botnet domains
do not vary much over time compare to legitimate domain names. A metric to quantify the
requesting host pool similarity is introduced.

Globally the technique to identify flux networks and botnets using DNS analysis have been
proved efficient, identifying more than 99% of fluxing domain names [PCDL09]. However, these
techniques require previous knowledge of already known fluxing domain names, since these rely on
classification algorithm requiring training on ground truth data [PCDL09, APD+10, BKKB11].
Moreover, these techniques require large amount of DNS replies comming from different RDNS
servers in several locations, for the same domain names in order to compute relevant features to
feed classification algorithms. Some work [APD+10, BKKB11] were performed with historical
data from ISC SEI [isc] and the applicability of these methods to smaller DNS dataset repre-
senting shorter capture durations is questionable. Hence, the time taken by these methods to
identify flux networks is likely to be too long for phishing detection applications, since phishing
attacks have a short lifetime. Finally, the last presented techniques for bot infected host detec-
tion present privacy concerns since both methods rely on DNS traffic monitoring below RDNS
servers.

Malicious Domain Names

Some faster techniques, requiring fewer DNS data to extract relevant information, target the
identification of malicious domain names. These techniques actually rely on the analysis of
freshly registered domain names by monitoring the early DNS querying behaviour for these
domain names. Hao et al. [HFP11] passively monitor DNS requests for an authoritative Top
Level Domain server. They study both spatial and temporal DNS lookup patterns for newly
registered domain names across multiple networks in order to early identify malicious domain
names. By analysing DNS lookup patterns coupled with registration information about domain
names, they identify differences between malicious (phishing, spamming, malware, scam, botnet
domains) and legitimate domains. The detection technique uses Jaccard index computation
over the set of /24 networks that request a domain names from a day to another or over a
period of few days. The study of the early DNS querying behaviour for newly registered domain
names shows that malicious domain names become highly popular and requested few time after
their registration. This technique can allow DNS operators to identify malicious domains that
are under their authority using only their DNS data and without requiring data from other
networks as proposed with Kopis [APL+11]. Kopis use the same features coupled with requesters’
information and IP address reputation to identify malicious domain names hosted on upper
level name servers (AuthNS and TLDNS). Reactive registrar interventions by fast unregistering
malicious domain names when these are disclosed is efficient in the fight against malicious domain
names [LLF+11], rendering these automated identification techniques useful. Another alternative
for the use of these malicious domain identification techniques is to build proactive blacklists of
malicious domain names. Felegyhazi et al. [FKP10] use domain zones information about domain
name registration to identify suspicious domain names and add them to a predictive domain
blacklist. Based on known bad domain names, they compare the registration date, registrars,
etc. with other domain names to find similarities.

Studying the registration of domain names and their early life right after is a sound solution to
quickly find malicious domain names, although it can only be applied by domain registrars. Some
domain registrars are heavily involved in the fight against malicious domain names registration
while other do not take any countermeasure [LLF+11]. The consequence of using these techniques

44

2.2. DNS Monitoring

is just to switch the problem from some registrars to others and it does not cope with malicious
domain names registration.

Hence, other techniques requiring less DNS information and mostly focusing on lexical analy-
sis of domain names were introduced [BG10b, YRRR10, YRRR12, APN+12]. Two main applica-
tions are targeted by lexical analysis in the state of the art, namely the detection of DNS tunnels
and algorithmically generated domain names. Born et al. [BG10a] analyse bigram frequencies
in domain names and show that DNS tunnels traffic has almost evenly distributed character
frequencies while normal DNS traffic follow word language distribution. The conclusive remarks
of this study are used to build fingerprints of legitimate and tunnelling DNS traffic that are used
to assess the legitimacy of unknown traffic[BG10b].

Antonakakis et al. [APN+12] identify botnet involved hosts and C&C servers only using
lexical analysis of domain names. The detection targets botnet using DGA-based (domain gen-
eration algorithm) malware [Ayc12]. Domain names included in DNS NXDomain responses
passively captured below a RDNS server are clustered based on statistical features (n-gram,
entropy, domain length, etc.). Then, using a Hidden Markov Model, models representing the
composition of domain names are extracted from each cluster that is supposed to represent a
single domain generation algorithm. The models are then applied to DNS traffic in order to
identify domain names supposedly generated by one of the identified DGA. This technique has
a limitation since models are built using a Hidden Markov Model that is not the real DGA.
Domain generation algorithms usually use a seed such as the current date, hence the Markov
Model is not necessarily suited to identify the malicious domain names. Yadav et al. [YRRR12]
use statistical measures such as K-L distance, Levenshtein Edit distance and Jaccard measure
to study the distribution of alpha-numeric characters in domain names. They can discover algo-
rithmically generated domain names using this technique and were able to find domain names
used by the Conficker botnet and to disclose a new unknown botnet during their experiment.

Malicious activities Monitoring Location DNS features Lexical analysis

Flux networks Active/Passive 1
√

Domain fluxing Passive 1 2
√

Botnets Active/Passive 1 2
√ √

Malicious domain names Active/Passive 3 4 5
√ √

Cache poisoning Active 2
√

DNS tunnelling Passive 1 2
√ √

Table 2.1: DNS related malicious activities and the techniques to detect them

Techniques for lexical analysis of domain names are interesting since these do not require
heavy deployment of large scale DNS monitoring infrastructures to gather a lot of DNS data.
The few examples of existing techniques focused on the identification of DNS tunnelling or
algorithmically generated domain names relying on the fact that these have different characters
distribution. These domain names are however not used in phishing since meaningful domain
names are mostly used in phishing and these would follow the alpha-numerical distribution of
legitimate domain names. Hence, new techniques of lexical domain names analysis must be
developed to cope specifically with phishing.

Table 2.1 summarizes some DNS related malicious activities and the techniques used in state
of the art work to detect these activities. It shows if DNS monitoring can be used and if it is

45

Chapter 2. Domain Name System Monitoring

active probing or passive monitoring as well as the monitoring/probing locations that are relevant
according to Figure 2.4. It shows as well if DNS features and lexical analysis of domain names
are relevant to detect each of these malicious activities.

Conclusion

In this section we presented the implementation and functioning of a core Internet service namely
the Domain Name System. This service provides a paramount service to map domain names
to IP addresses but give as well a meaningful way to locate resources on the Internet. In
addition, it is used to enhance the availability and the delivery of contents on the Internet
through Content Delivery Networks and has others security applications with blacklist delivery
and SPF. Unfortunately, this service is also used to vectoring malicious activities by providing a
way to hide the real infrastructure of malicious networks namely botnets and phishing servers.
The development of flux networks hardens the fight against botnets and phishing since the actual
hosting of malicious contents is difficult to disclose. However, since current malicious activities
leverage the DNS, the monitoring of its traffic is worth to identify such activities.

The monitoring and analysis of the DNS traffic has been used for several purposes ranging
from evaluation of network performances to threats detection. Several monitoring locations
can be chosen according to their purposes, the scalability sought and privacy concerns. Some
researchers proposed solutions to collect and analyse the DNS traffic in order to identify malicious
flux networks being the support of botnets and phishing activities. Many proposed solutions that
rely on the accumulation of large amounts of DNS traffic to operate. This implies high latency
in the identification of malicious domain names, which is not an issue for botnet detection, since
botnets are long time operating malicious infrastructure. However, the application to phishing
detection is limited due to the short lifetime of phishing attacks. Other techniques have a limited
scope since these can only be operated by specific Internet actors because these rely on DNS
traffic monitoring at upper levels of the DNS hierarchy. Finally some good perspectives were
observed from the lexical analysis of malicious domain names. Proposed solutions are fast to
operate since these do not require large amount of DNS data. However, the applications of
these techniques are limited to DNS tunnels identification and algorithmically generated domain
names. Besides the fact that some legitimate services like CDNs use algorithmically generated
domain names, phishing domain names are usually not and are composed of meaningful words
that are involved in the social engineering process.

Hence, the lexical study of domain names coupled with few DNS data may show promises for
phishing domain names identification. However, more elaborated techniques must be developed
to differentiate between phishing and legitimate domain names since both are not algorithmically
generated. One solution to operate a careful analysis of phishing domain names is to study the
words composing them and their meanings to observe if some specific words or semantic fields
are used differently in legitimate and phishing domain names.

46

Part II

Phishing Domain Names and URLs

Detection

47

Chapter 3

Large Scale Passive DNS Monitoring

for Identifying Malicious Domains

Contents

3.1 Passive DNS Monitoring Architecture 50

3.1.1 DNS Data Gathering . 50

3.1.2 Distributed Storage and Processing System 53

3.2 Data Mining in DNS Space . 54

3.2.1 DNS Features Extraction . 54

3.2.2 Domain Names Clustering . 56

3.3 Experimental Evaluation . 58

3.3.1 Dataset . 58

3.3.2 Feature Analysis . 59

3.3.3 K-means Clustering Evaluation . 61

Introduction

We have seen in Chapter 1 that an important vector of phishing attacks is rogue link, i.e.
malicious URL, leading to fake websites, drive-by download, etc. Hence, the identification of
these phishing links is an efficient way to cope with phishing attacks. An early detection of these
phishing URLs is able to prevent users from an unexpected connection leading to phishing. We
focus in this part of the dissertation on the identification of malicious URLs namely the ones
used by phishers to target Internet users. As the main component of a URL is its domain name,
we mostly focus the analysis on this part of the URL. Moreover the domain name is the part
from the URL providing the largest amount of information because it is directly linked with the
Domain Name System (DNS). This chapter is dedicated to the identification of malicious domain
names through the analysis of DNS information.

Presented in Chapter 2, the DNS is one key component for the correct operation of the
Internet. Several threats specific to the DNS exist: malicious domains hosting phishing sites
or malware, covert channel communications over DNS, cache poisoning, client side attacks, etc.
One activity of major interest related to DNS misuses is hosting malicious phishing sites. This
malicious hosting mainly relies on two activities previously described in Section 2.1.3 namely fast-
flux and double-flux. Fluxing domain names are characterized by specific DNS features. Some

49

Chapter 3. Large Scale Passive DNS Monitoring for Identifying Malicious Domains

features are the high count of IP addresses associated to a single domain name or the low Time to
Live value for its Resource Records (RR). These features can only be computed from aggregated
DNS data corresponding to a single domain name. Hence, a continuous monitoring of DNS
activity is required and single DNS packet inspection is not sufficient. Long time period DNS
monitoring requires an appropriate scalable data storage system. The exploitation of stored DNS
data for mining and analysis requires as well the appropriate distributed techniques to retrieve
the data.

We introduce in this chapter a method to identify fluxing domain names through passive DNS
analysis. We propose the design and implementation of a passive DNS monitoring architecture
leveraging distributed data storage and processing techniques to deal with large quantity of DNS
data. We introduce nine features, extracted from DNS data, relevant for fluxing domain names
identification. These features are used in an automated clustering method to capture relevant
groups of functional different domains and especially malicious and legitimate domains. The
contributions presented in this chapter were mainly published in [MFW+12, ME12].

This chapter is organized as follows: we start in Section 3.1 by presenting the requirements
and implementation of a distributed passive DNS monitoring architecture. This is implemented
to capture DNS packets. Section 3.2 describes the feature set we extracted from gathered DNS
packets as well as the machine learning technique used to identify domain names activity. Finally,
Section 3.3 presents results from experiments we made on two unlabelled DNS datasets.

3.1 Passive DNS Monitoring Architecture

In this section, the architecture and the design of the passive DNS monitoring solution are
presented. This architecture has to comply with several major requirements in order to provide
flexibility. We designed this architecture to have several purposes. These are not limited to
the application presented in this chapter namely the clustering of domain names. From an
operational point of view, this architecture is able to retrieve both online and offline DNS packet
captures. Thus, it can be used as an online monitoring tool, but can also be applied to offline
incident handling. For instance, in case of analysing a compromised network, the system is able to
retrospectively mine DNS traffic, detect and report suspicious activities. One critical requirement
for such an architecture is the large quantity of data that has to be processed and stored. Our
experience in deploying a passive DNS monitoring tool showed that for a regional backbone
network, the daily quantity of data can easily reach one GigaByte per day. Since tracking
malicious domain names over a monthly basis can lead to dealing with data quantities in the
hundreds of GigaBytes, we leverage distributed storage and retrieval solutions. First attempts to
use relational database system was not scalable. Existing DNS monitoring approaches leverage
efficient key-value storage systems (see Cassandra [LM10], or Redis [Ler10]). In our design we
leverage the popular Hadoop framework [Whi09] in order to distribute both the computation
and the data storage.

3.1.1 DNS Data Gathering

The core architecture of the DNS packets gathering system is illustrated in Figure 3.1. It is
composed of three main components and is based on the architecture proposed by Florian Weimer
in [Wei05]. The first component is a passive DNS sensor (Figure 3.1 DNS passive monitoring)
that is a simple packet capturer filtering DNS related traffic. The choice to perform passive
monitoring rather than active monitoring relies on two reasons:

50

3.1. Passive DNS Monitoring Architecture

Figure 3.1: Passive DNS Monitoring Architecture

• First, to monitor passively a given recursive DNS server leads to get all DNS requests and
replies of the clients it serves. Hence, it captures DNS data from domain names actually
requested by Internet users and allow to protect these users by identifying their real threats.

• Second, this kind of monitoring is totally unnoticeable as it consists on a script running
on the DNS sever and dumping packets received on a given interface. This prevents our
monitoring to be discovered by miscreant owning malicious domains due to several DNS
requests coming from the same machine. This identification would lead malicious domains
owner to stop announcing a domain name being probed before getting enough information
to infer its maliciousness.

The DNS sensor is placed between the recursive DNS server and the upstream DNS servers
as depicted in Figure 3.1. Placing probes at this level meets two essential requirements:

• It keeps users’ anonymity: Internet users while surfing on the Internet make DNS
requests to their delegated recursive DNS server. Once the recursive DNS server gets a
DNS request, it either makes the recursive DNS resolution or sends directly the DNS reply
if the DNS record is cached. As a result, all DNS requests at this point are made by the
recursive DNS server. No original DNS request is captured. This preserves anonymity.

• It avoids to capture redundant DNS replies: Thanks to the cashing strategies of
recursive DNS servers, DNS requests are only made when new information is needed i.e.
either when a new domain name — not cached — is requested or when the Time to Live of

51

Chapter 3. Large Scale Passive DNS Monitoring for Identifying Malicious Domains

the Resource Record of a domain name cashed expired. Hence, only DNS replies containing
new information are captured.

The role of these probes is to listen for DNS replies, extract the data and feed the retrieved
information into the distributed storage system. The information extracted from DNS packets
and to be stored consists in:

• Resource Record type (A, AAAA, MX, NS, etc.)

• Response Code (NOERROR, NXDOMAIN, etc.)

• Question (e.g. the requested domain name)

• Response (value associated with the domain name — IP address (A Resource Record),
mail server name (MX Resource Record), etc.)

• Authoritative Answer flag

• Time to Live (TTL) of the Resource Record

• Timestamp first seen

• Timestamp last seen

• Count of replies seen (between first and last seen)

This information is contained in DNS replies and has been presented in Section 2.1.1. Ex-
tracting this information provides an aggregated view of a domain name activity. It shows for
instance how long a Resource Record is valid i.e. one record observed in several replies during a
long period of time (first seen / last seen) denotes stability for a domain name. Whereas domain
names with several different records depicts high variability. Hence, this information is suited to
identify fluxing domain names, since one main feature of fluxing is variability.

This information extraction seems simple in theory, but in practice this tends to be difficult.
Many DNS replies are not well structured and many reply messages have been observed to be
erroneous. For instance, we observed large quantities of A Resource Record types that were
returned to 127.0.0.1. Therefore, a tedious case by case analysis has to be performed before
storage. Another unexpected issue consists in letter capitalization in domain names. A question
that arises is, whether domain names must be normalized to small capitals or if there may be
large capitals too. The answer seems obvious as the DNS is not case sensitive, but we have
observed that some important actors in the Internet, e.g. Google, play with variations within the
same name, with both, small caps and large caps. For instance, for google.com, respective PTR
records can have both kinds of caps. Some observed examples are GoOgle.com, gOOgle.com,
gOoGle.com, etc. The assumption regarding this behaviour is that Google somehow uses this
trick to limit the impact of cache poisoning, in case of badly implemented DNS cache server.
Others assumptions are to infer the origin of the DNS replies, e.g. geolocalization of a datacenter,
or to encode some data back from the original query of the user.

Stored data can be analyzed either by a human operator using the End-user tool depicted
in Figure 3.1, which is a Web based interface or the data can be mined automatically by a data
mining application thanks to the distributed data storage and processing system represented as
Hadoop in Figure 3.1.

52

3.1. Passive DNS Monitoring Architecture

3.1.2 Distributed Storage and Processing System

Most of the activities related to DNS security monitoring require small processes running over a
very large database. For instance, looking for the IP addresses corresponding to a domain name
is an easy task, but leads to mine a huge volume of data. Thus, the paradigm shifts from a
highly computational to a data-intensive problem to be solved.

MapReduce [DG04, LD10] is a design pattern for data-intensive problems. For achieving the
same task as in a centralized approach, the design of the algorithm must be rethought. Mapping
is applied onto each piece of distributed data and so, on each machine. Basically, data is processed
to extract required features, with one feature being the key. Later, these key features are used
to aggregate results, because all outputs of the mappers with the same key are sent to a unique
reducer in charge of producing the final result.

For example, if each input line is a domain name and a matching IP address (A RR), then
each mapper can emit the IP address with the domain name as key. Thanks to a shuffle phase,
the reducer can collect every IP addresses corresponding to a domain name. This trivial example
shows that, even if the required data (all entries with the same domain name) is not located on
a single machine, finally it will be aggregated into the same reducer. The input of the reduce
function is an intermediate key with a list of all intermediate values generated for this key by
all mappers. Therefore, the reducer can generate the aggregated result for each key passed as
argument of the reduce function.

The general architecture of a Hadoop [Whi09] cluster is depicted in Figure 3.1 (Hadoop).
There are slave machines that are responsible for storing and processing the data in a distributed
way and they are synchronized through a master. For storage, the Hadoop Distributed File
System (HDFS) is composed of the namenode that only stores the file system structure, whereas
data blocks are managed by datanodes with a configurable redundancy. For scalability purpose,
accessing data is directly done through datanodes. The namenode only indicates where the data
is, but it does not provide a proxy access to the data. MapReduce jobs are coordinated by the
jobtracker, which is responsible of assigning the map and reduce tasks to the different tasktrackers.
Then, these access their own local data for running the map. The reduce stage needs that the
mappers directly output their results to a reducer that is determined by computing a hash of
the key of the output map.

Regarding a trivial example of getting all the IP addresses associated to a given domain
name, the data needs to be read for each request to execute. With a relational database, there
is only one read and therefore retrieving the information is easier since it is structured. In a
similar way, we leverage HBase [hba], an open-source implementation of a structured and highly
scalable storage model that holds the benefits from the HDFS by providing a distributed and
structured persistent storage to our system. As shown in Figure 3.1, there are master and slaves
nodes. Similar to HDFS, the slaves run a RegionServer daemon responsible for storing subparts
of tables locally, although the master tracks only the metadata changes. Even if not exclusively
designed for working with MapReduce, HBase provides an interface to the MapReduce job. Thus,
the mapper can read data in the table and the reducer can write data into the table. The table
in HBase may be sparse since the data structure is flexible. Without loss of generality, it is a
column-oriented approach, where each column is in fact a column family, which can contain any
number of columns. For instance, for the DNS data, blacklisted domain names are stored as a
column family with inner columns representing the different blacklists. Hence, depending on a
given domain name, the number of columns may vary. We briefly reviewed the use of HBase
by omitting some details for the sake of clarity. The interested reader is referred to [hba] for
detailed explanations.

53

Chapter 3. Large Scale Passive DNS Monitoring for Identifying Malicious Domains

This section described the implementation of our distributed data storage and processing
system with Hadoop. While running experiments, we observed significant latency during the
initialization of the Map operation, but on very large volumes of data, this latency becomes
insignificant. Once able to gather DNS data thanks to a scalable DNS passive monitoring ar-
chitecture, we want to extract features therefrom that can highlight malicious domain names
activity.

3.2 Data Mining in DNS Space

Some security abuses found in DNS can be identified through DNS data analysis. In this section
we focus on the identification of two of them that are highly related to phishing. These are
fast-flux and double-flux domain names. At a first glance, a simple fast-flux detection method
could consist in monitoring DNS replies for large sets of different records associated with one
single domain name. However, this method does not work when faced with large server farms or
content delivery networks (CDN) like Akamai [aka] or CloudFront [clo]. Typical CDNs achieve
the same redundancy as fast flux overlay networks, using similar techniques. The only subtle
difference consists in the lifetime of a given domain name. Malicious domains have short spanned
life times where CDNs domains do not.

We first propose a set of features to identify these abuses and explain why these are relevant.
Then we present the clustering method we apply on this feature set to perform unsupervised
learning and identify group of domain names having similar activity.

3.2.1 DNS Features Extraction

For identifying domain names activity we define different analysis parameters in order to model
the DNS information. Therefore, we introduce nine features relevant for identifying fluxing
domains (fast flux / double flux) according to the characteristics described in Section 2.1.3.
These features are computed from the DNS information extracted from DNS packets, this was
presented in Section 3.1.1. Having a DNS reply for a domain name 4ld.3ld.2ld.tld. These features
are extracted from the Fully Qualified Domain Name (FQDN) observed (4ld.3ld.2ld.tld) but also
from lower level domain names 3ld.2ld.tld and 2ld.tld. Top level domains are not considered
because several entities register domain names under the same tld. Hence, no tld is likely to be
a fluxing domain name. The features extracted from a domain name domain are the following
and their purposes are presented:

• IPCount: the count of IPv4 addresses associated to domain. We search for A and CNAME
records from gathered Resource Records (RR) and count all IPv4 addresses associated to
domain. This features is typical for detecting flux networks or content delivery networks
as these present in theory higher IP counts compare to other kind of domains.

• Sip1: an entropy-based index of IP address scattering. All IPv4 addresses associated to
domain are represented in binary form. Then, for all 32-bit positions of the IP address, we
compute the Shannon entropy [Sha48] that considers the two conditions: the bit is 0 or the
bit is 1. To recall, the Shannon entropy for a variable X is defined in Equation (3.1) with
p(x) being the probability that X is in state x and p(x)log2(p(x)) is set to 0 if p(x) = 0.
After these computations, we sum the 32 entropy values to obtain an index Sip1 ∈ [0; 32],
where 32 represents the maximum scattering. The complete process to compute Sip1 is

54

3.2. Data Mining in DNS Space

Figure 3.2: Computation steps for Sip1

depicted in Figure 3.2. This index highlights the scattering of IP addresses associated to a
given domain name through several subnets on the Internet. It discriminates CDNs from
flux network as for a given probing place we expect CDNs to select servers geographically
close while fluxing does not.

H(X) = −
∑

x

p(x)× log2(p(x)) (3.1)

• Sip2: another IP address scattering index. Considering an IPv4 address as B1.B2.B3.B4

for the four bytes that compose it. Having a set of IPv4 addresses associated to domain,
we count the number of different B1, B2 and B3 we get among the set. These counts
are defined respectively as bytescount1, bytescount2 and bytescount3. To compute Sip2 as
defined in Equation (3.2) we sum these three metrics after giving respectively the weight
100, 10 and 1 to each metric. Considering the set of four IP addresses in Figure 3.2 we
obtain Sip2 = 3 × 100 + 3 × 10 + 3 = 333 The advantage of Sip2 compared to Sip1 is that
it considers two functions, which are not used in the first index. Here, the differences in
the positions of bytes in an IPv4 addresses are weighted, since intuitively the first byte in
an IP address (B1) has a higher relevancy in term of scattering than the last byte (B4).
Second, it also considers and counts the number of different IP addresses in a data set.

55

Chapter 3. Large Scale Passive DNS Monitoring for Identifying Malicious Domains

Regarding the entropy, if we have two addresses 0.0.0.0 and 255.255.255.255, Sip1 will be
at maximum value, i.e. 32. However, if we have 20 different IP addresses for instance, the
index would be lower, even if we can observe that the scattering becomes more important.
With Sip2, the more different IP addresses we get, the higher is Sip2. Sip2 is not bounded
on any range of values.

Sip2(domain) = 100× bytescount1 + 10× bytescount2 + bytescount3 (3.2)

• TTL: the mean TTL value from all A Resource Records associated to domain. Low TTL
values are usually a relevant indicator of flux networks and CDNs.

• ReqCount: the total count of DNS replies made over the observation period for domain.
Variations in the distribution of this variable might indicate that an anomaly occurred.
Typical phishing sites are highly requested during a short period of time, which differs a
lot from the rest of the time.

• T imeUp: the period in days (lastseen − firstseen) during which we can observe DNS
replies for domain. If there is only one observed request, this feature is set to 0. It
has been observed that legitimate domain names have longer time spans, while malicious
domain names exhibit daily/hourly lifetimes [AR14].

• ReqRate: the ratio of replies per time period for domain. This feature is a combination
of the two previous features, which provides the number of requests on a per hour basis.
This statistical feature captures the average usage pattern/frequency for domain.

• SubDom: the count of subdomains of domain. We count in our data the number of domain
names matching the pattern prefix.domain. CDNs are known to use a lot of algorithmically
generated subdomains. These are used once, thus a high count of subdomains can be
observed for CDNs.

• ServCount: the count of authoritative servers for a domain name. For this feature, high
values are an indicator of double flux networks.

We defined these nine features since these are sufficient to represent the DNS characteristics
of different domain names activities. Table 3.1 show the several features with their expected
values according to different domain names activities. We define five types of domain names,
namely fluxing domains, CDN domains, user tracking domains, popular domains and low popular
domains. We can see in this table that the several domain name types have different expected
values showing that the feature set should be relevant and sufficient to distinguish these activities.

3.2.2 Domain Names Clustering

The extraction of the feature set previously presented is aimed at identifying domain names
activity i.e. fluxing, double-fluxing or legitimate activities. Hence once these features extracted
from a dataset, we want to subject them to a machine learning algorithm in order to infer
domain names activity. Machine learning algorithms are divided in two main categories namely
supervised learning and unsupervised learning — recently a third category emerged and consists
in semi-supervised learning. Basically the difference between these two first categories is the
data subjected to them.

56

3.2. Data Mining in DNS Space

Features F
lu

x
in

g

C
D

N

U
se

r
T
ra

ck
in

g
P
op

u
la
r

L
ow

p
op

u
la
r

@IP count ++ ++ + + −−
IP scattering ++ + + − −−
TTL value −− −− −− − ++

DNS Requests − ++ + ++ −
Uptime − −− − ++ +

Request rate − ++ + + −−
Subdomains − ++ ++ + −−
Servers ++ + + + −−

Table 3.1: Expected feature values depending on domain names activity

In supervised learning, the data feeding the classification algorithm is labelled. In other
words, to use supervised methods, one needs a dataset of instances categorized in predefined
classes. Based on this, the algorithm infers a classification model that can further be applied
to unknown instances in order to determine their class. One drawback of this method is that it
can only identify what it learned i.e. whatever the instance subjected to is, it is put in one class
even if it should not belong to. This method has already been applied in several works related
to passive DNS analysis but with a different feature set [PCDL09, ADL+10, BKKB11].

Unsupervised learning, in the opposite, works with unlabelled data. The algorithm tries
to find hidden structure in the data based only on the features characterizing each instance.
One important category of unsupervised learning algorithm is clustering. Clustering consists
in splitting a dataset in different groups containing instances close in terms of feature values.
The advantage of this technique is that no previous knowledge about the instances one wants to
cluster is needed.

Even though we built a features set to identify certain kind of domain activities, the gathering
technique for our DNS data does not enable to know the class of a domain a priori i.e. our dataset
is unlabelled. In addition, building a static classification model with n classes at time t does
not ensure that unknown instances analysed at time t+ 1 will belong to one of these n classes.
One characteristic of malicious domains is their short lifetime [AR14] and Internet miscreants
constantly develop new subterfuges [DTH06, AR14] to cope with new detection techniques.
Hence, the chosen data mining approach is based on a clustering task and the k-means algorithm
[HW79] is chosen to perform it.

The k-means algorithm is a classical clustering algorithm that is commonly used in data
mining [Jai10]. The aim of k-means is to divide instances into k clusters. More formally this
means, given a set of instances (x1,..., xn), with each instance being a d-dimensional vector (in
our case d = 9), k-means tries to optimally divide the n instances into k clusters S={S1,...,Sk} by
minimizing the within-cluster sum of square (WCSS) defined in Equation (3.3) where ||xi − ci||
represents the distance from an entity point xi ∈ Si to its cluster centroid ci. The number of
clusters k has to be set in advance and (k ≤ n). For a detailed description of the k-means
algorithm we refer the reader to [HW79].

57

Chapter 3. Large Scale Passive DNS Monitoring for Identifying Malicious Domains

k
∑

i=1

∑

x∈Si

||xi − ci||2 (3.3)

We introduced in this section nine features to infer domain name activities and presented
a clustering algorithm to subject the feature set to. This feature set and the machine learning
technique are used on passively captured DNS packets to assess their relevancy.

3.3 Experimental Evaluation

This section introduces two datasets from which features are extracted. We highlight the rel-
evancy of the feature set chosen by analysing it on the test datasets as a first step. Then the
experimental outcomes of the clustering phase are presented.

3.3.1 Dataset

We aim to test our method against two datasets presenting different characteristics to evaluate its
applicability. We have used two datasets that are different with respect to geographical location,
volume, duration and access networks. Both datasets were captured according to the technique
presented in Section 3.1.1. The first dataset originates from the INRIA Nancy Research Labs,
which represents a medium sized campus network in France. The second dataset originates from
a regional Internet Service Provider located in Luxembourg. Detailed information about these
datasets is presented in Table 3.2 in terms of captures duration, count of DNS replies captured
and size of the dataset. For the remaining of this section the datasets will be named according
to the country they come from: dataset Luxembourg and dataset France.

Country Luxembourg France

Duration 1 hour 48 days

DNS replies 10 M 70,095

Size of Dataset 270 MB 22.8 MB

Table 3.2: Passive DNS capture statistics for dataset Luxembourg and dataset France

Additional statistics on the differences between these two datasets are summarized in Table
3.3. We looked at the characteristics of the DNS information for a set of hosts and domains
depending on the capture location. We selected some popular and well represented domain
names like: Akamai (akadns.net), Facebook (facebook.com), Apple (apple.com), and Google
(google.com). Table 3.3 presents the IPCount of some subdomains of these and their respective
SubDom feature. It is worth noting that the IPCount of only one subdomain example is given
for both Akamai and Apple, as Apple uses Akamai [aka] to deliver some of its contents.

Even though the two datasets were captured in close locations, some differences are noticeable.
The domain name apple.com has similar statistics in both dataset, however we can see a five
fold difference in the IPCount of csi.l.google.com from dataset Luxembourg to dataset France,
the same observation holds for star.facebook.com. This trend tends to indicate that big Internet
actors perform load balancing on their servers and dedicate more servers to bigger countries (e.g.
France) than they do for small ones (e.g. Luxembourg). This explains the difference in IPCount
for same domain names in different countries. Since the IPCount is an important feature for

58

3.3. Experimental Evaluation

flux network detection, we must be careful to cluster data coming from the same location and
not to mix data from different locations. This would influence domain names feature values and
lead to misleading clustering or classification results. This fact is another argument to prefer
unsupervised learning to supervised learning in this case study. It proves that a classification
model learned in a given location would not necessarily be relevant in another location.

It is worth noting as well that akadns.net has a nine fold difference in SubDom from dataset
France to dataset Luxembourg. This is natural since Akamai is a major Content Delivery Net-
work that hosts services which are much more represented in the largest dataset. Some estimates
[HWLR08] of the Akamai network ranged it at about 50,000 hosts world wide. Although a pas-
sive DNS analysis only reveals geographically closed, from the passive DNS probes location,
Akamai hosts, this data is relevant to estimate the local load balancing and service availability
of the Akamai CDN.

Features Luxembourg France

IPCount for csi.l.google.com 74 404

IPCount for star.facebook.com 8 39

IPCount for x.apple.com.akadns.net 24 24

SubDom for akadns.net 1,137 135

SubDom for google.com 306 444

SubDom for facebook.com 174 66

SubDom for apple.com 134 156

Table 3.3: IPCount and SubDom features for some domain names

3.3.2 Feature Analysis

We merged the France and Luxembourg dataset to form a joined dataset. We filtered and
retained only the different FQDNs that have been requested and for which at least one reply
with the RCode NOERROR was received. The nine features are extracted for each domain of
this filtered set. We analyse the values of these features among the instances of the merged
dataset to have an idea of these having discriminative values.

Table 3.4 shows for each feature the minimum (Min), maximum (Max), median (Median),
fifth percentile (5%) and ninety-fifth percentile (95%) values for each of the nine features. In
addition the mean (Mean) and standard deviation (SD) values are given at the end of each row.
To have a better idea of some feature values repartition, histograms giving the ratio of instances
per feature value are depicted in Figure 3.3. Moreover the density curve is drawn (blue) as well
as the fifth percentile (5%) and ninety-fifth percentile (95%) values (red).

At first glance on Figure 3.3 we see that most of the elements (around 50%) of the dataset
are concentrated on a single value: one IP address per domain explaining IP scattering index
Sip1 and Sip2 of 0 for most domain names. Most domain names have only one request and
two authoritative servers, etc. Taking the features SubDom and ReqRate in Table 3.4 almost
95% of the domains have been requested only once (ReqRate = 0) and more than 95% of
the domain names have no subdomain. However, the maximum values of these features are:
Max(ReqRate) = 9,620 req/hour and Max(SubDom) = 194. This shows that most domain
names of the dataset are similar from a DNS point of view but nonetheless few elements of the
set are outliers compared to the rest. This is actually a good hint that our feature set is able to
detect domain names having abnormal behaviour.

59

Chapter 3. Large Scale Passive DNS Monitoring for Identifying Malicious Domains

Figure 3.3: Features statistics

60

3.3. Experimental Evaluation

Features Min 5% Median 95% Max Mean SD

IPCount 0 1 1 11 389 3.12 9.66

Sip1 0 0 0 19 27 4.037 7.089

Sip2 0 0 0 111 789 17.226 54.011

TTL 0 17 3,573 86,400 604,800 20,580 41,612

ReqCount 1 1 1 10 591 3.793 14.51

T imeUp 0 0 0 27 48 4.698 9.737

ReqRate 0 0 0 0.117 9,620.496 12.074 27.018

SubDom 0 0 0 0 194 0.164 3.277

ServCount 1 2 3 9 29 3.767 2.675

Table 3.4: Feature values repartition

From Figure 3.3 we observe that most domain names have few associated IP addresses.
However a small spike in 32 indicates that around 3% of the domain names of the dataset have
exactly 32 IP addresses associated with. This explains why we have a significant part of Sip1

values between 10 and 22. The spike at value 111 for Sip2 corresponds to domain names being
associated with two IP addresses having no byte in common i.e. two IP addresses having no
common prefix.

The biggest part of the domain names have a low TTL. Previously we explained that a
low TTL is the characteristic of a domain belonging to a CDN or belonging to a flux network.
However most of the domain names are normally not in these categories. There are two expla-
nations for having so many domain names with a low TTL. The first one is that one single
CDN can use a lot of different domain names and subdomains. For instance one domain name
of Akamai has more than 1,000 subdomains while regular domain names have few in general.
Hence, lots of query/reply for FQDNs related to CDNs are captured during one hour explaining
a high representation in the dataset. The second reason is that domain names with low TTL do
not stay long in recursive DNS servers’ cache (the time of the TTL). Hence, since we took only
a subset of one hour passive DNS capture for one dataset, the chance to see domain names with
low TTL is higher than the one to capture replies for domain names having TTL greater than
one hour. The spike we can see for 10% of domain names having a TTL around 85,000 seconds
corresponds actually to a TTL of 86,400 seconds that is equal to one day. Many domain names
from low to medium popularity do not require load balancing and have a stable infrastructure
that does not require frequent update of DNS information. The TTL of Resource Records for
these domain names is often set to one day.

3.3.3 K-means Clustering Evaluation

To assess the relevancy of the feature set, we use in this section the k-means clustering algorithm
that has been previously presented. Experiments were performed using the open-source machine
learning framework Weka [HEH+09] on the France dataset only, to avoid bias in results because
of different locations as explained in Section 3.3.1. This tool is known for its large library of
supervised and unsupervised machine learning algorithms. As a first step for determining the
optimal number of clusters k in which we should split the dataset we use previous processing.
Two techniques are widely used to determine the number of clusters to build with clustering
techniques.

One uses graphical analysis of dendrogram in order to choose the optimal split. This method

61

Chapter 3. Large Scale Passive DNS Monitoring for Identifying Malicious Domains

is based on hierarchical clustering technique that builds a tree showing all the different split
possible to divide a set in k subsets. This method is highly exhaustive and shows all the options
to split a set. However, hierarchical clustering techniques have high complexity and are limited
to small dataset due to processing capacity limitation.

As a result, the solution chosen is based on the minimization of the within-cluster sum of
square (WCSS) presented earlier in Equation (3.3) as part of the k-means algorithm. The com-
putation of this metric for a given cluster consists in adding the distances from each element of
the set to cluster to its cluster centroid. A low value of WCSS corresponds to a good assigna-
tion of elements to clusters. Hence, by minimizing this value, one ensures that elements having
close features values are clustered together and that these elements have high similarity between
them. We built clusters out of the global dataset using the k-means algorithm for k ∈ {2; 15}
and computed the sum of the within-cluster sum of square from each clusters formed during the
process. The code corresponding to this experiment is the following:

WCSS computation algorithm
1 for n = 2 to 15:

2

3 // clusters initialisation: centroids c[i] and cluster assignation A[j]

4 D’ = D

5 for i = 1 to n:

6 j = rand(|D’|)

7 c[i] = D’[j]

8 D’ = D’ - {c[i]}

9 for i = 1 to |D|:

10 A[i] = argmin(j= 1 to n) { ||D[i] - c[j]||^2)

11

12 change = true

13 while change: // recalculate clusters until convergence

14 for i = 1 to n: // recompute centroids

15 mean,count = 0

16 for j = 1 to |D|:

17 if A[j] == i:

18 mean += D[j]

19 count ++

20 c[i] = mean / count

21

22 change = false

23 for i = 1 to |D|: // reassign instances to clusters

24 a = argmin(j= 1 to n) { ||D[i] - c[j]||^2 }

25 if a != A[i]:

26 A[i] = a

27 change = true

28

29 for i = 1 to |D|: // compute the WCSS for the n clusters formed

30 WCSS[n] += ||D[i] - c[A[i]]||^2

31

32 return argmin(i= 2 to 15) { WCSS[i] } // return the optimal cluster count

62

3.3. Experimental Evaluation

Figure 3.4: WCSS values for 2-15 clusters obtained with k-means

This code shows the computation of the k-means on a feature vectors set D composed of
domain names with their nine extracted DNS features previously presented. For each of the n
clusters to form, it selects an initial centroid being a element randomly picked from D. Centroid
are stored in [c]. Elements of D are then assigned to the cluster having the closest defined
centroid. This assignment is stored in [A]. Then, an iterative process updates the cluster by
recomputing the centroid and reassigning element to the closest recomputing centroid. Once the
algorithm converge – no element is reassigned to other clusters after recomputing the centroids
– it computes the WCSS being the sum of the distance between each element of D and its
centroids. Finally, the algorithm return the optimal cluster count.

The value of within-cluster sum of squares for every k ∈ {2; 15} is depicted in Figure 3.4.
Two events are noticeable in this graph. The first is the large decrease in WCSS values while
passing from one set to two clusters. The second is the smaller, but still important, decrease in
WCSS values while adding one more cluster from seven to eight. This graph shows that building
from two to seven clusters does not improve the cluster composition, so it is from eight to fifteen.
Hence, the optimal number of clusters to split our set are two and eight. We favor k = 8 value
since we consider that domain names activities can be classified in more than two categories.

During experiments we analysed the relations between the obtained clusters and the different
features. Figure 3.5 depicts values for T imeUP , Sip1, ServCount and TTL for elements of the
eight clusters. Each small cross represents one element of each cluster in x axis and its associated
value for the feature in y axis.

Three clusters, cluster 3, 6 and 7 are associated to high values of Sip1 feature and very
similar low values for TTL especially for cluster 6. The Sip1 values are more than two orders
of magnitude higher compared to values of the remaining clusters. However, these three cluster
have different T imeUp values. While looking at the cluster components, we have observed

63

Chapter 3. Large Scale Passive DNS Monitoring for Identifying Malicious Domains

Figure 3.5: Feature values according to cluster number

that cluster 6, having the highest T imeUp value, contains very popular domains like google.com,
facebook.com, skype.com, etc. This is an expected conclusion that highly popular domains provide
high availability (low TTL), perform load balancing over servers scattered all over the world (high
Sip1) and have requests observed all along the observation period (T imeUp ≈ 48 days). Cluster
7 with lower T imeUp is grouping domain names that perform user tracking services, like for
instance doubleclick.net, tradedoubler.com, quantcast.com, etc. Cluster 3 is particular. While
clusters 6 and 7 have both dispersion metrics in the high ranges (Sip1, Sip2), cluster 3 groups
domain names characterized by high Sip1 values and lower Sip2 values compared to clusters 6 and
7. A manual analysis of this cluster revealed that most domain names are related to CDNs as for
example Akamai [aka] or CloudFront [clo]. Typical domain names in this cluster are composed
of an algorithmically generated suffix followed by a CDN domain name such as fbcdn-video-
a.akamaihd.net or d19n4gh4cmsbnt.cloudfront.net. This explains the short life time (T imeUp)
compared to the two previous clusters, as these FQDNs are composed of an algorithmically
generated subdomains that may be used only once. This result is consistent with the operation
of CDNs, where DNS replies are based on geographical locations of the requesting client. In
our case, we have observed high values in the number of A records per domain name, but most

64

3.3. Experimental Evaluation

returned values were discriminated by the Sip2 metric. The several IP addresses actually belong
to networks with a common IP prefix.

Cluster 5 regroups domain names with high count of authoritative servers (ServCount) and
high count of DNS replies per time interval (ReqRate). These domain names are very popular
with very high ranks according to Alexa’s website ranking [ale]. Typical domain names in this
cluster are apple.com, amazon.fr or adobe.com. Finally cluster 0 with high TTL values groups
lowly popular domains according to Alexa’s ranking. These were occasionally consulted by users
of the network we monitored.

We identified 80 malicious domain names in the dataset. These were identified thanks to
regularly updated domain blacklists that can be freely downloaded from the Internet. These
consist in Malware Domain List [malb], DNS-BH Malware Domains Blocklist [mala] and ZeuS
blocklist [zeu]. These 80 domain names were not enough to form their own cluster, however these
were grouped in cluster 7 with thousands of legitimate ones. As we expected these malicious
domain names have features like low TTL, high IP scattering and were mainly fluxing domains.
Examples of such domains are:

• 00007.ru: used for hosting malicious code.

• 000.bbexe.cn: used for phishing site and rogue login script.

• 01.finni.in: used for malicious hosting.

• 010608.myftp.biz: used to host infected pdf files that exploit an Adobe Acrobat Reader
vulnerability.

These experiments show that extracting the nine DNS features previously described from two
datasets and follow-up analysis leads to reveal differences between domain names and between
locations where the data is gathered from. The feature analysis highlighted major trends in do-
main names feature values, while revealing as well outliers domain names having values different
from the majority. In a last step applying the k-means clustering to form eight clusters out of one
dataset showed the ability to group domain names according to their activities. Content Delivery
Network domains were group together, as were user tracking services. Low popularity domain
names were separated from high popularity domains such as google.com or facebook.com. While
the ability of the method to form a single cluster containing all malicious domain names was not
proved, the 80 malicious domain names we identified were clustered along other legitimate in a
single cluster. This was mainly due to the low quantity of such domain names in our dataset
preventing from forming a separated cluster.

Conclusion

As a core service of the Internet, the DNS carries a huge amount of information that is extremely
rich to security monitoring. To exploit this information in an efficient and automated way,
we presented a passive DNS monitoring solution that leverages both an advanced distributed
processing deployment pattern and a relevant data mining algorithm. Using this system, we
analysed two different datasets of passively collected DNS traces by applying an automated
clustering algorithm, where the different clusters represent different types of DNS traffic activities.
We showed that the proposed DNS feature set is relevant for discriminating domain names
activities and more precisely malicious from legitimate. We were able to identify fluxing domain
names being involved in phishing activities and delivery of malicious content as well as other
activities such as content delivery or user tracking.

65

Chapter 3. Large Scale Passive DNS Monitoring for Identifying Malicious Domains

Several work regarding passive DNS analysis have been made previously using centralized
storage system and processing [Wei05, ZBW07] to identify malicious domain names. But to
the best of our knowledge we are the first to propose the use of Map-reduce like algorithms
for this goal in [ME12]. In addition, where related work [ADL+10, BKKB11, PCDL09] mainly
use supervised machine learning for this purpose, we proposed a system relying on clustering
techniques with the k-means algorithm that do not require previous knowledge about DNS data.
This system was fed with state of the art features and new features introduced in this chapter
that highlight IP scattering.

This technique while being efficient at first glance has some drawback. We have seen that
probes location is an important factor that impacts values of feature we extract from a DNS
replies. Information for the same domain name coming from different probes is different. Hence,
to get general features for a given domain name, passive DNS probes must be deployed all
around the world as does the ISC Secutity Exchange Information [isc] through their pDNS
project. Without this global deployment, results would be biased by users’ local interest in some
websites. Another requirement to render trustworthy decisions on the activity of a domain name
is the need to get several DNS replies for the same domain name in order to get accurate charac-
terising features. For instance IPCount, Sip1, Sip2 or T imeUp are features that are accurately
computed after a long observation period and several DNS replies. This introduces a delay in
the identification of malicious domain names. Finally, we have seen that the dataset to analyse
must be balanced. If the set of malicious domain names is too small, chances are high that these
will be put in an existing cluster rather than form their own new one as seen during experiments.

To cope with some of the passive DNS analysis limitations and provide a technique to label
unknown clusters, we propose to analyse the composition of domain names in order to identify
phishing ones.

66

Chapter 4

Phishing Domain Name Identification

Based on Word Relatedness

Contents

4.1 Phishing URL Obfuscation . 68

4.1.1 Obfuscation Techniques . 69

4.1.2 Obfuscation Words Semantic . 70

4.2 Semantic Analysis of Domain Names 71

4.2.1 Word Extraction . 72

4.2.2 Word Relatedness Computation . 73

4.2.3 Similarity Metrics . 74

4.3 Domain Sets Comparison . 76

4.3.1 Dataset . 76

4.3.2 Similarity Metrics Evaluation . 77

4.3.3 Domains Set Size and Composition 80

Introduction

The use of passive DNS probes to gather DNS related features is an efficient way to categorize
domain names activity. Using passive DNS data, we were able to group malicious domain names,
especially those performing phishing. This malicious activity has specific features that can be
revealed by analysing DNS packets fields. However, we have seen in the previous chapter that
the deployment of two DNS probes gives different data that may lead to biased results. Hence,
large scale deployment is required to obtain relevant features. Another drawback of this method
is the need for several DNS replies for the same domain names in order to compute some features
paramount to identify fluxing domains (e.g. IPCount, ServCount). Moreover phishing attacks
do not always rely on fluxing networks, the use of this technique is the sign of phishing campaigns
launched by criminal organization owning or renting botnets to support fluxing. Other phishing
campaigns having smaller scope do not rely on such malicious infrastructures. Finally, the
method proposed in Chapter 3 groups domain names having similar activities. Nevertheless, the
clusters formed are not labelled and a manual analysis is required to identify clusters’ activity,
e.g. malicious or legitimate.

67

Chapter 4. Phishing Domain Name Identification Based on Word Relatedness

Passive DNS analysis has also some assets that we previously presented and being interesting
for phishing detection. It is a passive detection method being undetectable. DNS requests
are made before any connection to the potential malicious domain name is established and all
requests of a given network goes through its delegated recursive DNS server. This asset is
interesting if we seek to protect a specific network as domain names actually requested can be
analysed. In addition, the amount of information captured through passive DNS analysis is quite
limited compared with the whole network traffic data, since DNS traffic is only a subset. Since
the passive capture does not store information about request originators, it is as well privacy
friendly. Privacy is an issue in security monitoring and network forensic [MMN08, AKM+11].

Hence, this chapter focuses on the analysis of passive DNS traffic. We propose a method to
automatically analyse passive DNS data for tracking phishing related domains. In complement
to the previous chapter, our analysis relies on the semantic of domain names. Phishing mainly
relies on social engineering lures as we described in Chapter 1. Domain names used to perform
phishing, and being embedded in spoofed email for instance, are obfuscated using specific words.
These words are carefully chosen by phishers to make Internet users feel safe, by using attractive
words, including and combining brand names or specific keywords such as secure or protection
[GPCR07].

We propose a technique to identify malicious group of domain names by quantifying semantic
relatedness between set of words extracted therefrom. Domain names are taken from passively
gathered DNS replies and grouped according to common features. Then meaningful words are
extracted from domain names and three metrics to compute semantic relatedness between set
of words are introduced. These are tested on ground truth data to identify sets of malicious
domains. This method only relying on lexical and semantic analysis cope with the need for
large scale deployment of DNS probes and long time observation period. It only uses domain
names and no additional DNS features are needed. In addition this provides a technique to
label unknown clusters of domain names. This complements the clustering method introduced
in Chapter 3 by identifying clusters formed as malicious or legitimate. The contributions of this
chapter were partly published in [MFSE12b].

This chapter is structured as follows: we start by presenting the URL obfuscation techniques
and words used in phishing URLs in Section 4.1. Then, Section 4.2 introduces the process of word
extraction from domain names and the three metrics to quantify semantic similarity between two
sets of words. Section 4.3 presents the evaluation of the metrics on a large test set of malicious
and legitimate domain names and applications to phishing domains detection are proposed.

4.1 Phishing URL Obfuscation

Phishers usually try to lure their victims into clicking on rogue URLs pointing to phishing sites
or drive-by downloads. From observations made on a substantial set of blacklisted URLs from
the community website PhishTank [phi], it was noticed that phishing URLs are often obfuscated
by embedding different terms making them very long and including several meaningful words.
This is performed to delude Internet users who are not aware of DNS hierarchy and seeing
keywords at any level of a URL make them trust the rogue link. We first present the different
URL obfuscation techniques before analysing the semantic fields of words embedded by phishers
in URLs.

68

4.1. Phishing URL Obfuscation

4.1.1 Obfuscation Techniques

Different URL obfuscation techniques are used with the aim of hiding the real host, more par-
ticularly the registered domain, the only part of the URL that cannot be freely defined. If one
wants to use a domain name mydomain.tld and derive several URLs from it: url1.mydomain.tld,
url2.mydomain.tld/file, he has first to register the domain name mydomain.tld at a domain regis-
trar, ensuring that it cannot be registered by anybody else. Once the domain name mydomain.tld
is registered at a domain registrar it is added to a central registry database and nobody can reg-
ister this domain name again. This guarantees that only the entity having registered a domain
name can use it. Assuming a phisher wants to trap PayPal users, he must use a domain.tld other
than paypal.com, since this domain name is already registered by PayPal Inc. The phisher must
register a domain name mydomain.tld and try to deceive people by blending labels such as pay-
pal into the rest of the URL: login.mydomain.tld/paypal. The goal is to hide the real registered
domain of the URL: mydomain.tld, which is not related to PayPal Inc.

A registered domain consists of two parts: a main level domain and a public suffix. A public
suffix is a domain name suffix under which an Internet user can register a name. It can be just
a Top Level Domain like .com, .lu or a combination of level domains like .co.uk or .blogspot.com.
The public suffix will be abbreviated ps. A main level domain is the level domain preceding
a public suffix and will be abbreviated mld for the remainder of this document. A registered
domain is then: mld.ps. For instance in www.paypal.com/login: com is the ps and paypal is the
mld.

The different obfuscation techniques consist in blending either the original domain name or
phishing keywords into the remaining part of the URL. These keywords are usually the targeted
brand, related services of the brand and other attractive words such as secure, login, protect, etc.

Obf. Type Example

Type I
http://school497.ru/222/www.paypal.com/29370274276105805/
http://paypal.com.eu.compte.client.update.condst.com.br/

Type II
http://www.quadrodeofertas.com.br/www1.paypal-com/encripted/ssl218
http://sezopoztos.com/paypalitlogin/us/webscr.html?cmd=_login-run

Type III
http://cgi-3.paypal-secure.de/info2/verikredit.html
http://paypal-shopping.co.il/

Type IV
http://69.72.130.98/janaseva/https.paypal.com/uk/onepagepaypal.htm
ftp://212.13.144.72/SERVICE/PayPal.com/security/alert/paypal.com

Type V
http://tiny.cc/clientID00858JD8
http://goo.gl/HQx5g

Table 4.1: Example of obfuscated URLs for the domain name paypal.com

Assume a URL formed of a hostname with different level domain (ld), a path (path) and
a query (key=value): http://5ld.4ld.3ld.mld.ps/path1/path2/path3?key1=value1&key2=value2.
The obfuscation consists in blending keywords into the path, the query and the lower level do-
main of the hostname (5ld.4ld.3ld). In the following we present the most used URL obfuscation
techniques [GPCR07], with examples given in Table 4.1 for the domain name paypal.com:

• Type I: URL obfuscation with other domain: In this case, the mld.ps is a real domain
name, usually registered by the phisher, while the original website being phished is part of
the path, the query or the upper level domain.

69

Chapter 4. Phishing Domain Name Identification Based on Word Relatedness

• Type II: URL obfuscation with keywords: Again the mld.ps is a real domain name,
and the brand being phished and related words are part of the path, the query or upper
level domain.

• Type III: Typosquating domains or long domains: the mld.ps of the URL is the
domain being phished but misspelled, with letters or words missing or added, or the domain
is pronounced the same way as the original but written differently. The targeted brand
can also be combined with other words to create an unregistered domain.

• Type IV: URL obfuscation with IP address: the URL’s hostname is replaced by an
IP address and the brand being phished is part of the path or the query.

• Type V: Obfuscation with URL shortener: A URL shortening service is used to hide
the name of the real host. Such URLs are not meaningful and are mainly used in phishing
attacks targeting services that use this kind of short URL, like Twitter.

This chapter focuses on the identification of the obfuscated URLs of type 1, 2 and 3. Since
the method we propose is based on data extracted from DNS packets passively captured, only
domain names are analysed. When requesting content from a URL on the Internet only the
domain name is the object of the DNS request. Thus, only obfuscations operating at the lower
domain levels of the domain names and typosquatting are considered.

4.1.2 Obfuscation Words Semantic

Domain names used for phishing have a global trend namely that these are composed of several
meaningful words. While looking at words embedded in several phishing domain names we can
observe that these tend to be the same or at least to be related. Some examples of phishing
domain names coming from PhishTank [phi] blacklist are:

• myapple-login.com.daflonpneus.com.br

• https-paypal-update-your-account-paypal-credit-card-payent.restaurantekosherclub.com

• update.information.verfiying.paypal.com.etiquetasonline.com.br

• paypal-iden-6e8rg5-easyway-config.ccmnow.com

• wellsfargo.online.com.nakshathira.com

• newzealand-onlinescuredadobe.aluminiosperuanos.com

Looking at these few examples, we see that these are based on mld.ps that have no relationship
with the targeted brand. However, the words blended in lower level of the domain names consist
in the targeted brand and other words that belong to limited semantic fields. The semantic fields
present can be classified as follows:

• account access: login, account and iden

• IT maintenance: update and config

• security: secure and verifying

• web services: paypal, apple, adobe, wellsfargo and online

70

4.2. Semantic Analysis of Domain Names

Figure 4.1: Malicious domain set identification: architecture overview

These four semantic fields identified from a little subset of phishing URLs are actually re-
current ones because they contain the words that Internet users expect to see while clicking on
a link. These fields are also directly related to the data and the information that phishers want
to steal: account credentials, credit card number, etc.

The last category (web services) contains famous brands of online services widely used on
the Internet (payment services, online banking, Apple). These targeted services often deal with
payment or finance and need login information to access personal account this is why some
words related to account access are contained in the first category (account access). The second
category (IT maintenance) contains words related to maintenance. This can be used either
to ask for credential or credit card information update and thus steal the current credentials
or to pretend an update of software version is needed and push users to download malware.
Inexperienced users mainly accept the updates without doubting the link is not trustworthy. As
a result, the words present in the third category (security) are used. Some keywords related to
security are used to emphasize the ’legitimacy’ of the URL. Even if few examples are listed, these
semantic fields are widely used and have been observed in hundreds of URLs during analysis.
Hence, we extract words from domain names in order to identify if these match the semantic
fields phishers tend to use as these are limited.

Domain names concerning this analysis are gathered the same way as in previous chapter
through a passive DNS sensor as depicted in Figure 4.1. This time, only one passive DNS probe
is deployed behind the recursive DNS server delegated to a selected network. Domain names are
extracted from DNS replies before being analysed by a module leveraging semantic metrics to
render decision on the maliciousness of a set of domains.

4.2 Semantic Analysis of Domain Names

Unlike standard texts, domain names are composed of few words and therefore deriving a global
semantic is hard. To make it easier, grouping multiple domain names to increase the count of
words before determining the overall semantic is possible. It is also compatible with phishing
because a given phishing campaign often uses several domain names and subdomains at the

71

Chapter 4. Phishing Domain Name Identification Based on Word Relatedness

Figure 4.2: Word extraction for securelogin34ebay.com.my-securephishing-domain.co.uk

same time [XYA+08]. Several phishing campaigns are launched from the same botnets or same
Autonmous System (AS) known to host malware [SKG12].

This domain grouping can be performed using the clustering technique presented in previous
chapter. This is possible since we showed that we were able to isolate phishing domains in a
single cluster. Other state of the art technique such as [PB08] can be used as an alternative.
The goal is to analyse if domain names from two different set types, legitimate and malicious,
are composed of words that share semantic similarities or disclose semantic differences. Thus,
there are several steps to perform this operation: (1) an extraction of the words that compose
a domain name, (2) find a metric characterizing semantic relatedness between two words and,
(3) introduce metrics to give a score of similarity between two sets composed of several domain
names.

4.2.1 Word Extraction

The first requirement is to split a domain name in order to extract all words that compose it.
This is highlighted in Figure 4.2 for the domain name securelogin34ebay.com.my-securephishing-
domain.co.uk. This is not a real domain name but it is proposed to depict the splitting process.

Domain names are first split by level domain according to the separating dots ‘.’, which are
basic separators between level domains in the DNS. The public suffix is excluded based on the list
from Public Suffix List [pub], as this is a part of the domain that is not defined by phishers but it
is constrained by the registrar where the domain is registered. Hence, this part does not include
any words that can bring semantic value to the analysis. Since hyphens ‘-’ are allowed in domain
names, a second split is done accordingly. Furthermore, digits are removed and considered also
as separating characters. This leads to have remaining parts composed of letters only ([a-z] as
the DNS is not case sensitive), which can still be composed of several words like securelogin or
securephishing in the example of Figure 4.2.

The segmentation of alphabetical parts leverages a technique from [SH09] that consists in
successively dividing a label in two parts. Every time, the likelihood of the split is computed

72

4.2. Semantic Analysis of Domain Names

until finding the combination that gives the maximum score. Hence, assuming a label l, for each
position i ∈ [1; len(l)], l is divided in two parts and the probability P (l, i) given in Equation
(4.1) is computed. In this equation pre(l, i) returns the substring of l composed of the first i
characters and post(l, i) is the remaining part. Pword(w) returns the probability of having the
word w, equivalent to its frequency in a database of text samples. This process is applied to all
newly split parts pre(l, i) and post(l, i) as long as ∃i ∈ [1; len(l) − 1] such as P (l, i) ≥ Pword(l).
At the end we get all the words composing a given label like secure and login for securelogin.

P (l, i) = Pword(pre(l, i)) × Pword(post(l, i)) (4.1)

Finally, the occurrences of each word are counted and stored in a set W by couples
(word, occurrence) as shown in Figure 4.2. The obtained set is:
W = {(secure, 2), (login, 1), (ebay, 1), (com, 1), (my, 1), (phishing, 1), (domain, 1)}.

The count of occurrences for each word is operated for further use in semantic metrics where
words appearing several times in domain names can be associated to a larger coefficient in
metrics computation in order to impact the results accordingly. The process of word extraction
is performed on every domain name of a set to analyse. The set W is updated for each processed
domain name.

4.2.2 Word Relatedness Computation

Computing a similarity score between two sets of words is not straightforward. First, defining
word relatedness is tricky as this can describe several relationships between words. The relation-
ship to identify is semantic relatedness or similarity i.e. words sharing the same semantic field as
for instance mars and venus, which are two planets. This kind of relationship is partially defined
by identifying hypernymy which links general synsets to specific ones like planet to earth. By
identifying all words having a common hypernym one can deduce a semantic field as for earth,
mars and venus are planets. Meronymy, which is a part-whole relation, synonymy or antonymy
are other relationships to deduce semantic fields. As claimed by Kilgarriff [Kil03], these usual
notions imply a manual analysis to establish relationships between words.

WordNet [Mil95] is an example of a lexical database containing a collection of English lan-
guage words that can provide related words to a given word. The relationships in WordNet are
defined manually and are limited to a subset of the English vocabulary. This limits its applica-
bility and its extension to further language or semantic fields. Hence, applications of WordNet
to words extracted from domain names are limited because Internet vocabulary includes several
languages and words that are not present in usual dictionaries.

This is why automatic method to approximate these notions have been developed [CH90,
LD97, CV07]. These usually define the distributional similarity and relatedness of words based
on occurrence and co-occurrence count in text sample. DISCO (extracting DIStributionally
related words using CO-occurrences) [Kol08, Kol09] is an example of computing automatically
relatedness score between two words. DISCO considers the distance between two words within
a window by defining ‖w, r,w′‖, the count of occurrence of the word w′, r words after the word
w, where r ∈ {−3; 3} \ {0}. Table 4.2 shows an example of the computation of ‖w, r,w′‖ for two
sample pieces of text centered on services. A sliding window of length four words is applied to
text samples in order to compute the mutual information of every word. The Mutual Information
between two words w and w′, I(w, r,w′), has been introduced by Hindle [Hin90] and is defined
in Equation (4.2).

73

Chapter 4. Phishing Domain Name Identification Based on Word Relatedness

I(w, r,w′) = log
(‖w, r,w′‖ − 0.95) × ‖∗, r, ∗‖

‖w, r, ∗‖ × ‖∗, r, w′‖ (4.2)

The word similarity metric considered, sim(w1, w2), is based on the Mutual Information
I(w, r,w′) and was defined by Lin [Lin98]. For two words w1 and w2 and considering T (w) as
all the pairs (r, w′) | I(w, r,w′) > 0, sim(w1, w2) is given in Equation (4.3). .

sim(w1, w2) =

∑

(r,w)∈T (w1)∩T (w2)
I(w1, r, w) + I(w2, r, w)

∑

(r,w)∈T (w1)
I(w1, r, w) +

∑

(r,w)∈T (w2)
I(w2, r, w)

(4.3)

The algorithm of DISCO is based on the similarity metric sim(w1, w2). DISCO can be fed
with any text sample and apply this metric to disclose word relatedness. DISCO was subjected
to four word corpora consisting in the full content of Wikipedia in English, Spanish, German
and French. Given a word w1, DISCO can either give a similarity score with another word w2 or
return Disco(w1, n), consisting in the n most related words to w1. These words wi are ordered by
their decreasing respective similarity score sim(w1, wi). Using DISCO on words extracted from
domain names we can compute the similarity pairwise between words or return the most related
words. However this does not provide a technique to compute semantic relatedness between two
set of words.

position −3 −2 −1 0 +1 +2 +3

sample1 a client uses services of the platform

sample2 the platform provides services to the client

||services,−2, platform||=1 ||services,−3, the||=1
||services,−2, client||=1 ||services,−3, a||=1
||services,−1, uses||=1 ||services, 1, of ||=1
||services,−1, provides||=1 ||services, 1, to||=1
||services, 3, platform||=1 ||services,2,the||=2
||services, 3, client||=1

Table 4.2: Example of co-occurrence count (2 windows centered on services)

4.2.3 Similarity Metrics

Given a set of p domain names D = {d1,, dp}, words are extracted from each domain name
following the technique given in Section 4.2.1. These form a set of n couples. Each couple is
composed of one word wi with its corresponding number of occurrences owi

in all the set of
domain names: WD = {(w1, ow1

),, (wn, own)}. distwordwi,WD
is defined in Equation (4.4) as

the frequency of a word wi in WD.

distwordwi,WD
=

owi
∑

j∈{1,n} owj

(4.4)

Following this formula, three metrics are introduced to quantify the semantic similarity be-
tween two sets of domain names, A and B. All these metrics are based on sim(w1, w2) given in
Equation (4.3). These present different computational complexities and different strengths that
will be assessed in next section.

The first metric, Sim1(A,B) defined in Equation (4.5), considers all the words wA ∈ WA and
wB ∈ WB and compares them pairwise using sim(w1, w2). The sum of pairwise score is done

74

4.2. Semantic Analysis of Domain Names

to provide a score of similarity between the two sets A and B. The higher the score, the more
similarity there is. Since this performs a pairwise comparison, the computation complexity of
this score is O(n2).

Sim1(A,B) =
∑

wA∈WA

∑

wB∈WB

sim(wA, wB) (4.5)

The second metric is similar to the first one except that it considers the number of occur-
rences of the words into each dataset A and B. Logically, this is done such that sim(w1, w2)
obtained from words appearing more frequently has a bigger impact on the final similarity score
than sim(w1, w2) computed from words that appear few times. Therefore, when computing
Sim2(A,B) in Equation (4.6) , sim(wA, wB) is multiplied by the frequency of wA and wB in
their respective dataset distwordwX ,WX

to weigh each similarity. Sim2(A,B) has as well a
complexity in O(n2).

Sim2(A,B) =
∑

wA∈WA

∑

wB∈WB

sim(wA, wB)× distwordwA,WA
× distwordwB,WB

(4.6)

Preliminary experiments showed that computing sim(wA, wB) is time consuming. Pairwise
comparisons in Equations (4.5) and (4.6) are not efficient due to their complexity in O(n2).
However, retrieving the top n most related words of w using Disco(w,n) requires approximatively
the same amount of time than computing sim(wA, wB). Thus, we consider that results of
sim(wA, wB) between words having few relatedness is negligible and we propose to include this
result only for the n most related words. Hence, we take the n most related words of each word
of the set WA before searching them into the set WB. Equation (4.7) describes this process.

Sim′
3(A,B) =

∑

w∈WA

∑

w′∈Disco(w,n)

sim(w,w′)× distwordw′,WB
(4.7)

As highlighted in Equation (4.7), the score is weighted by the frequency of word distwordw′,WB
.

Words w′ not present in WB have distwordwB,WB
= 0 and thus are not considered for computa-

tion. There is no pairwise comparison anymore and the complexity drops to O(n) as the length
of Disco(w,n) does not depend on the number of words in WA. However Sim′

3(A,B) is not
symmetric. Thus, we define the symmetric metric Sim3(A,B) in Equation (4.8) combining two
computations of Sim′

3(A,B) and Sim′
3(B,A), and having a complexity in O(n) as well. We ac-

knowledge that Sim3(A,B) is an approximation of Sim2(A,B) but it has a far lower complexity
and is more suited to comparison of big sets of domain names.

Sim3(A,B) = Sim′
3(A,B) + Sim′

3(B,A) (4.8)

Three metrics giving a score of semantic relatedness between two sets of domain names Sim1,
Sim2 and Sim3 are defined. The computation complexity of these metrics relies on the number
of words w that are extracted from a set D composed of n domains. A domain name can be
composed of several words, but considering that several words appear in different domain names
of the same set we can reasonably approximate n ≃ w. Hence, assuming that we compare two
domain sets of n elements each, the complexity of Sim1 and Sim2 is O(n2). Since Sim3 does
not make pairwise comparisons of all words, its complexity is O(n). Even though Sim3 has a
lower complexity, the next section assesses if it is able to have comparable accuracy to Sim1 and
Sim2.

75

Chapter 4. Phishing Domain Name Identification Based on Word Relatedness

Figure 4.3: Unlabelled domain set identification process

4.3 Domain Sets Comparison

To assess the relevance of the introduced metrics and show that semantic relatedness evaluation
leads to discriminate malicious from legitimate domain names, we consider two datasets of ma-
licious and legitimate domain names on which we compute the metrics. Then, we analyse the
results of these experiments and compare the metrics to prove the efficiency of this semantic ap-
proach to discriminating malicious domain names from legitimate domain names. The proposed
metrics can be used to label unlabelled sets of domain names as malicious or legitimate by com-
puting them with a reference malicious and respectively legitimate set as depicted in Figure 4.3.
The comparison of the obtained similarity score enable to render a decision on the maliciousness
of the unlabelled set.

4.3.1 Dataset

To test our method, two sets of domain names are formed: a legitimate set, containing non-
malicious domain names and a malicious set, containing domain names confirmed malicious.

Malicious Dataset

To create a large dataset including a variety of malicious domain names, three freely downloadable
blacklists are used. These have been selected because each of them proposes an historic of
blacklisted domain names related to several types of malicious activities. The details of these
three sources are as follows:

• PhishTank [phi]: PhishTank is a collaborative project to which people can submit phish-
ing emails and websites. Suspected phishing URLs are further checked by several people

76

4.3. Domain Sets Comparison

before being confirmed as malicious and added to a blacklist. 5,521 phishing URLs were
downloaded for our experiments.

• DNS-BH [mala]: DNS-Black-Hole maintains an up-to-date list of domain names known
to support malware and spyware diffusion. A list of 17,035 malicious domain names is
available.

• MDL [malb]: as PhishTank does, Malware Domain List is based on a community approach
and construct a blacklist from proposed inputs from contributors. This list contains 82,480
URL entries.

Following the extraction of the distinct domain names from the 105,036 URLs and the deletion
of duplicated entries, 66,633 distinct domain names remain to form the malicious dataset.

Legitimate Dataset

To balance, i.e. to have same count of malicious and legitimate instances, the malicious dataset
with legitimate domain names, two sources of non-malicious domain names are chosen. These
provide again variety and faithfully represent normal domain names in a realistic manner. These
sources are

• Alexa [ale]: Alexa is a company that collects browsing behaviour information in order
to report statistics about Web traffic and websites ranking. It provides a ranking for the
top 1,000,000 sites. 50,000 domain names out of the top 200,000 have been picked for our
experiments.

• Passive DNS from a Luxembourg Internet Service Provider: this dataset was obtained
using a passive DNS infrastructure as depicted in Figure 4.1 in collaboration with a Luxem-
bourgish ISP. It is composed of 16,633 DNS names after having deleted duplicate entries
from Alexa and known malicious domain names (checked with the previously described
blacklists).

Finally, 66,633 entries are contained in the legitimate dataset. Hence, the two datasets,
legitimate and malicious are of equal sizes. We agree that a 1/1 ratio between legitimate and
malicious domains does not faithfully reflect real world repartition. However, this repartition is
needed to confirm semantic differences between legitimate domain names and malicious domain
names.

4.3.2 Similarity Metrics Evaluation

To assess the relevance of the semantic approach in identifying set of malicious domain names,
we show that words composing malicious domain names belong to different semantic fields than
those composing legitimate domain names even if malicious domain names use patterns or brands
to mimic the composition of popular URLs.

To have an extensive evaluation, the initial malicious and legitimate datasets defined in
Section 4.3.1 are both split in five subsets of equal sizes (13,326 domain names). These ten
subsets called mal-i, i ∈ {1; 5} for malicious domain names, and leg-i, i ∈ {1; 5} for legitimate
domain names, are compared by computing similarity scores. The following comparisons are
done:

77

Chapter 4. Phishing Domain Name Identification Based on Word Relatedness

• Sets composed of malicious domain names vs. sets composed of malicious domain names
(mal/mal)

• Sets composed of malicious domain names vs. sets composed of legitimate domain names
(mal/leg)

• Sets composed of legitimate domain names vs. sets composed of legitimate domain names
(leg/leg)

In order to keep only meaningful relevant words for semantic relationship analysis, words
composed of at least four characters are considered during extraction, others are discarded. It
avoids considering generic words or articles such as the, of, www, etc. that would be present in
both sets and bias the comparison.

Table 4.3 shows the values of Sim1 computed pairwise between all the malicious and legiti-
mate subsets. The lowest Sim1 is, the less similarity there is between the two compared sets. A
gray shaded key is used for improving the readability and three main areas are easily separable:
mal/leg, leg/leg, mal/mal. Therefore, the first metric, Sim1 is helpful for distinguishing mali-
cious and legitimate domain names. The lowest similarity values are logically obtained when the
types of subsets are different (mal/leg). The similarity scores are globally below the value 20
for these sets, this can be seen by the darkest area in Table 4.3. Comparing two legitimate sets,
similarity values around 25 are reached (bottom left in Table 4.3) highlighting a 25% increase
in similarity between leg/leg compared to mal/leg sets. Malicious datasets exhibit even higher
semantic similarity with a maximum score of 31.

leg-5 leg-4 leg-3 leg-2 leg-1 mal-5 mal-4 mal-3 mal-2
mal-1 19.3 19.3 20.1 18.7 20.1 29.7 30.0 30.3 31.0
mal-2 19.4 19.3 20.2 18.8 20.2 29.4 29.6 30.0
mal-3 19.2 19.2 19.9 18.5 19.9 28.6 28.9
mal-4 18.5 18.4 19.2 17.9 19.1 28.4
mal-5 18.3 18.3 19.0 17.8 19.0
leg-1 25.7 25.6 26.1 25.1
leg-2 24.5 24.4 25.0
leg-3 25.5 25.5
leg-4 24.8

15 19 23 27 31 35

Table 4.3: Values of Sim1 computed between malicious and legitimate subsets

Analysing these results brought on Sim1 we can draw some conclusions. This gives a first
insight that malicious sets of domains can be discriminate from legitimate sets using semantic
analysis of words embedded in them. Comparing two sets of different types (mal/leg) presents
the lowest similarity. In addition the comparison of the different subsets provides almost the
same scores: Sim1(mal, leg) ≈ 20, Sim1(leg, leg) ≈ 25 and Sim1(mal,mal) ≈ 30 assessing
the stability of Sim1. We can deduce that the semantic fields of words used in malicious do-
main names have a smaller scope than legitimate ones because these tend to be more similar
(Sim1(mal,mal) ≈ 30). This confirms that attackers target specific services when luring users

78

4.3. Domain Sets Comparison

since they use a limited vocabulary. Finally Sim1 is well suited to identifying unknown sets of
domain names by comparing them to a reference set composed of malicious instances. The score
between malicious subsets (mal/mal) is 50% higher than the score obtained while comparing
malicious subsets to legitimate subsets (mal/leg). The first proposed metric, being quite basic,
gives good preliminary results in malicious domain names identification.

leg-5 leg-4 leg-3 leg-2 leg-1 mal-5 mal-4 mal-3 mal-2
mal-1 1.034 1.069 1.033 0.989 1.010 1.366 1.332 1.385 1.332
mal-2 1.033 1.053 1.035 0.994 1.013 1.369 1.298 1.365
mal-3 1.085 1.137 1.089 1.046 1.058 1.388 1.347
mal-4 1.013 1.041 1.002 0.964 0.964 1.370
mal-5 1.010 1.051 1.002 0.972 0.972
leg-1 1.475 1.481 1.489 1.455
leg-2 1.455 1.452 1.507
leg-3 1.508 1.525
leg-4 1.472

0.9 1.04 1.18 1.32 1.46 1.6

Table 4.4: Values of Sim2 × 103 computed between malicious and legitimate subsets

Table 4.4 shows the values for computing Sim2 with the same protocol as for Sim1. The
scores are multiplied by 1,000 for readability purposes. This metric has the same characteristic
as Sim1 while comparing malicious to legitimate subsets. This gives the lowest similarity score
(Sim2(mal, leg) × 103 ≈ 1). However, this metric tends to show that words embedded in legiti-
mate domains (Sim2(leg, leg)×103 ≈ 1.5) have higher semantic relationship than malicious ones
(Sim2(leg, leg) × 103 ≈ 1.3). The difference with Sim1 is that the count of word occurrences is
considered. Therefore, even though the semantic scope of words is larger for legitimate domain
names (lower Sim1), some of these are often used explaining a higher value for Sim2. Hence,
Sim2 is also a good alternative to distinguish malicious and legitimate domain names. However,
an unknown set of domains must rather be compared to a reference legitimate set since the score
between legitimate subsets (leg/leg) is 50% higher than the one obtained while comparing mali-
cious subsets to legitimate subsets (mal/leg). The largest difference must be chosen to provide
the best accuracy.

Finally, Table 4.5 contains the value of Sim3 computed between the subsets. After prelim-
inary tests, n was set to 100 in Equation (4.7) for Disco(w,n). This means that the 100 most
similar words to w are considered for computation. Sim3 shows similar scores for mal/mal
and leg/leg comparisons (Sim3 ≈ 0.95). These scores are approximatively 30% higher than
the scores obtained from malicious to legitimate sets comparison (Sim3(mal, leg) ≈ 0.75). This
metric, which is an approximation of Sim2 with lower computational complexity (O(n)) is able
to differentiate malicious domain names from legitimate ones. However, the speed gain is made
at the price of decreasing the gap of similarity values between legitimate and malicious sets,
dropping from 50% difference for Sim1 and Sim2 to 30% for Sim3. In addition, almost no
difference is noticed in the comparison of legitimate sets (leg/leg) and malicious sets (mal/mal)
since Sim3(mal,mal) ≈ Sim3(leg, leg). This sets a trade-off between speed and efficiency, Sim1

79

Chapter 4. Phishing Domain Name Identification Based on Word Relatedness

leg-5 leg-4 leg-3 leg-2 leg-1 mal-5 mal-4 mal-3 mal-2
mal-1 0.776 0.795 0.793 0.789 0.785 0.955 0.962 0.965 0.975
mal-2 0.782 0.800 0.798 0.797 0.797 0.965 0.968 0.973
mal-3 0.772 0.796 0.793 0.788 0.784 0.951 0.962
mal-4 0.783 0.804 0.804 0.800 0.796 0.953
mal-5 0.769 0.785 0.784 0.782 0.772
leg-1 0.946 0.948 0.952 0.938
leg-2 0.915 0.924 0.922
leg-3 0.936 0.934
leg-4 0.935

0.7 0.76 0.82 0.88 0.94 1.00

Table 4.5: Values of Sim3 computed between malicious and legitimate subsets

and Sim2 are slower but more accurate than Sim3.

4.3.3 Domains Set Size and Composition

These experiments show that the three metrics Sim1, Sim2 and Sim3 lead to efficiently dis-
criminate malicious from legitimate domain sets. An application of this result is to consider one
of these metric and, given a set of labelled malicious or legitimate domain names, identify if an
unknown set is either malicious or not by comparing both as depicted in Figure 4.3. Ideally,
the tested subset should contain a unique domain name, meaning that we are able to identify
the maliciousness of a single unknown domain name extracted from a DNS packet. However, as
explained in Section 4.2, a single domain name is composed of few words. It is hard to derive a
relevant semantic metric from one domain name and thus domain names must be grouped using
some state of the art techniques (IP subnet, autonomous systems, registration address, etc). The
clustering technique introduced in Chapter 3 is an alternative solution as well. The initialisation
to form clusters of domain names requires to wait for several DNS replies including new domain
names before having enough domain names in a group to label it as malicious or legitimate.
However, once several initials groups of domain names are formed, if a newly captured domain
can fit in an existing group, its identification is fast as it takes the label of the group it fits in. The
initialisation process induces a delay in the identification of the first captured phishing domain
names. Determining the minimum size of the test domain set is thus paramount to provide the
fastest decision and minimize this delay.

Even if the differences in values are proportionally lower for Sim1 and Sim2, Sim3 is more
computationally efficient (O(n)) as mentioned in Section 4.2.3. Sim3 gives approximatively
the same result taking a malicious set or a legitimate set as reference model. Hence, Sim3 is
computed between the subset mal-1, being the model, and two other subsets, from mal-2 (mal)
and leg-5 (leg). We increase the count of domain names in each subset and compute Sim3 to
determine what is the minimum set size. Figure 4.4 depicts the evolution of the value of Sim3

according to the count of domain names in each subset (mal and leg) compared to mal-1.

We can see that for small size of subsets, from one to five domain names, the curves repre-
senting the legitimate and the malicious subset are mingled. From 10 to 60, these are still very

80

4.3. Domain Sets Comparison

Figure 4.4: Similarity score Sim3 depending on
the count of domain names in the set

Figure 4.5: Similarity score Sim3 depending on
the proportion of malicious domain names in
the set

close but a clear difference is observed and the difference between scores is two fold (Sim3(mal-
1,mal) ≈ 2 × Sim3(mal-1, leg)). Then for more than 60 domain names, a real gap is observed
and the difference between the malicious and the legitimate set can be identified with high con-
fidence. Hence, malicious domain names can be identified using a simple threshold value for set
composed of more than 10 domain names. However, the larger the unknown set is the more
information it contains and the easier is the identification as depicted in Figure 4.4 for sets of
more than 60 domain names.

The experiments carried out considered the best case scenario where we are able to form sets of
domain names composed only of one kind of domain names, i.e. malicious or legitimate. However,
forming sets composed only of one kind of domain names is not straightforward. Moreover, sets
composition cannot be known in advance since the technique we introduce is applied to unknown
set of domains. Hence, we analyse the similarity metric score obtained by comparing a mixed
set of domain names to a legitimate and respectively a malicious set of domain names. We took
two sets as base models: mal-1 and leg-1. Then, we took the two subsets used in previous
experiments mal-2 and leg-5 to form a new set of mixed malicious and legitimate domain names.
We varied the ratio of malicious domain names in this set from 0% to 100% and computed Sim3

between this set and mal-1, respectively leg-1. Figure 4.5 depicts this experiments by showing
the similarity score Sim3 of the mixed domains set when compared to a malicious (mal) and
a legitimate (leg) set. The ratio of malicious domain names in the set (coming from mal-2) is
depicted on the x-axis and increase by 5% from 0% to 100%. 0% corresponds to leg-5 being
compared to mal-1 and leg-1 and 100% to mal-2 respectively.

When compared to the malicious set, the mixed subset gets its Sim3 score increasing fast as
the ratio of malicious domain names increases. With 0% malicious domain names Sim3 = 0.776
but with 5% malicious domain names Sim3 jumps to 0.842 and with more than 30% malicious
domain names in the set, Sim3 goes over 0.9. This shows that adding few malicious domain names
to a set of legitimate domain names impacts heavily the results of semantic similarity comparison.
Referring to Table 4.5, we can see that Sim3 scores between legitimate and malicious subsets
are almost always below 0.8 but comparing a malicious set to a set containing 5% of malicious
domain names we got Sim3 = 0.842. This similarity score is neither high enough to conclude

81

Chapter 4. Phishing Domain Name Identification Based on Word Relatedness

that the set is malicious nor it is low enough to conclude that it is legitimate. The conclusion we
can draw out of this score is that we got a set of mixed malicious and legitimate domain names.

This property is interesting since it shows that mixed set of domain names can be easily
identified as their similarity scores with a labelled legitimate set and a malicious set are not
significant enough to mislabel these. This complements domain names clustering of Chapter 3.
We saw that malicious domain names can be mixed with legitimate domain names in one cluster
when assessing the clustering technique. This happens when few malicious domain names are
present in a dataset and therefore cannot form a single cluster. As a result, we had several
clusters of legitimate domain names and one containing few malicious domain names along with
several legitimate domain names. Using Sim3 to label the unknown sets of domain names, we can
identify set composed only of legitimate domain names and also set composed of mixed malicious
and legitimate domain names since high variations in similarity score is observed. Having Sim3

scores that do not show enough similarity or dissimilarity, reveals mixed set of domain names
requiring further analysis to separate legitimate domain names from malicious domain names.

Hence, we showed that we are able to identify both sets composed of malicious domain names
and sets composed of legitimate domain names. These sets must be composed of more than 10
domain names to be classified. Finally, sets composed of mixed malicious and legitimate domain
names can be discovered since these exhibit similarity scores that does not enable to be classified
in either category. In addition, the similarity metrics complement the DNS based clustering
technique introduced in Chapter 3 by providing a method to label unknown clusters of domain
names.

Conclusion

To complement and deal with some shortcomings of the passive DNS analysis method presented
in Chapter 3, we introduced a new technique that can be used to identify clusters of phishing
domain names. While the first scheme proposed analysis of DNS packets features, the new one
relies on the semantic analysis of domain names gathered using passive DNS monitoring.

We showed that phishing URLs leverage several obfuscation techniques and a global trend
is to include in phishing domain names words belonging to limited semantic fields. Hence, we
propose to identify these fields and prove that these are different than the ones used in legitimate
domain names. Words embedded in domain names are extracted and approaches combining
state of the art semantic and natural language processing paradigms are introduced to quantify
semantic similarity between set of words and by transition set of domain names. We showed
through experiments on ground truth data that the three metrics identify semantic differences
between legitimate and malicious domain names. A malicious domain name detection technique
based on semantic comparison of unlabelled domain names to a reference set of domain names
is proposed and proved efficient.

By design this method copes with the need of large scale passive DNS probes deployment of
the method presented in Chapter 3. This method needs only one DNS probe and is suited to
local network targeted protection. This also reduces the delay in malicious domain names iden-
tification as it does not require several DNS replies for the same domain name to get relevant
features. However, differently from the previous technique this one needs a learning stage on
ground truth data. This is a drawback because phishing techniques evolve and semantic mod-
els of malicious domain names may evolve as well. In addition, the semantic approach cannot
identify the maliciousness of single domain names since one domain name does not carry enough
information to extract a semantic model. Hence, a prior clustering of domain names must be

82

4.3. Domain Sets Comparison

performed according to state of the art techniques or through the clustering technique proposed
in Section 3 making both methods complementary. We demonstrated that the minimum size of
a domain set to analyse is 10 and high confidence is obtained with set composed of more than
60 members. The shortcoming of the semantic approach is that a delay is introduced, due to the
prior clustering. This delay only affects though the initialisation process, when the first domain
clusters are formed. Afterwards, if captured domain names fit in existing labelled clusters, their
identification is straightforward, enabling real-time malicious domains identification. To reduce
this delay, the cluster initialisation process using DNS data gathered from several probes can
be a solution. However, we have seen in Chapter 3 that geographical dispersion of DNS probes
can bias the clustering results. An alternative solution would be to find a way to perfrom the
semantic analysis on single domain names.

A technique to identify single phishing domain names or URL without learning stage would
have the benefits of both methods without their weaknesses. This could identify in real time
phishing domain names as these are requested by Internet users and protect them from phishing
threats. Such an approach is proposed in the next chapter.

83

Chapter 4. Phishing Domain Name Identification Based on Word Relatedness

84

Chapter 5

Semantic Based Phishing URLs Rating

Contents

5.1 Intra-URL Relatedness Analysis 86

5.1.1 URL Word Extraction . 87

5.1.2 Shortcomings of Word Relatedness Evaluation Tools 87

5.1.3 Search Engine Query Data . 89

5.1.4 Feature Computation . 90

5.2 Implementation . 92

5.2.1 Distributed Word Relatedness Inference 92

5.2.2 Bloom Filter for Features Computation 93

5.3 Phishing URL Detection . 95

5.3.1 Dataset . 95

5.3.2 Features Analysis . 96

5.3.3 URL Classification . 98

5.3.4 URL Rating . 101

Introduction

Detection methods presented in Chapter 3 and 4 targeted specifically malicious and phishing
domain names. Both were proved efficient in identification of phishing domain names and these
are complementary as Chapter 3 presents a domain names clustering technique that is used
in Chapter 4 as previous processing to quantify the semantic relatedness of unknwown sets of
domain names with malicious/legitimate sets of domain names. The weakness of the former
is the delay of the identification process because clustering based on DNS features requires a
lot of DNS data. The semantic analysis needs prior domain names grouping inducing a delay
to initialize the method, which is then able to work in real-time. While reducing the amount
of information needed with the semantic analysis, as this relies on lexical analysis of domain
names and no additional DNS features are required, this method needs sets of known malicious
or legitimate domain names as ground truth to operate. Nevertheless, the idea to rely only on
domain names to identify phishing is interesting. Passive DNS analysis was used in Chapter 4
for clustering of domain names based on DNS features. However, if a method able to identify
single phishing domain names is developed, this can be applied in filtering of phishing emails

85

Chapter 5. Semantic Based Phishing URLs Rating

as part of a spam detection process at a mail server or in detection of phishing URLs at Web
proxies. Besides, browser add-ons can leverage it to identify phishing domain names. An issue to
perform such single domain names identification is that some domain names are very short and
few meaning can be extracted from them as discussed in Chapter 4. Moreover, existing manual
or automated techniques for computing word relatedness are limited to the vocabulary contained
in the text samples these are fed with.

To cope with these two issues and perform identification of a single phishing entity, we
introduce in this chapter a method for identifying phishing URLs. To extend the analysis and to
have more meaningful words to analyse with semantic techniques we propose to use full URLs
and not only domain names. We showed in Section 4.1.1 that several obfuscation techniques
are applied to the full URL and not only to the domain name, analysing URLs enlarges the
detection scope. To analyse the extracted words we use search engine query data rather than
existing methods of word relatedness computation to infer semantic similarity between words.
We demonstrate that search engine query data is more suited to analyse URL vocabulary than
state of the art techniques. The underlying method targets identification of phishing URLs that
are based on registered domains (malicious or not) that are not related to their targeted brand.
From observations of phishing URLs, we claim that there are few relationships between the
registered domain and the rest of the URL because the mld.ps, i.e. the registered domain, can
not be freely defined as presented in Section 4.1.1. However, the words that compose the rest of
the URL (lower level domain, path, query) often have many interrelationships and are related
to few semantic fields identified in Section 4.1.2. Based on this, we define the concept of intra-
URL relatedness, which quantifies the semantic similarity between the mld.ps and the words
composing the rest of the URL. We extract 12 features related to intra-URL relatedness from a
single URL which are input to machine learning algorithms to identify phishing URLs. Finally, a
phishingness score is computed for every single URL, rating the level of maliciousness/legitimacy
of the URL. The contributions of this chapter were published in [MFSE14a, MFSE14b].

The rest of this chapter is structured as follows: we start in Section 5.1 by introducing the
concept of intra-URL relatedness and describe the method to infer it using search engine query
data by computing several features from a URL. Section 5.2 presents the implementation of the
feature computation process using streaming analytics tools and Bloom filters for performance.
Section 5.3 presents a detailed evaluation of the feature set and its ability to detect phishing
URLs on a ground truth dataset of 96,018 URLs.

5.1 Intra-URL Relatedness Analysis

In this section we introduce the core concept of intra-URL relatedness, which is the quantification
of the relatedness among the words composing the different parts of a URL and more precisely
between the registered domain (mld.ps) and the rest of the URL. Reminding the five URL
obfuscation techniques used in phishing and presented in Section 4.1.1, this method leads to
identify Types I, II, III and IV. The common feature of these obfuscated URLs is that the brand
and some related terms are included in the path, the query and low level domains. These terms
are related as these have relationships with the targeted brand and have no obvious relation
with the mld.ps used for phishing. This is the opposite of what happens for a legitimate URL,
where all the parts of the URL are related. We first present the word extraction process applied
to URLs and then identify the limitations of existing methods for computing word relatedness.
We come with a new technique that relies on search engine query data for computing intra-URL
relatedness. Finally we introduce a set of 12 features relevant for phishing URLs identification.

86

5.1. Intra-URL Relatedness Analysis

5.1.1 URL Word Extraction

The examples of obfuscated phishing URLs from Type I to IV highlight a global characteristic in
URL obfuscation, namely that there is no relation between the mld.ps and the rest of the URL. To
reveal this, we split the URL in the two parts that are presumed to have no relationship: extract
the mld.ps and separate it from the rest. As the ps may be composed of multiple level domains,
we use Public Suffix List [pub] to identify it and then retrieve the immediately preceding level
domain as the mld. For the rest of the URL, a split according to non-alpha-numeric characters
is first performed. From extracted parts composed of several words, a dictionary-based word
splitter [SH09] is used as previously presented in Section 4.2.1 and Figure 4.2.

Based on this splitting two sets are composed: one, called RDurl (for Registered Domain),
consists of just two elements: RDurl = {mld,mld.ps}. The other, REMurl (for REMaining part),
is composed of all extracted words from the URL except mld.ps.
As an example, given http://sezopoztos.com/paypalitlogin/us/webscr.html?cmd=_login-run, the
following sets are extracted:

• RDurl = {sezopoztos, sezopoztos.com}

• REMurl = {paypal, it, login, us,web, src, html, cmd, login, run}

The mld.ps is not split like the other part to keep the mld unmodified, which can be
composed of several words. Assume a Type III obfuscated URL such as http://cgi-3.paypal-
secure.de/info2/verikredit.html. With a basic split the word paypal would be an element of
RDphish = {paypal, secure, de}.
If http://cgi-3.paypal.de/info2/verikredit.html is a real PayPal URL, we have RDlegit = {paypal, de}
and RDlegit∩RDphish = {paypal, de}. It does not point out the difference between the two URLs
(legitimate and phishing). However with the proposed decomposition of mld.ps we have the
two lists RDphish = {paypal-secure,paypal-secure.de} and RDlegit = {paypal, paypal.de} giving
RDlegit∩RDphish = ∅. Hence our proposed decomposition emphasizes the difference between the
two domain names.

Once the two sets are built, the next step is to evaluate the relatedness of their components.
It is tempting to compute word similarity or word relatedness with existing tools such as Disco
[Kol08, Kol09]. However this tool, even if efficient in most cases and especially in Chapter 4, it
is not necessarily suited to intra-URL relatedness computation.

5.1.2 Shortcomings of Word Relatedness Evaluation Tools

WordNet [Mil95] has already been presented as a lexical database containing a collection of
English language words. These words are manually linked according to semantic or lexical
relations including synonymy, antonymy, entailment, etc. The limitation of this tool is that it
is only based on English vocabulary that is likely to appear in an English dictionary, whereas
Internet vocabulary includes several different languages and many words that are not contained
in dictionaries.

Automated techniques and measures have also been developed to evaluate word relatedness.
Latent Semantic Analysis (LSA) proposed by Landauer and Dumais [LD97] or Pointwise Mutual
Information (PMI), introduced by Church and Hanks [CH90], then used by Turney [Tur01]
based on statistical data from search engine results for the queried words, are examples of these
techniques. The Normalized Google Distance (NGD [CV07]) computes the semantic similarity
between two words by querying the Google search engine for these words and counts the Web
pages where these appear together and individually. Disco [Kol08, Kol09] relies on mutual

87

Chapter 5. Semantic Based Phishing URLs Rating

Brand mld mld.ps

JPMorgan Chase jpmorganchase jpmorganchase.com

TAM Airline tam tam.com.br

Visa visa visa.com

Windows Live live live.com

Poste Italiane poste poste.it

Co-operative Bank co-operativebank co-operativebank.co.uk

Wells Fargo wellsfargo wellsfargo.com

Blizzard blizzard blizzard.com

Table 5.1: Subset of most phishing targeted brands with mld & mld.ps

Tool #mld %mld #mld.ps %mld.ps

WordNet 20 21.3% 0 0%

Disco 23 24.5% 0 0%

Yahoo Clues 87 92.6% 68 72.3%

Google Trends 92 97.9% 76 80.9%

Total 94 - 94 -

Table 5.2: Count of labels matching at least one related word for 4 tools

information evaluation between two words based on corpora as presented in Section 4.2.2. These
tools are not suited to evaluate word similarity for URL vocabulary as the corpus of words their
relatedness scoring relies on does not contain domain names and most part of abbreviated words
found in URLs.

To prove the limitations of these existing tools, we tested whether two of them are able to find
related words for a set of labels. WordNet and Disco are chosen since these are the only usable
through an API. The testing set consisted of the RDurl extracted from a set of 94 URLs from the
most often targeted brands. The dataset is built up with data from PhishTank [phi]. Phishing
URLs present in PhishTank blacklist are categorised according to the brand these target. 94
brands and associated URLs are present in this list. A subset of this test set is given in Table 5.1
and the result of the test for each tool is given in the two first rows of Table 5.2. The counts of
mld and mld.ps for which the tested tools can give at least one related word are given in absolute
value and percentage terms.

Neither WordNet nor Disco performs well on this test set. These only provide related words
for less than 25% of mld and never match any mld.ps, although the brands and tested domain
names are well known. In addition for the mlds that match a result, it is usually for a brand that
is also a meaningful word such as live or visa. The results of some matching requests are words
related to the verb live, and not to the online service from Microsoft. The same happens for visa,
which, in dictionaries and corpora, does not refer to the credit card company. The test proves
that current word relatedness tools are not suited to the measure of intra-URL relatedness.

While creating a dedicated corpus to be used with existing methods would be helpful but
challenging, word relatedness can be dynamically inferred from search engine query data.

88

5.1. Intra-URL Relatedness Analysis

5.1.3 Search Engine Query Data

To perform the evaluation of intra-URL relatedness, we use search engine query data. The reason
is that URL obfuscation is a social engineering lure. Phishing URLs target a brand, so clever
phishers blend within them the brand and words that Internet users associate with the brand,
such as a provided service: payment for PayPal. All brands targeted by phishing are popular
and provide services on the Internet. People generally use search engines to access these services.
When one makes a search, he types some keywords that are typically the brand or the domain
name and the service needed like paypal payment or hsbc.com on-line banking. These words
associations reflect the cognitive process of users searching for PayPal or HSBC. Consequently,
such words are the ones phishers tend to blend into URLs to trap PayPal and HSBC customers
[AR14].

Hence, mining search engine query data for measuring word relatedness is relevant in a
phishing context. To achieve this goal, we use search engine query data from two top-ranked
search engines: Google and Yahoo. Both offer services, that, given a term, provide some insights
on requesting trends concerning it. These services are respectively Google Trends [gooc] and
Yahoo Clues [yah].

Google Trends is a public facility of Google that shows the relative interest of Google
users over time in a term. A term t is defined by Google as a set of words w. {paypal} and
{paypal, login, secure} are two examples of terms. We will use the same definition in the context
of this dissertation. Google Trends depicts the geographic interest for this term and provides
related terms according to users’ related searches. These related terms were requested by users
after they first searched for the given term and matched a restriction. A restriction is the fact
that a user does not find the website she is looking for during his first search. Hence, he performs
a second search. Google Trends provides the top ten related searches over time as well as the
ten rising related searches namely those on which interest has increased recently. One gathers
up to twenty related terms for one given term using Google Trends.

Yahoo Clues provides the same kind of services as Google Trends except that it is based on
Yahoo search query data. In addition it offers an analysis of characteristics of people searching
for the term (gender, age) and it offers an insight into the search flows, the terms requested just
before (5 terms) and after (5 terms) a term. Like Google Trends it also provides a set of related
searches.

The results of these tools rely on the popularity of requested terms. Both tools provide search
insights only if the volume of recorded data is significant enough. Hence, the more popular a
term is, the more related terms we can obtain. Combining both sources can provide up to forty
related terms to one given term. A result for the queried term {paypal} for both tools Google
Trends and Yahoo Clues is given in Table 5.3. The ability of these tools to find related words
for targeted mld and mld.ps is highlighted in Table 5.2. Both tools were tested on the same set
of terms used for WordNet and Disco and the results are shown in rows 3 and 4. These perform
better, with Google Trends being the best at finding related words. However both provide match
results for more than 90% mld and 70% mld.ps, much more than usual similarity evaluation tools
tested earlier.

Having a URL url and the extracted sets RDurl and REMurl, Google Trends and Yahoo Clues
are automatically requested for each element of the two sets. We define Termw, as the set of
terms resulting from the requests of the word w in both Google Trends (related & rising) and
Yahoo Clues (related & requests). A subset of Termpaypal is given in Table 5.3 with Termpaypal =
{{paypal, account}, {paypal, login}, {paypal, credit, card}, ...}. We define four sets of words built
from a URL url : RELrd(url), RELrem(url), ASrd(url) and ASrem(url).

89

Chapter 5. Semantic Based Phishing URLs Rating

Google related Google rising Yahoo related Yahoo requests

{paypal, account} {amazon, paypal} {bill,me, later} {paypal, login}
{paypal, login} {paypal, fees} {netspend} {paypal.com}

{paypal, credit, card} {ebay, uk} {suntrust} {paypal, buyer, credit}
{paypal, email} {paypal, login} {regions} {paypal, customer, service}

Table 5.3: Example of term results from Google Trends and Yahoo Clues for {paypal}

RELset(url) consists of all the words related to the words of set i.e., words included in terms
that are results of requests for elements of set. Here set is either RDurl or REMurl. The formulas
for these sets are given in Equations (5.1) and (5.2).

RELrd(url) =
{

w ∈ t | t ∈ Termw′ , w′ ∈ RDurl

}

(5.1)

RELrem(url) =
{

w ∈ t | t ∈ Termw′, w′ ∈ REMurl

}

(5.2)

ASset(url) is the set of words that are associated with the words of set, i.e. the words that
appear in a common single term. Assuming a term t composed of three words {w1, w2, w3},
there is a symmetric association relationship between w1 and w2, w1 and w3, w2 and w3. The
two sets ASrd(url) for RDurl and ASrem(url) for REMurl are defined in Equations (5.3) and (5.4)
respectively.

ASrd(url) =
{

w ∈ t | ∃w′ ∈ RDurl, w
′ ∈ t, w′ 6= w

}

(5.3)

ASrem(url) =
{

w ∈ t | ∃w′ ∈ REMurl, w
′ ∈ t, w′ 6= w

}

(5.4)

These four sets are extracted to quantify the relationship between and inside each set RDurl

and REMurl. Associated and related terms highlight different level of semantic relatedness. One
set consists in words directly used with the requested term (associated) which is a stronger
relationship than words appearing in related searches (related).
Assume the URL http://sezopoztos.com/paypalitlogin/us/webscr.html?cmd=_login-run, Figure
5.1 presents the full process from word extraction to ASrem(url) and RELrem(url) composition
based on a subset of Termpaypal. We obtain:
ASrem(url) = {amazon, fees, login}
RELrem(url) = {amazon, paypal, fees, ebay, uk, login}

5.1.4 Feature Computation

Based on the sets defined in Section 5.1.3, we introduce 12 features characterising intra-URL
relatedness and URL popularity. The popularity criteria is based on the search count for com-
ponents of a URL: registered domain, mld, etc. These features are described in Table 5.4.

The features 1-6 define intra-URL relatedness by computing the Jaccard index. This is done
pairwise between the four sets defined in Section 5.1.3: RELrd(url), RELrem(url), ASrd(url)
and ASrem(url). The Jaccard index is a long-established metric used to calculate similarity and
diversity between two sets A and B. The closer J(A,B) is to 1 the more similar are A and B.
It is defined in Equation (5.5).

J(A,B) =
|A ∩B|
|A ∪B| ∈ [0; 1] (5.5)

90

5.1. Intra-URL Relatedness Analysis

Figure 5.1: Word extraction for securelogin34ebay.com.my-securephishing-domain.co.uk

Features Description

1 JRR = |RELrd(url)∩RELrem(url)|
|RELrd(url)∪RELrem(url)| Jaccard index b/w RELrd(url) and RELrem(url)

2 JRA = |RELrd(url)∩ASrem(url)|
|RELrd(url)∪ASrem(url)| Jaccard index b/w RELrd(url) and ASrem(url)

3 JAA = |ASrd(url)∩ASrem(url)|
|ASrd(url)∪ASrem(url)| Jaccard index b/w ASrd(url) and ASrem(url)

4 JAR = |ASrd(url)∩RELrem(url)|
|ASrd(url)∪RELrem(url)| Jaccard index b/w ASrd(url) and RELrem(url)

5 JARrd = |ASrd(url)∩RELrd(url)|
|ASrd(url)∪RELrd(url)|

Jaccard index b/w ASrd(url) and RELrd(url)

6 JARrem = |ASrem(url)∩RELrem(url)|
|ASrem(url)∪RELrem(url)| Jaccard index b/w ASrem(url) and RELrem(url)

7 cardrem = |REMurl| count of words in REMurl

8 ratioArem = |ASrem(url)|
|REMurl|

ratio of associated words for words in REMurl

9 ratioRrem = |RELrem(url)|
|REMurl|

ratio of related words for words in REMurl

10 mldres =

{

0 if |Termmld| = 0
1 else

whether there is search engine results
or not for the mld of the URL

11 mld.psres

{

0 if |Termmld.ps| = 0
1 else

whether there is search engine results
or not for the mld.ps of the URL

12 ranking Alexa ranking for mld.ps

Table 5.4: Intra-URL relatedness features description

These six features quantify the relatedness between the two parts of the URL (mld.ps and the
rest) through JRR, JRA, JAA and JAR, as these compute Jaccard indexes between sets extracted
from different parts (RDurl and REMurl). These also measure the relatedness between the words
contained in each part (registered domain / remaining part of the URL) with JARrd and JARrem,
since these features are computed from sets extracted within the same part of a URL. Words
embedded in the remaining part of phishing URLs tends to have lots of inter-relationships.

Features 7-12 reflect the popularity of a URL and its components with the count of words
that compose it (cardrem) and the count of related and associated words found in search engine
query data based on these words with ratioArem and ratioRrem. These two features are weighted

91

Chapter 5. Semantic Based Phishing URLs Rating

by cardrem. Features mld.psres and mldres represent the popularity of the registered domain
by giving boolean values describing whether the mld.ps and mld match results while queried
in Google Trends and Yahoo Clues. The final feature (ranking) is the ranking of the mld.ps
according to the Alexa [ale] website ranking list. If a particular mld.ps is not in the list, the
value 10,000,000 is considered.

Features 10, 11 and 12 can be considered as relying on the reputation of a domain name and
not on the intra-URL relatedness. Even if features 10 and 11 are new — ranking has been used
already in state of the art work — we compare in Section 5.3.3 classification results with and
without these three features to assess the relevancy of intra-URL relatedness features.

5.2 Implementation

The computation of intra-URL relatedness features requires access to search engine query data.
In its current implementation, access to search engine query data is provided through sequential
HTTP requests to Google Trends and Yahoo Clues. Four requests are needed for every word we
extract from URLs. Set operations are performed on results from these requests to compute the
12 features. Sequential HTTP requests and operations on large sets of words induce a delay in
feature computation and for this reason we use distributed streaming analytics tools along with
space-efficient data structures to reduce it.

We present in this section the detailed description of the implementation of the features
computation process described in Section 5.1.

5.2.1 Distributed Word Relatedness Inference

The bottleneck for features computation is the sequential network communication overhead with
the Google and Yahoo servers. However, this bottleneck can be easily removed by leveraging ex-
isting Big Data architectures for streaming analytics. For our case, the most relevant architecture
is the Storm project [sto], which inherently allows to distribute parallel computations over Storm
topologies. Because of the transactional support, we have chosen to use the Trident topologies.
Within such a topology, nodes perform a processing logic. Nodes are connected with links that
indicate how the data is processed. Data is sent within a stream and Storm can distribute the
computation along a sequence of nodes. There are two types of nodes: spouts and bolts. Spouts
represent the source of data. For our architecture, the spout (URL-Spout), depicted in Figure
5.2, is a URL extraction component that extracts URLs.

Each individual URL is tokenized into different words that is sent to several bolts (URL-Bolt).
This is done using one of the stream grouping method. Several such methods exist and their
working depend on how a spout decides to split the output to the connected bolts. The Field-
grouping method is used in a first step. This method sends the several words extracted from
URLs to different bolts. This ensures that a word occurring in several URLs will be always sent to
the same URL-Bolt and therefore a caching strategy can avoid repeating the same requests. Each
URL-Bolt will furthermore replicate the input to four Sem-Bolts using the All-grouping method.
The All-grouping method is the replication to all attached bolts. Each Sem-Bolt connects to
the Google and Yahoo servers and retrieve the list of semantically equivalent words as depicted
in Figure 5.2 through the Storm implementation. Finally, the intersection among these needs
to be performed. This is done by the Intersection-Bolt using the method further described in
Section 5.2.2. Using such an implementation leads to reduce the communication overhead to the
single round trip time between our platform and the Google/Yahoo servers instead of sequentially
making the needed HTTP requests.

92

5.2. Implementation

Figure 5.2: Distributed URL processing with Storm topology

Since the Storm topology is defined at compile time, good estimates for the count of URL-
Bolts are needed. For this purpose, the histogram depicted in Figure 5.3, showing the distribution
of individual words per URL, is used. This histogram depicts the proportion of URLs being com-
posed of n words. This statistic is obtained by applying the word extraction process introduced
in Section 5.1.1 on the URL dataset presented later in Section 5.3.1. We can see that most URLs
are composed of two to five words. This means that on average the system needs to request the
search engine query data for two to five words plus the mld and mld.ps. Hence to optimize our
architecture we set the number of URL-Bolts to seven (5+2), in order that an ‘average’ URL
can be processed in one round.

This method to gather search engine query data leverages a feature computation technique
based on set operations that are space-efficient and computationally-efficient.

5.2.2 Bloom Filter for Features Computation

Features presented in Section 5.1.4 rely mostly on set operations, as for Jaccard Index computa-
tion, which requires union, intersection and counting elements operations. Moreover, RELrd(url),
RELrem(url), ASrd(url) and ASrem(url), which are the based sets for the features computation,
require intersection operation between the several Termw sets result from querying Google and
Yahoo. As a result we implement all the word sets previously defined with an efficient data
structure: the Bloom filter [Blo70].

Bloom filters are statistical data structures relying on several hash functions to represent sets
of elements. This data structure is represented as a bit array and is subjected to false positives
for element lookup, i.e. an element identified as being in the set is not necessarily in the set, but
an element identified as not being in the set is surely not in the set. Nevertheless, Bloom filters

93

Chapter 5. Semantic Based Phishing URLs Rating

Figure 5.3: Repartition of the count of embedded words per URL

have the strength to be space-efficient and to have constant complexity for lookup and adding
elements. This complexity does not depend on the number of elements the Bloom filter contains
and is O(k) with k being the number of hash functions. A Bloom filter can be described with
two parameters being its size m in bits, which shall be set in advance, and its number of different
hash functions k. Assume a Bloom filter containing n elements, the probability of false positive
for testing the fact that an element is in the set is expressed in Equation (5.6) with Perror.

Perror =

(

1−
[

1− 1

m

]kn
)k

(5.6)

Computing the three needed operations, i.e. union, intersection and elements count are also
subject to error and to some requirements. To perform set intersection and union with Bloom
filters the requirement is that both Bloom filters have the same size (m) and that they share
the same hash functions [MNPS07]. The union of two sets consists in a bitwise OR between the
two Bloom filters and the intersection of a bitwise AND. For two Bloom filters BF1 and BF2, we
have:

• Perror(BF1 ∪BF2) < Perror(BF1) + Perror(BF2)

• Perror(BF1 ∩BF2) < min (Perror(BF1), Perror(BF2)).

The element count operation of a Bloom filter containing n elements can be approximated
by n∗ based on the count of bit X set to 1 as shown in Equation (5.7). Hence, Bloom filters offer
the required operations to compute the features of intra-URL relatedness in a space-efficient and
computationally-efficient way, while introducing approximation.

n∗ = −
m ∗ ln

(

1− X

m

)

k
(5.7)

94

5.3. Phishing URL Detection

As described before the parameters of Bloom filters (size m in bit and number of hash
functions k) must be defined in advance. To keep accurate feature values we set the false
positive rate Perror to 0.0001 (0.01 %) for RELrd(url), RELrem(url), ASrd(url) and ASrem(url).
Hence, we can deduce m and k by determining the maximum number of elements that will count
these sets. To determine this count we refer to Figure 5.3 showing the word count per URL.
We can see that URLs embed from 0 to around 20 words. To have a safety margin we set the
maximum word count per URL to 25. Hence, every word embedded in a URL is requested
to search engine query data tools to gather up to 40 terms per single word. These terms are
composed on average of three words. This gives the maximum number of elements contained in
each set: n = 25 ∗ 40 ∗ 3 = 3000. The optimal number of bits per element for a Bloom filter is
given in Equation (5.8) and for Perror = 0.0001 we got bit/element ≈ 19.

bit/element =
1

ln(2)
∗ log

(

1

Perror

)

(5.8)

k =
m

n
∗ ln(2) (5.9)

Thus, we have m = 19∗3000 = 57000 bits and we can can deduce the number of hash functions
to use according to Equation (5.9). We get k = 13 and each set RELrd(url), RELrem(url),
ASrd(url) and ASrem(url) is set up as a Bloom filter of size 57,000 bits and 13 hash functions.
Since these have all same size and same hash functions, these can be compared using union and
intersection operations to compute features of intra-URL relatedness.

Having described the technique and the implementation of intra-URL relatedness features
computation, we build a ground truth dataset of URLs to test their efficacy through a machine
learning algorithm.

5.3 Phishing URL Detection

To assess the ability of the proposed feature set to be used in supervised classification for identify-
ing phishing URLs, we build a test dataset. Unlike for Chapter 4 the dataset used for experiments
must be composed of URLs and not of domain names. Hence, a new URLs test set is built and
it consists of two sets: one of these is a malicious dataset, the phishing dataset ; the other is the
legitimate dataset. Features are extracted from each set and results are compared to show the
relevancy of the feature set for discriminating phishing from legitimate URLs. The test set is
then used in a machine learning application to detect phishing URLs.

5.3.1 Dataset

Phishing Dataset

We used PhishTank [phi] to build a phishing dataset. PhishTank provides lists of valid and
active phishing URLs through its blacklist that is daily updated.

We downloaded this list on a daily basis between October 11th and November 10th, 2012 and
built a phishing ground truth dataset of 53,089 unique URLs. URLs consisting only of mld.ps,
www.mld.ps or IP addresses without path or query were discarded because it is impossible to
compute the intra-URL relatedness for such URLs, as REMurl = ∅. In addition we partially
addressed the identification of such phishing domains in Chapter 4. After this selection we had
48,009 extended phishing URLs in the phishing dataset meaning less than 10% phishing URLs
discarded.

95

Chapter 5. Semantic Based Phishing URLs Rating

Figure 5.4: Box-and-whisker diagram for Jaccard based features (min/max)

Legitimate Dataset

To provide additional learning instances for legitimate URLs, we selected URLs from the Open
Directory Project: DMOZ [dmo]. DMOZ is a directory of the Web containing more than two
million URLs classified in several categories. We selected URLs within four categories that are,
according to our knowledge of phishing, the most targeted categories: Business, Computers,
Games and Shopping. We first discarded URLs consisting only of mld.ps or www.mld.ps, as for
the phishing dataset. Then a uniform random selection was made on the rest to keep 48,009
legitimate URLs.

We constructed a balanced dataset (half phishing/half legitimate) of ground truth data com-
posed of 96,018 URLs. We acknowledge that a half/half ratio for phishing and legitimate URLs
does not reflect real world repartition. However this dataset is used in Section 5.3.3 to assess the
efficiency of the search engine query data and the features extracted therefrom, in distinguishing
phishing from legitimate URLs through ten-fold cross-validation. As presented in [FS10, FM14],
imbalanced dataset in cross-validation provides misleading results.

5.3.2 Features Analysis

The 12 features described in Section 5.1.4 were extracted from each dataset. The box-and-
whisker diagram of Figure 5.4 compares the median, 1st quartile, 3rd quartile, minimum and
maximum values for each Jaccard-based feature according to the set it is extracted from. The
same statistical values are given in Table 5.5 for the six remaining features as these features are
either not defined on [0, 1] or are binary values.

There is no significant difference between the legitimate and phishing datasets for features
JRR, JRA, JAA and JAR with equal minimum, 1st quartile and median. The values of these

96

5.3. Phishing URL Detection

features are slightly more scattered for the legitimate dataset, reaching higher values. The 3rd

quartile is around 0.02 for legitimate URLs whereas it is 0 for the phishing dataset, while the
maximum reaches 1 for legitimate, but it does not exceed 0.7 for the phishing dataset. This
validates our assumption that the similarity between mld.ps and the rest of the URL is more
important in legitimate URLs than in phishing ones. In addition we can identify JARrd as a good
discriminative feature a priori. Despite having the same range of values for both kinds of URLs
[0, 1] the median and 3rd quartile are orders of magnitude higher for legitimate URLs (0.55/0.78)
compared to phishing ones (0/0). Analysing cardrem in Table 5.5, we conclude that phishing
URLs blend more words within them than legitimate ones. Legitimate mld.ps and mld logically
match more results than phishing ones (mldres, mld.psres) when searched for in Google Trends
and Yahoo Clues. Finally the ranking of legitimate domain names is higher than phishing ones
since 31,767 legitimate domain names are ranked in the Alexa top one million websites against
only 8,081 phishing domain names.

Features
Legitimate dataset Phishing dataset

min 1stQ med 3rdQ max min 1stQ med 3rdQ max

cardrem 0 1 2 4 20 0 3 5 9 58

ratioArem 0 29.462 93 181.5 6097 0 55.412 114.1 172.22 3122

ratioRrem 0 33.833 92 179 5507 0 59.789 113.5 169.75 2826.5

mldres 0 0 1 1 1 0 0 0 0 1

mld.psres 0 0 0 1 1 0 0 0 0 1

ranking 1 6655 82260 10e7 10e7 1 10e7 10e7 10e7 10e7

Table 5.5: Statistical values of features extracted from legitimate and phishing datasets

Nevertheless it is worth noting that some phishing mld.ps have a high ranking, namely 1.
This top-ranked domain is google.com. The reason why such top ranked mld.ps is present in the
phishing set is that the Google Docs [gooa] facility is used as a support for phishing. Phishers
steal personal data by creating in it on-line forms that victims are asked to fill out. The use of
well-ranked domain names as a basis for phishing URLs proves that reputation based features
can not be sufficient to identify phishing URLs. However, intra-URL relatedness can fill the
niche by identifying semantic differences inside these URLs.

To further evaluate the impact of each feature on the classification process, the Information
Gain is computed. Assuming S, a set of instances having n features (x1, x2, ..., xn) and a label
l (phishing/legitimate), the Information Gain IG(S|i) evaluates the likelihood of deducing l for
elements of S given the feature i ∈ {1, n}. It is defined in Equation (5.10), based on the entropy
of the dataset S: H(S) and the average conditional entropy of S given the feature i: H(S|i).

IG(S|i) = H(S)−H(S|i) (5.10)

The information gain for the 12 features is given in Table 5.6, ordered by descending value.
The higher the information gain value, the more discriminative the feature. All the features
bring information for classification, ranking being the most significant feature mainly due to
the fact that most phishing domain names have a very poor rank, i.e. only 8,081 domain names
used for phishing are ranked against 31,767 legitimate. It is followed by JARrd which contains a
large amount of information as shown in Figure 5.4. JARrem is a significant feature despite no
clear difference being brought out in Figure 5.4.

97

Chapter 5. Semantic Based Phishing URLs Rating

Feature IG Feature IG

ranking 0.388 mldres 0.178

JARrd 0.286 JRA 0.133

cardrem 0.273 JRR 0.125

ratioArem 0.217 JAA 0.123

JARrem 0.208 JAR 0.12

ratioRrem 0.208 mld.psres 0.07

Table 5.6: Information Gain values for the 12 features

Having established that the feature set is relevant in distinguishing phishing from legitimate
URLs, we further assess its efficiency within a machine learning framework.

5.3.3 URL Classification

To automatically detect phishing URLs, we use supervised classification techniques. We build
a feature vector matrix from the dataset presented in Section 5.3.1. Each feature vector is
composed of 12 elements, namely the 12 features introduced in Section 5.1.4. The predicted
variable is 0 for a legitimate URL and 1 for a phishing URL.

This gives a matrix of 96,018 feature vectors representing the 96,018 URLs of the testing
dataset. Since there is a wide range of supervised classification algorithms, we assessed our
dataset according to several classifiers using Weka [HEH+09]. Seven classifiers were tested cov-
ering tree-based (Random Tree, Random Forest, C4.5, LMT), rule-based (PART, JRip) and
function-based (SVM). The classification was made without parameters tuning through a ten-
fold cross-validation as a first step to select the most promising approach. Results for accuracy,
true positives and true negatives are given in Figure 5.5 for each classifier. To give additional
information about confidence interval of classification results for these classifiers, Table 5.7 shows
the median, 5th percentile, 95th percentile and standard deviation (SD) values for the Accuracy
of each classifier out of 100 runs. For sake of clarity we define for URLs:

• Phishing URLs classified as phishing: true positives (TP) and TPrate =
TP

TP+FN

• Legitimate URLs classified as phishing: false positives (FP) and FPrate =
FP

TN+FP

• Legitimate URLs classified as legitimate: true negatives (TN) and TNrate =
TN

TN+FP

• Phishing URLs classified as legitimate: false negatives (FN) and FNrate =
FN

TP+FN

• Phishing and legitimate URLs well-classified: Accuracy = TP+TN
TP+TN+FP+FN

Among the tested classifiers, SVM yields the worst accuracy (86.31%) while being efficient
in identifying legitimate URLs (93.1%). Rule-based classifiers have approximately the same
performance, around 90%, with disproportionate true positives and true negatives. The best
performers are tree-based classifiers, with Random Forest, correctly classifying 95.22% of URLs,
being the best. In addition, Table 5.7 shows that the top performer classifiers give accurate
results, having a standard deviation around 0.25% over 100 runs.

Hence, Random Forest is selected for classification. Random Forest [Bre01] is a classification
method that creates a multitude of decision trees during training. During prediction, it outputs

98

5.3. Phishing URL Detection

Figure 5.5: Phishing classification results for seven classifiers

Classifier 5th perc. median 95th perc. SD

RanForest 94.68% 95.22% 95.41% 0.23

RanTree 93.35% 93.81% 94.1% 0.23

LMT 93.10% 93.55% 94.01% 0.27

C4.5 93.01% 93.45% 93.87% 0.26

PART 89.84% 90.62% 91.49% 0.47

JRip 88.32% 89.66% 90.48% 0.66

SVM 85.23% 86.31% 87.53% 0.62

Table 5.7: Confidence interval for classification results

a hard decision for the class of an instance as the class that has been predicted by most of the
individual trees. However a soft prediction can also be deduced from the combination of results
given by individual trees. This soft prediction is bounded on [0, 1] and gives a confidence score
for the prediction. It is then compared to a discrimination threshold to deliver the hard decision.
Assume two classes 0 and 1, and a default discrimination threshold is fixed to 0.5. If the soft
prediction is below this threshold, then the hard decision for an instance is class 0, otherwise it
is class 1. By varying this threshold we can vary true positive and false positive rates.

We tuned the parameters of Random Forest training in order to achieve better classification.
After varying the number of trees to be generated during training from 10 to 200, it was set to
100, a value giving good results while keeping fast training of the classifier. The ROC (Receiver
Operating Characteristic) curve describing the classification results for the tuned classifier in
true positive rate and false positive rate is illustrated in Figure 5.6. The ROC curve corresponds
to the variation of true positives and false positives while varying the discrimination threshold
from 0 to 1. To minimize the number of legitimate URLs classified as phishing (false positives)
we adjust the discrimination threshold from 0.49 (the value giving the best accuracy) to 0.76.
This reduces the accuracy from 95.66% to 94.91% but also decreases the FPrate from 4.13% to
1.44%.

99

Chapter 5. Semantic Based Phishing URLs Rating

Class Class. as phish. Class. as leg. Precision F-measure Accuracy

Phishing 91.27% (TP) 8.73% (FN)
98.44% 94.72% 94.91%

Legitimate 1.44% (FP) 98.56% (TN)

Table 5.8: Detailed classification results for Random Forest (threshold = 0.76)

Figure 5.6: ROC curve for Random Forest clas-
sification

Figure 5.7: Phishing and legitimate URL par-
tition according to rating ranges

The detailed classification metrics for the Random Forest algorithm with a 0.76 discrimination
threshold are given in Table 5.8. The two first columns represent the rate of well-classified
and misclassified instances for each class: TPrate, FPrate, FNrate and TNrate. The Precision
corresponds to the ratio of phishing URLs classified as phishing with respect to the total URLs
classified, as described in Equation (5.11). The F-measure is defined in Equation (5.12) with
Recall = TPrate.

Precision =
TP

TP + FP
(5.11)

F−measure = 2 · Precision · Recall
Precision +Recall

(5.12)

To show the relevancy of intra-URL relatedness features, we classified with different features
the set of URLs. Using only features 1-9 for classification yields an accuracy of 93.48% whereas
using reputation based features 10-12 only yields 83.97%. While having the best Information
Gain as shown in Table 5.6, feature 12 (ranking) and other reputation based features are not
sufficient to distinguish between phishing and non-phishing URLs alone. However, we show that
the introduced feature set yields good results in doing this task. In addition, combining the new
features with reputation based features can lead to an improvement in the classification accuracy
making this work complementary to the state of the art.

Even though this technique, which gives a hard decision for URL class, is proved efficient,
correctly classifying 94.91% of URLs with only 1.44% of legitimate URLs classified as malicious,
we further leverage machine learning to build a reputation system.

100

5.3. Phishing URL Detection

5.3.4 URL Rating

The soft prediction value provided by Random Forest is defined on the range [0; 1]. In the previous
section a discrimination threshold was fixed to give a hard decision on the phishingness degree of
a URL. However soft prediction values are not necessarily uniformly distributed over the range
[0; 1] and some sub-ranges of values may be more suitable to providing a highly reliable decision
on the phishingness of a URL. Hence, we analysed the soft prediction distribution regarding
phishing or legitimate URLs. The soft prediction range of value [0; 1] is divided in 12 sub-ranges,
two being the exact value 0 and 1 and the ten remaining being ranges of length 0.1:]0; 0.1[,
[0.1; 0.2[, ... , [0.9; 1[. The soft prediction provided by the tuned Random Forest was computed
for all 96,018 URLs of the dataset through a ten-fold cross-validation. We counted the URLs
having a score belonging to each sub-range. Figure 5.7 depicts this count according to the set
(phishing at the top / legitimate at the bottom) the URLs come from. The 12 different sub-
ranges are on the x-axis and the URL count is on the y-axis in a log scale centered on 10 and
increasing in both directions for each class (phishing up/legitimate down).

We can observe that most URLs are grouped in each extremity of the range and mostly in
the sub-ranges 0,]0; 0.1[, [0.9; 1[and 1, which contain a total of 80,630 URLs out of 96,018.
In addition the middle values of soft prediction have few of either kind of URLs, usually less
than 1,000. This confirms that the soft prediction is not uniformly distributed over its range of
definition. Considering the two extreme values, very few phishing URLs (40) have the score 0,
whereas 22,863 legitimate URLs do. The same happens for a soft prediction of 1 where 34,790
phishing URLs have this score against only 26 legitimate. Given that 0 corresponds to legitimate
and 1 to phishing, we are able to classify 60.11% of the dataset (57,719 URLs) with an accuracy
of 99.89%. URLs getting a soft prediction of 0 or 1 are very likely to be either legitimate or
phishing URLs respectively. This proves that some ranges of soft prediction values are more
suited to making a reliable prediction. If we extend the analysis to the range [0; 0.1], it contains
38,741 legitimate URLs and only 288 phishing ones. The range [0.9; 1] is composed of 41,260
phishing URLs and 341 legitimate URLs. Considering these two sub-ranges, these contain 83.97%
of the testing dataset and their components are correctly identified as legitimate or phishing with
an accuracy of 99.22%.

The soft prediction can be used as a confidence score for a URL. The closer it is to 1, the
higher the risk; the closer to 0 the safer the URL. This score can provide a confidence rate to
URLs/links for browsing uses. We have demonstrated that such a rating system is reliable in
99.22% of the cases for most of the URLs (83.96%).

While performing our experiments, we timed the process from labels extraction, requesting
search engines, features computation to classification decision. With the implementation pre-
sented in Section 5.2 leveraging Storm for HTTP requests and Bloom filters for set operations the
processing time for the set of 96,018 URLs is 20.6 hours. This gives an average processing time
of 0.77 seconds per URL, which is acceptable for many phishing URLs detection applications.

Conclusion

This chapter introduces an efficient phishing URL detection system relying on lexical analysis
of URLs. The approach is based on the intra-URL relatedness. This relatedness reflects the
relationship among the words blended into a URL and particularly into the part of the URL that
can be freely defined and the registered domain. We leverage search engine query data in order
to extract 12 features from a URL characterizing its intra relatedness and its popularity. The
introduced features are proved relevant in supervised classification on a ground truth dataset of

101

Chapter 5. Semantic Based Phishing URLs Rating

96,018 phishing and legitimate URLs. The experiment yielded a classification accuracy of 94.91%
with a low false positive rate of 1.44%. This experiment was extended to introduce a URL rating
system to dynamically compute a confidence rate for URLs. The confidence rate computation
on the URL test set is able to correctly identify 99.22% of the legitimate and phishing URLs for
83.97% of the URLs. The implementation of this system relying on real-time streaming analytics
architecture and Bloom filters is proved fast to identify phishing URLs (< 0.8 second).

This technique copes with limitations previously observed in Chapter 3 where a large amount
of data (DNS data) is needed to identify malicious domain names. Since intra-URL relatedness
can analyse and rate single URLs, it copes with the limitations of the technique presented in
Chapter 4 where previous clustering of domain names has to be performed before lexical analysis
to identify phishing domain names. Computation of intra-URL relatedness provides a real-time
phishing detection technique relying only on single URL lexical and semantic analysis. This can
be implemented on any end user machine due to on-line availability of search engine query data
through tools such as Google Trends and Yahoo Clues.

However, this technique has some limitations: it is not applicable to all types of obfuscated
URLs. URLs composed of only a malicious domain name, URLs based on shortening services
or URLs algorithmically generated can bypass the detection technique. This kind of URLs and
malicious domains are however mostly used in botnet communication (C&C) or spamming activ-
ities [YRRR12]. Such activities do not rely on a social engineering process as phishing does. The
main part of URLs used for phishing are meaningful and composed of many terms [AR14], this
is why our technique is relevant in a phishing context. Another limitation of the implementation
is that data publicly available through Google Trends and Yahoo Clues is limited. For each re-
quested term only the ten related most popular terms are returned by these tools. Related terms,
which are less requested by search engine users do not appear in results while being relevant for
intra-URL relatedness computing. For the same reason, some unpopular terms blended in URLs
do not match any results. The reason is that Google and Yahoo do not provide data that is
not representative enough, i.e. for terms that are not requested enough by their users. These
facts limit the accuracy of intra-URL relatedness computing and is one of the reason why addi-
tional features such as ranking are included in the feature set. A full access to Web search logs
would highly improve the relevancy of intra relatedness metrics and, as a result, the classification
performance. Despite this limited access to data, the results presented in this chapter provide
strong hints regarding the relevancy of using search engine query data for phishing detection.

In this part we presented three techniques to identify phishing URLs and domain names.
We first used DNS data analysis before exploring lexical and semantic analysis. Along the three
previous chapters we improved the different phishing detection techniques to reduce the delay
in identification and improve the accuracy of phishing detection. Some interesting conclusions
arose while observing the composition of phishing domain names and phishing URLs, namely
that these have a predictable nature in term of words and semantic fields that are used in their
composition. As a result, in order to improve the efficacy of techniques to cope with phishing
we further explore the way to switch from phishing detection techniques to phishing prediction
techniques by leveraging the predictable character of phishing domain names composition.

102

Part III

Semantic Based Phishing Domain

Names Prediction

103

Chapter 6

Semantic DNS Probing

Contents

6.1 Smart DNS Probing . 106

6.1.1 Hostnames Composition Schemes 106

6.1.2 System Overview . 108

6.1.3 Smart DNS Brute Forcer . 108

6.2 Semantic Discovery of Subdomains 110

6.2.1 Similar Names . 110

6.2.2 Incremental Discovery . 112

6.2.3 Splitter . 112

6.3 DNS Probing Evaluation . 113

6.3.1 Methodology . 113

6.3.2 Exploration Parameters . 114

6.3.3 Performance Evaluation . 116

Introduction

The Domain Name System is critical for the operation of the Internet since it is mainly used
for locating hosts based on human readable names. Service availability is improved by dynamic
reallocation to other machines without changing the DNS name. However, as seen in Chapter 2,
this mechanism is also employed by attackers to improve the robustness and the efficiency of their
attacks [PCDL09]. Phishing attacks leverage maliciously registered domain names. Previous
chapters of this document introduced new techniques to detect phishing domain names and
URLs. These chapters disclosed as well the semantic characteristics of phishing domain names
and URLs. Hence, we will leverage these characteristics to explore new methods to predict
domain names used for malicious activities.

As a first step to analyse the predictable character of the DNS we focus on DNS probing, i.e.
guessing domain names that are registered and used in the Internet. In our case, DNS probing
does not consist in the discovery of Fully Qualified Domain Names (FQDNs) but rather consists
in discovering the several subdomains of a given domain name. This provides an alternative to
IP address scanning to discover hosts of an organization. IP address scanning is tedious and
easily detectable. However, since DNS requests are made to intermediate DNS servers, this

105

Chapter 6. Semantic DNS Probing

alternative is not detectable. Moreover, Kamra et al. show in [KFMK05] that DNS scanning
allows to identify potentially vulnerable IPv6 addresses faster than with classical IP scanning.
This is due to the large address space of IPv6 and DNS scanning is used in [KFMK05] to ease
the spread of worms in the IPv6 Internet. DNS probing is also used by attackers to discover
the networking organization, as well as potential vulnerable hosts of a given network. Usual
methods of DNS probing [dns, fie] rely on dictionaries composed of widely used hostnames such
as common services: FTP (File Transfer Protocol) or SSH (Secure Shell). Then DNS probing
of a domain name example.com consists in requesting domain names such as ftp.example.com.
However, these existing dictionary based techniques are limited to the words contained in their
dictionary. A proper DNS configuration can easily prevent a network to be probed by these
techniques. In addition, these probing techniques cannot be used to predict malicious domain
names due to their limited scope and flexibility.

DNS has a role to provide a semantic meaning to something that does not have a meaning
by associating domain names to IP addresses. Moreover, observations of subdomains naming
schemes show that human based domain names usually follow semantic rules. Hence, we intro-
duce in this chapter a DNS probing technique relying on semantic analysis of domain names.
This includes the word semantic as well as the numerical semantic (series of numbers) of domain
names. A first DNS probing solution based on natural language processing technique is presented
to provide an initial set of subdomains for a given domain name. Based on small subsets of al-
ready known subdomains we introduce three extension strategies relying on semantic to extend
the set of known subdomains of a given domain. This approach improves results provided by
state of the art techniques and is complementary to them. We assess the relevancy and efficacy
of semantic DNS probing on a set of 24 well-known domain names, discovering hundreds of
subdomains for them. The contributions of this chapter were published in [MFWE12].

The rest of this chapter is organized as follows: We first motivate our work by presenting
hostnames composition schemes before giving a global overview of the semantic DNS probing
technique we develop, in Section 6.1. In Section 6.2, we introduce the three semantic modules
developed to probe domain names. We assess semantic DNS probing in Section 6.3, through
several experiments evaluating improvements over three well-known state of the art DNS probing
tools.

6.1 Smart DNS Probing

DNS probing is the discovery of the several subdomains ld of a given registered domain mld.ps.
To confirm the validity/existence of ld, one makes a DNS request for the domain name ld.mld.ps
and analyses the response flag of the DNS reply. If the response flag is NOERROR, the label ld
is a subdomain of mld.ps, if it is NXDOMAIN, ld is not a subdomain of mld.ps. In this section,
we present our global approach to perform automated DNS probing based on observations of the
domain names composition. We present a technique to discover an initial list of subdomains on
which a semantic extension can be applied to quickly discover new subdomains.

6.1.1 Hostnames Composition Schemes

Accessing machines on a network is made using DNS since remembering tens of IP addresses
corresponding to several machines is infeasible. Remembering names like ftp or mail for accessing
FTP and respectively mail servers with domain names such as ftp.mynetwork.com is easier than
remembering an IP address such as 10.3.6.133 for instance. Machine names (hostnames) on
a network are given by network administrators and they are the people who mainly use these

106

6.1. Smart DNS Probing

Figure 6.1: Semantic DNS probing system overview

domain names. Hence, the naming of network machines follow different schemes that we have
observed on passive DNS traces and specific networks we have access to. Some of the naming
schemes observed include:

• Location of a machine in a building: room201-pc1, office102-server, etc.

• Service provided by a machine: www, ns, ftp, smtp, etc.

• Abstract relationship with provided service: hermes or mercury (messenger of gods) for
mail servers for instance.

• Network administrator interests:

– Movie/sitcom characters: bart, marge, homer, barney, etc.

– Planets: mars, venus, jupiter, etc.

– Animals: dog, cat, mouse, etc.

– Cities: roma, milan, paris, london, etc.

– Etc.

The listed naming schemes highlight semantic similarities between hostnames that can be
infer with semantic metrics. By observing these lists, knowing some initial elements, it is easy to
discover new ones. The discovery of subdomains of a domain name consists in the discovery of
these hostnames. Hence, to develop a method to automatically discover related words to existing
subdomains is interesting for DNS probing. Such a technique can reduce the number of DNS
requests performed by dictionary based DNS scanning tool such as DNSenum [dns] or Fierce
[fie]. It also allows to probe subdomains that are not contained in basic dictionaries.

107

Chapter 6. Semantic DNS Probing

6.1.2 System Overview

To discover the most subdomains ld of a domain name mld.ps, we introduce an approach to
cope with the limitations of dictionary based DNS scanning techniques. The global overview of
the subdomain generation system is given in Figure 6.1. The two main steps of the subdomains
generation are:

1. The generation of an initial set of subdomains of a domain name that can be based on
dictionary (3’) or on an automated generation technique called SDBF (3). This initial set
of subdomains is checked making DNS requests (4) to confirm domain names existence in
order to build a set of valid subdomains (5).

2. The initial set of valid subdomains is submitted to the semantic extension module (6) that
generates new labels likely to be other subdomains (7). These are further checked making
DNS requests (8) to be added to the set of initial valid names (5). Steps (5) to (8) can be
repeated several times to extend the set of known subdomains based on newly discovered
ones.

The generation of an initial list of subdomains for a given domain name can be done using
dictionary based techniques (3’) such as DNSenum [dns] or Fierce [fie]. However, these lists of
subdomains already contain many related labels limited to few semantic fields, but many semantic
fields that are not usually used for naming hostnames are not contained in these lists. Hence,
using a flexible subdomain generation technique to provide a first set of existing subdomains is
more interesting.

6.1.3 Smart DNS Brute Forcer

SDBF (Smart DNS Brute Forcer) is a DNS probing technique introduced by Wagner et al. in
[WFS+12]. This technique consists in a learning stage of domain name composition based on a
set of existing domain names using natural language processing techniques. Then, based on the
learned model, SDBF can generate several domain names and subdomains depending on some
parameters. This is an interesting technique to build an initial set of varied existing subdomains
for the semantic DNS probing system.

SDBF Features

The main features of SDBF are based on linguistic parameters learned from a set of domain
names. Having a set of existing domain names N = {n1, ..., nn} as input list – (1) in Figure 6.1
– we extract sets of labels/characters characterizing domain names composition:

• Li = {l1, ..., lo}: the set of labels used as level domains at level domain i ∈ {1, ..,m}.

• Ci = {c1, ..., cp}: the set of individual characters used at level domain i ∈ {1, ..,m}.

• Gi,x = {x1, ..., xq}: the set of characters following character x ∈ Ci in labels at level domain
i ∈ {1, ..,m}.

The statistical features characterizing domain names composition include:

• #dlenj: the count of domain names n ∈ N composed of j level domains.

108

6.1. Smart DNS Probing

• #ldleni,j : the count of different labels l ∈ Li composed of j characters and present at the
ith level domain of a domain name.

• #ldfirstchari,j: the count of labels l ∈ Li present at the ith level domain and starting with
the character j ∈ Ci.

• #ngrami,j,k: the count of times that a character j ∈ Ci is succeeded by k ∈ Gi,j in a label
l ∈ Li present at the ith level domain of a domain.

These features are transformed into distributions as follows – (2) in Figure 6.1 – to be further
used in the generation model:

• the distribution of domain lengths j ∈ {1, ..,m} (in level domains):

distdlen(X = j) =
#dlenj

∑m
k=1#dlenk

(6.1)

• the distribution of label lengths j ∈ {1, ..,m} (in characters) at a given level domain l:

distldlenl(X = j) =
#ldlenl,j

∑m
k=1#ldlenl,k

(6.2)

• the distribution of first characters j ∈ Cl for labels at a given level domain l:

distldfirstcharl(X = j) =
#ldfirstcharl,j

∑

k∈Cl
#ldfirstcharl,k

(6.3)

• the distribution of characters j ∈ Gl,c following the character c ∈ Cl at level domain l:

ngraml,c(X = j) =
#ngraml,c,j

∑

k∈Gl,c
#ngraml,c,k

(6.4)

These four distributions summarize the composition characteristics of domain names. These
are used to generate new domain names following the composition rules of existing domains.

Name generation

Once the system is trained, SDBF can generate new names to probe. It first defines how many
level domains the domain will have. To achieve this, a random number following the distribution
of distdlen is generated. As SDBF is designed to be highly customizable, this value can also be
set by the user. The same process is applied to determine the length of labels in characters for
each level domain l to generate: distldlenl. Again, this value can be fixed instead of using the
distribution metric. Finally, for a label with a given length k, the first character is generated
following the distribution distldfirstcharl, and the remaining k − 1 characters are generated by
applying the characters transitions given by ngraml,c.

Because it is common usage to scan a domain name, SDBF allows to set fixed part of a
domain name in order to generate only the required level domains of a domain name. For
example, the objective may be to discover several domain names providing www services with
the rule www.*.*. Another rule can be to discover different name servers in Luxembourg with
the rule ns.*.lu. Finally, the goal can be to discover all subdomains/hostnames of a given domain

109

Chapter 6. Semantic DNS Probing

names such as uni.lu with the rule *.uni.lu. This is the main application of SDBF and the one
we use it for. This corresponds also to the dictionary approaches which are fed with a set of
widely used hostnames (www, ns, ftp, smtp, etc.) and just concatenate each hostname with a
domain name.

Once names are generated, (3) in Figure 6.1, their existence is checked by the name checker
(4), which makes DNS requests. This formally corresponds to a function valid(D) returning the
valid domain names of a set D, i.e. those that exist.

Because SDBF is designed to generate the most likely domain names, some of them may be
generated several times as the generator does not have memory of already generated domain
names. Therefore, the generator leverages a Bloom filter [Blo70] in order to discard already
generated subdomains. When probing a domain name, the user may require to generate millions
of subdomains. Thus, having a scalable structure like a Bloom filter is necessary to avoid to
probe twice the same domain name with DNS requests. Although a name cannot be probed
twice, some domain names not being probed can be discarded. This is due to the false positive
rate introduced by using Bloom filters as presented in Section 5.2.2.

A major advantage of Bloom filters is that they can be easily distributed among different
machines. Therefore, SDBF can be run in parallel, probing from multiple locations without
probing the same domain name multiple times. Moreover, bias due to language specificities
might be discarded since participating machines could be located in different countries, having
each their own local database of features. In addition, large enterprise networks deploy multiple
authoritative servers for reliability reasons. By doing parallel and iterative queries to these
servers from multiple locations within the network, differences can reveal configuration errors.

6.2 Semantic Discovery of Subdomains

As illustrated in Figure 6.1, the semantic module takes as input a set of subdomains, for which
the validity has been checked (5). The goal is to extend this set of discovered subdomains by
analyzing individual labels. There are three modules, the similar names module (DISCO) and
the incremental module that can be used individually or combined together, whereas the splitter
module is an optional preprocessing step.

6.2.1 Similar Names

The first semantic extension aims to discover names that are similar and related. These are
distinct notions [BH06]. Similarity refers to words having a close meaning (for example, notebook
and laptop). Semantic relatedness refers to words sharing the same semantic field like mars and
venus, which are different planets. As claimed by Kilgarriff et al. [Kil03], these usual notions
imply a manual analysis to establish relationships between words. This limits the applicability
and the extension to other languages or semantic fields. Hence, as done in Chapter 4, we use
DISCO [Kol08, Kol09], which is based on an efficient and accurate method for approximating
automatically these two notions within one metric.

Assume a probed domain name mld.ps for which we already found an existing subdomain
being a label l, i.e. the domain l.mld.ps exists. The objective is to find semantically similar
labels l′ that may be subdomains of mld.ps. The semantic exploration has two dimensions. The
first one is the horizontal exploration, which is limited by limh. This consists in the selection
of the limh most similar words to l according to DISCO. These limh similar words are the ones
that will be tested as potential subdomains of mld.ps. These words correspond to Disco(l, limh)
defined in Section 4.2.2. This result forms a new set of labels ExplH(l, limh) = Disco(l, limh)

110

6.2. Semantic Discovery of Subdomains

Figure 6.2: Horizontal and vertical exploration for surf.apple.com

which is tested by the name checker (Figure 6.1) by concatenating each element with mld.ps.
Each label of ExplH(l, limh) being confirmed as a subdomain of mld.ps is added to the set
V alid(ExplH(l, limh)).

The second exploration dimension is the vertical dimension. It looks for additional similar
names starting from already found subdomains, i.e. the names that will be requested in DISCO
with Disco(l, limh) to find additional candidates. The limit of the vertical exploration is set
by limv and consists in the number of times the previous process is performed with the newly
discovered valid subdomains contained in V alid(ExplH(l, limh)). This is defined in Equation
(6.5).

ExplV (l, limv) =

∅ if limv = 0
⋃

l′∈ExplH(l,limh)
V alid(ExplH (l′, limH)) if limv = 1

⋃

l′∈ExplV (l,limv−1) V alid(ExplH(l′, limH)) otherwise
(6.5)

In order to reduce the search space, only validated labels are considered for further extensions,
as noticed by the use of V alid in Equation (6.5). The vertical exploration stops when it reaches
limv recursions or when no new correct labels are found. So, limv does not need necessarily to
be manually set.

The vertical exploration is actually a recursive process, which is highlighted in Figure 6.1 by
the loop (5)-(6)-(7)-(8). Figure 6.2 represents a subset of a real probing campaign with limh = 50
and limv = 5. The starting label is surf, which is a subdomain of apple.com. The horizontal
exploration reveals unsuccessful (surfing, skate) and successful (rugby, soccer...) labels i.e. labels
not being, and respectively being subdomains of apple.com. Then, the vertical exploration entails
a horizontal extension for each of the successful labels by repeating the process of horizontal

111

Chapter 6. Semantic DNS Probing

exploration. Here the vertical exploration is operated for four recursions. The fifth recursion
set with limv = 5 is not operated since no labels of the fourth recursion are subdomains of
apple.com.

6.2.2 Incremental Discovery

In some cases, machines and services are replicated or are named according to office/room location
in a company. This is represented by hostnames such as pc1-room102, mail2, etc. Assuming
that one of these names has been discovered, the others can be generated by finding out the
numerical components of a level domain. New potential subdomains can be generated using the
two following heuristics:

• Heuristic Hincrement,1, tests all possible numerical values (including ⊘) for each individual
digit of a known subdomain. This limits the exploration to numbers of the same or of
smaller power of ten. For example, numbers from 0 to 9 and from 00 to 99 are tested for
a known subdomain like pc13.

• Heuristic Hincrement,2, tests n randomly generated values. The random generation process
first fixes the range of the generated value by fixing the number of digits i according to the
geometric distribution f(X = i) = (1 − α)i × α. This distribution favors smaller number
to bigger ones. Then a uniform random function generates a number composed of i digits.

Both heuristics can be combined, the first one to test closest numerical values and the second
to extend the exploration to less probable values.

6.2.3 Splitter

Labels of domain names can be composed of several words like linuxserver or linux-server. Ap-
plying DISCO on such names does not provide any results since it works only for single words.
Therefore, the labels have to be divided automatically in advance to extract every word. Using
a list of separating characters, as for instance “-” or “_”, works to split some labels. However,
it is too restrictive and we refer, as in previous chapters, to the word segmentation method de-
scribed in [SH09]. This process can extract every meaningful word blended in any labels. DISCO
can then be applied on each element of the label to create new related labels. For instance, for
linux-server : apple-server, windows-server or apple-terminal can be generated using this process.

Additionally, the splitter module can also discover the incremental part of a domain name. A
label like computer23 is split as computer and 23 according to the splitter. These two extracted
labels consist in the fixed part and respectively the part to be explored by the incremental dis-
covery process. This split process also reveals non numerical increments, as observed in our
database for some subdomains such as servera or serverb. The splitter separates server from the
incremental characters a and b. This can further be incremented using ASCII codes.

The similar names module, the incremental discovery module and the splitter module explore
the different methods to find related subdomains based on existing ones. If a domain name follows
one of the composition scheme described in Section 6.1.1, the introduced modules cover the range
of techniques to probe it. We show in the next section that several popular domain names follow
these composition schemes by assessing the efficacy of semantic DNS probing.

112

6.3. DNS Probing Evaluation

6.3 DNS Probing Evaluation

In this section, we assess the efficacy of semantic based DNS probing. We compare the introduced
technique to three existing DNS probing techniques on a set of well-known domain names. The
three components of the semantic module are used separately and combined to test the efficacy
of each one. We also analyse the overhead of the semantic DNS probing compared to existing
solutions to prove that in most cases it discovers more subdomains with fewer operations.

6.3.1 Methodology

Protocol

Assume a domain name mld.ps, the evaluation methodology consists in using several DNS prob-
ing tools to generate potential subdomains and test their existence making DNS requests. Dic-
tionary based techniques probe domain names by iterating over a set of labels {l1, ..., ln}, to form
the hostname li.mld.ps. For the evaluation, three state of the art tools are considered: Fierce
[fie], DNSenum [dns] and SDBF [WFS+12] . Both Fierce and DNSenum are dictionary based
probing techniques included in Backtrack, a Linux distribution designed for digital forensics and
penetration testing. The hostnames dictionary from Fierce includes 1,895 words, whereas the one
from DNSenum includes 266,930 entries to test. SDBF, being a flexible domain name generation
tool, was configured the same way as Fierce and DNSenum. SDBF generates subdomains of a
domain names mld.ps by fixing the generation rule *.mld.ps meaning that it generates domain
names of length three level domains with the two last being already fixed. Since SDBF is able to
generate as many domain names as needed, we limited the number of generated domain names
to 266,930, which is the number of elements in DNSenum dictionary. A detailed analysis of these
three tools performance is described in [WFS+12]. The main result is that SDBF and Fierce
provide the best results, but all of them are complementary, generating domain names that the
others do not find.

Having three sets of already known subdomains of a domain name generated by each tool,
new ones are generated and probed using the semantic module and one of the following strategies:

• Similar names (DISCO)

• Similar names (DISCO) + Splitter

• Similar names (DISCO) + Incremental discovery

• Similar names (DISCO) + Splitter + Incremental discovery

Except if mentioned, the last description including all the semantic extension is the technique
applied in experiments. The original databases provided with the semantic tools [Kol08, SH09]
are used to train the similar names module and the splitter module.

Dataset

The domain names used to test the DNS probing comes from the top 50 websites ranked by Alexa
[ale]. However, only 19 domain names out of these 50 were considered for two reasons: First,
similar domain names with different TLDs have been discarded, since these have often similar
subdmonains and this biases the evaluation. For instance, google has twelve domain names
with different TLDs in the top 50 Alexa. Evaluating the semantic exploration on these domain
names gives approximatively the same results and the good results we got by probing google.com

113

Chapter 6. Semantic DNS Probing

would increase the average performance of semantic DNS probing. Second, we discarded domain
names performing DNS wildcarding. DNS wildcarding consists, for an authoritative DNS server
responsible for a domain name d, in always replying positively (NOERROR) to any DNS request
for a domain name l.d. Hence, any label l seems like being subdomains of d while it is actually
not. We inferred wilcarding domain names by sending several DNS requests for algorithmically
generated subdomains that are unlikely to be registered. If we got only NOERROR DNS replies,
the domain name was considered as wildcarding domain.

We also added to this set of 19 initials domain names a set of five popular luxembourgish
domain names including the one of our university (uni.lu) which is probed from inside the
network. These 24 domain names are presented in Table 6.1.

Metrics

For the evaluation, we define Initi(dom) where i ∈ {SDBF,DNSenum,F ierce}, the initial
set of discovered subdomains for a domain name dom. We also define the set of all discovered
subdomains Initoverall(dom) of dom in Equation (6.6).

Initoverall(dom) = InitSDBF (dom) ∪ InitDNSenum(dom) ∪ InitF ierce(dom) (6.6)

We define Newi where i ∈ {SDBF,DNSenum,F ierce, overall} as the set of newly discov-
ered subdomains using the semantic module. Newi corresponds to the valid newly generated
subdomains based on the initial set Initi. Assuming |S| as the cardinality of a set S, the improve-
ment brought by the semantic module corresponds to the ratio of newly discovered subdomains
regarding the count of initial subdomains already known. It is defined in Equation (6.7). A sig-
nificant value of %Impi shows that semantic DNS probing is able to find new subdomains that
previous methods are not able to find. It shows as well the degree of complementarity between
methods. %Impi is the main evaluation metric used in the following experiments

%Impi =
|Newi|
|Initi|

, i ∈ {SDBF,DNSenum,F ierce, overall} (6.7)

6.3.2 Exploration Parameters

The exploration parameters limh and limv define the count of labels that are generated by the
semantic module. The count of generated labels has an impact on the count of subdomains we
can discover and also on the time taken for the DNS probing since for every generated label
we perform a DNS request. Hence, we first evaluate what are the optimal values for these two
parameters.

Horizontal search:

The horizontal search, limited by limh, consists in the count of relative words we get from DISCO.
Setting limh limits the exploration to the top limh most similar words, as presented in Section 6.2.
On the one hand, we can assume that the more words we test, the more subdomains we can find.
On the other hand, each DNS request is time consuming and this may lead to the detection of
the DNS probe. Hence, we analyse in Figure 6.3 the percentage of newly discovered subdomains
depending on 1 ≤ limh ≤ 60. The plotted metric, ImpHi,h, represents the proportion of newly
discovered subdomains when limh = h compared to limh − 1, i.e. the improvement brought by
probing one more subdomain. Having %Impi,h, the value of %Impi when limh = h, we define
ImpHi,h in Equation (6.8).

114

6.3. DNS Probing Evaluation

Figure 6.3: Ratio of newly generated valid subdomains depending on limh.

ImpHi,h =

{

%Impi,h if h = 1
%Impi,h −%Impi,h−1 otherwise

(6.8)

ImpHi,h is computed as an average improvement over all the 24 domain names of our test
set. It is computed based on the subdomain sets produced by SDBF, Fierce, DNSenum and the
union of these (overall). Figure 6.3 shows that the improvement decreases exponentially form
limh = 0 to limh = 60. We can see that from limh = 0 to limh = 10 we have an improvement
bigger than 5% for every tool. Moreover we can see that ImpHi,h has similar values for the
different tested tools since the curves are very closed. From limh = 10 to limh = 40, ImpHi,h

is still significant while decreasing progressively but for limh ≥ 40, the improvement remains
constant and is around 1% per new word tested. Hence, we conclude that having a horizontal
exploration limit (limh) higher than 40 words does not significantly improve the results. That
is why we set limh to 40 for the rest of the experiments. However, if we need a deep domain
investigation, increasing limh leads to discover new names, as the improvement curves are still
positive in Figure 6.3.

Vertical search:

Since the semantic probing method is based on previously discovered subdomains, we can re-
launch it over newly discovered subdomains given by the last recursion performed. This number
of performed probes is called the vertical depth and is limited by limv. The recursion process
can stop before this limit if none of the newly generated names is valid as described in Section
6.2. We ran the DNS probing of the 24 domain names without fixing limv and observed that no
more than five recursions were performed before the probing process stops automatically. Hence,
the conclusion is that no name generated during the fifth recursion is valid. To test the optimal

115

Chapter 6. Semantic DNS Probing

Figure 6.4: Cumulative frequency graph of discovered subdomains depending on limv.

vertical depth value, we compared the total count of valid names generated after five recursions
to the total count obtained after n recursions, i.e. 0 ≤ n = limv ≤ 5. Figure 6.4 represents
the cumulative frequency graphs of valid names generated according to the number of recursions
performed. This is given in ratio of the total count of discovered subdomains for limv = 5. We
observed that between 55% and 80% of the subdomains are found during the first recursion.
This score depends on the tool providing the initial set of valid subdomains. More than 95% of
the valid subdomains are generated before the fourth recursion for the three tools. Hence, we
can reasonably limit the probe to three recursions by setting limv = 3. This gives good results
while limiting DNS requests performed.

From the experiments, we have observed that the horizontal and the vertical depth are linked.
We raised the horizontal depth to 200 and observed that almost all the new valid subdomains were
dicovered during the first recursion. However, it is worth noting that choosing a high horizontal
depth value leads to perform more useless DNS requests as words less likely to be related with
the original subdomains are tested. As observed in Figure 6.3, we have better success rate for
low values of limh.

6.3.3 Performance Evaluation

Efficacy and improvement

Having defined the optimal values for initial parameters, we evaluate the semantic DNS probing.
We set limh = 40 and limv = 3. We ran the DNS probing of the 24 domain names presented in
Section 6.3.1 based on the initial sets of subdomains obtained from SDBF, Fierce and DNSenum.
Figure 6.5 and Figure 6.6 shows the result of this probe. Domain names are presented on the

116

6.3. DNS Probing Evaluation

Figure 6.5: Percentage (%Impi) of newly discovered subdomains for each domain names

x-axis. The improvement %Impi for each tool and each domain name is plotted on the y-axis
in Figure 6.5. Figure 6.6 shows the count of newly discovered subdomains. Regarding the
individual improvements, in many cases the count of discovered subdomains for each domain
name is doubled or more (%Impi > 100%). For instance, with the original dataset from SDBF,
the count of valid subdomains from go.com, msn.com or google.com, is increased by more than
100%. Moreover for ebay.com, we reach an improvement higher than 200% for both SDBF and
Fierce. Similar results can be observed for DNSenum. For ebay.com, baidu.com and msn.com,
the semantic exploration discovers hundreds of new subdomains that others solutions are not
able to find. Table 6.1 presenting the detailed results of this experiment, shows that the average
improvement for each tool is between 84% (for SDBF) and 102% (for Fierce). Hence, semantic
DNS probing provides a relevant complementary solution to these three tools, being able to
double in many cases the count of known subdomains.

Looking at improvement provided by semantic DNS probing to the overall set of subdo-
mains generated by the three tools, results are a bit less significant. For four domain names
(wort.lu, flickr.com, circl.lu, t.co) semantic exploration does not improve the results of the three
combined tools. However, for livejasmin.com, ebay.com and google.com, the improvement over
the three combined tool is higher than 50%. The average improvement over the three tools is
30% (%Impoverall = 30) proving that semantic DNS probing provides a solution to discover new
subdomains that existing solutions are unable to find.

This proves the efficiency of semantic DNS probing since the most common subdomains
have already been discovered by one of the initial tools (SDBF, Fierce or DNSenum). From a
domain name such as mars.pt.lu: merkur.pt.lu and jupiter.pt.lu have been found. From kanga-
roo.apple.com: we discovered camel.apple.com, porcupine.apple.com and piglet.apple.com. Our
first assumption deduced from observations that subdomains are attributed by human and thus,

117

Chapter 6. Semantic DNS Probing

Figure 6.6: Count (|Newi|) of newly discovered subdomains for each domain names

a semantic relation exists between these, proves correct. Network administrators use seman-
tic relations to link different machines. These domain names, based on planets or animals for
example confirm it.

Strategy

As introduced in Section 6.3.1, different strategies are tested by combining the similar names
module (SN), the splitter and the incremental discovery module (ID). Figure 6.7 shows the
efficiency of several strategies initialized with SDBF. We see that the similar names module,
being the base of each strategy evaluated, leads to discover the main part of new subdomains.
The plots of other strategies mainly coincide with the one from the similar names module used
alone. The second observation is that the splitter module provides very few improvement to
similar names, being almost always merged with its plot. Finally, the incremental discovery
brings some good results, especially for the domain names livejasmin.com and linkedin.com.
Using this module and from the known subdomains news10.livejasmin.com, we discovered 31
new subdomains newsX with X ∈ {1; 9} ∪ {11; 32}.

These results show that the strategy has to be carefully chosen. For fast probing of many
domain names, only the similar names module should be used. However, if the objective is to
exhaustively probe one domain, all modules must be combined, since each of them improve the
results.

Overhead

The overhead in this context is defined as the count of DNS requests performed (#probes). As
previously mentioned, SDBF and DNSenum require more than 250,000 DNS probes per domain

118

6.3. DNS Probing Evaluation

SDBF Fierce DNSenum Overall

Domain names |Init| |New| %Imp |Init| |New| %Imp |Init| |New| %Imp |Init| |New| %Imp

livejasmin.com 24 39 162 20 14 70 18 14 77 37 33 89

ebay.com 123 284 230 115 257 223 185 225 121 284 158 55

google.com 69 125 181 84 87 103 83 108 130 149 77 51

vdl.lu 15 15 100 11 13 118 16 12 75 23 11 47

amazon.com 78 82 105 55 72 130 75 75 100 132 52 39

msn.com 207 281 135 196 246 125 236 223 94 372 140 37

baidu.com 369 243 65 178 280 157 238 253 106 478 157 32

microsoft.com 115 121 105 91 90 98 97 98 101 189 56 29

apple.com 141 128 90 65 116 178 130 106 81 241 70 29

ask.com 88 82 93 78 65 83 79 71 89 135 40 29

uni.lu 57 56 98 22 56 254 67 36 53 110 30 27

go.com 60 67 111 59 46 77 65 51 78 104 29 27

paypal.com 18 20 111 27 13 48 25 15 60 39 10 25

imdb.com 57 42 73 41 37 90 57 38 66 98 23 23

twitter.com 31 25 80 33 16 48 30 18 60 51 10 19

pt.lu 36 29 80 42 12 28 49 21 42 71 14 19

linkedin.com 131 41 31 130 19 14 88 59 67 147 21 14

bbc.co.uk 50 27 54 49 14 28 46 19 41 79 8 10

wikipedia.org 282 23 8 143 101 70 139 105 75 296 14 4

youtube.com 55 4 7 49 2 4 35 12 34 62 1 1

wort.lu 4 2 50 8 1 12 7 2 28 13 0 0

flickr.com 29 3 10 17 1 5 13 4 30 40 0 0

circl.lu 17 0 0 6 0 0 9 0 0 19 0 0

t.co 1 0 0 1 0 0 1 0 0 1 0 0

all domains 2057 1739 84 1520 1558 102 1788 1565 87 3170 954 30

Table 6.1: Probing results for 24 domain names

Figure 6.7: Count of newly discovered subdomains regarding the strategy used.

names to produce their results. Figure 6.8 depicts the count of DNS requests made to probe each
domain name with semantic DNS probing. We can observe that our method always needs to

119

Chapter 6. Semantic DNS Probing

Figure 6.8: Count of DNS requests made per domain name to probe.

Figure 6.9: Count of DNS request made per subdomain in the initial dataset.

perform less than 100,000 DNS requests. The DNS requests count of the semantic DNS probing
is based on the set of names provided by prior tools. The highest count of probes are made

120

6.3. DNS Probing Evaluation

Figure 6.10: Ratio of newly discovered subdomain per probe.

for the largest initial datasets (ebay.com, msn.com, baidu.com). However, half of the probing
campaigns requires less than 20,000 DNS requests to complete.

Figure 6.9 shows the count of DNS requests per initial subdomains depending on the semantic
module used (SN, Splitter, ID). Figure 6.10 shows the average count of subdomains discovered by
DNS request depending on the semantic module used. This depicts the ratio of valid subdomains
generated by the semantic modules out of the total count of generated names. In Figure 6.9 we
observe that the similar names module engenders a quite steady ratio of requests per initial name
(between 200 and 500 requests). The efficiency of this module, as we can see in Figure 6.10,
is also steady, it discovers around one domain name for 200 probes (0.005 subdomain/probe).
Other modules engender less DNS requests than the previous one, as we can see in Figure 6.9
but are also less efficient in discovering valid subdomains. It is worth noting that the incremental
discovery module discovers new subdomains in very few probes when used. Figure 6.10 shows
that subdomains are discovered for three domain names in less than 10 DNS requests per valid
name found. This highlights that the incremental discovery module is very efficient but only in
specific cases.

These results show that semantic DNS probing requires less requests than previous DNS
probing methods (more than four times compare to SDBF or DNSenum). It can discover ap-
proximatively the same count of new subdomains as observed in Section 6.3.3. As a basis the
similar names module should be used since it provides the steadiest and the best results. Never-
theless, the efficiency of the other modules (splitter and incremental discovery) depends on the
targeted domain name and these are useful in specific cases.

121

Chapter 6. Semantic DNS Probing

Conclusion

To switch from phishing domain names and URL detection to prediction of domain names used
in phishing activities, we explored in this chapter the predictable character of domain names.
Some work already disclosed this characteristic by providing efficient DNS probing solutions to
discover subdomains of a domain name. These state of the art techniques rely though on basic
implementations that need many probes and these are not adaptable with their fixed dictionary.
Hence, to complement this work we introduced a new DNS probing technique that captures and
exploits the meaning of domain names.

We argued that, since the DNS has a role to provide a meaning to IP addresses, semantic
analysis can lead to predict domain names composition. Based on the fact that domain names are
given by people, we assumed that subdomains of a given domain name share common semantic
fields. Hence, we introduced three modules able to generate new labels likely to be subdomains
of certain domain name. These semantic modules exploit the composition of domain names
by extracting meaningful labels in order to find related words to these labels. This method
was assessed against 24 popular domain names and compared to three existing DNS probing
techniques. We tested the ability of semantic DNS probing to improve the results delivered by
existing solutions and showed that this method is at least as efficient as state of the art techniques
while producing a lowest overhead.

This shows that semantic analysis of domain names is able to extract domain names com-
position schemes. By carefully using the extracted information we can build models able to
predict domain names that are likely to be used. The results of experiments carried out in this
chapter assessed that domain names are predictable since we were able to discover subdomains
of popular domain names. Although the task of predicting subdomains is easier than full domain
names prediction, this gives serious hints on the applicability of semantic techniques to predict
full domain names.

122

Chapter 7

Proactive Discovery of Phishing

Domain Names

Contents

7.1 Modeling a Phisher’s Language 124

7.1.1 Domain Names Features . 125

7.1.2 Domain Names Generation Model 126

7.2 Domain Names Features Evaluation 129

7.2.1 Dataset . 129

7.2.2 Features Analysis . 130

7.3 Phishing Domain Names Generation 133

7.3.1 Types of Generated Domains . 134

7.3.2 Efficiency and Steadiness of Generation 136

7.3.3 Predictability and Strategy . 138

1 Summary of Contributions . 143

2 Research Perspectives . 145

Introduction

Current approaches to cope with phishing are reactive techniques. They are mostly implemented
as blacklists or with real-time identification methods relying on machine learning. The shortcom-
ing of URL blacklist is the delay between the time when a phishing website is set online and the
time when its URL is blacklisted. This delay can reach several days. Knowing that the average
uptime of phishing attacks is around 32 hours and the median uptime is only nine hours [AR14],
reactive blacklisting is not suited to cope with phishing. Due to this short lifetime, in most cases
phishing websites are included in blacklists when they are not active anymore. Regarding real-
time identification methods, we introduced in Chapter 5 such a technique that is shown efficient.
Other examples of such techniques are Google Safe Browsing and Microsoft Smart Screen being
integrated in Google Chrome and respectively Internet Explorer client web browser. These are
efficient phishing prevention technique as shown in [LMKK07]. In addition, these identification
techniques operate in real-time on previously unseen URLs as shown in Chapter 5. However,
while blacklists can be made publicly available and thus easily integrated to any web client or

123

Chapter 7. Proactive Discovery of Phishing Domain Names

mail client, automated detection techniques rely on complex algorithms that cannot be easily
integrated in any application. Blacklist checking only requires a lookup in a list. Automated
detection techniques require the extraction and the processing of data, which consumes memory
and processing resources and need as well some software products to be installed. These are often
proprietary solutions dedicated to specific software or applications, which limits their widespread
usage contrarily to blacklists.

Hence, we introduce in this chapter a technique to build a phishing domain names blacklist
that does not rely on the protracted process of users report and verification. Based on the
finding made in Chapter 6 and related to the predictability of domain names, we develop a
technique to generate domain names likely to be used for phishing. We focus on the generation
of registered domain names mld.ps that are registered by phishers. The reason is that phishers
maliciously register few domain names that are used as a basis in several phishing URLs and
several phishing campaigns [PKKG10]. Moreover, some phishing attacks involve URLs containing
unique number in order to track targeted victims. The only common point between these unique
URLs remains their domain name. Hence, identifying one phishing domain name can lead to
discard hundreds of phishing URLs. This makes domain name blacklisting more efficient than
URL blacklisting, which must make a perfect match between entries. We have shown in Chapter 4
that phishing domain names present similarities, especially in their semantic composition. These
similar characteristics can be identified and used to automatically generate phishing domain
names.

Leveraging natural language processing methods, we build a proactive domain name moni-
toring scheme that generates a list of potential domain names to track in order to identify new
phishing activities. The creation of the list uses phishing domain name features to build a nat-
ural language model using Markov chains combined with semantic associations. This allows to
generate domain names already used or that will be used in phishing attacks and integrate these
in a proactive blacklist. This copes with the delay usually needed to add an entry in a reactive
blacklist, making this technique suited to phishing and its short lifetime websites. We evaluate
and compare the introduced features using malicious and legitimate datasets before testing the
ability of the approach to proactively discover new phishing domain names. The contributions
of this chapter were published in [MFSE12a].

The rest of this chapter is organized as follows: we start in Section 7.1 by introducing the
domain name generation technique based on features extracted from existing domain names and
a natural language model. In Section 7.2, we present a phishing domain names and a legitimate
domain names dataset and compare domain names composition regarding several lexical features.
We asses the proactive generation of phishing domain names in Section 7.3.

7.1 Modeling a Phisher’s Language

Phishers are human who use common words to compose their phishing domain names. They
use names similar to legitimate domain names, append some other words that come from a
specific vocabulary and leverage some domain specific knowledge and expertise. Phishing domain
names follow some composition patterns characterizing their usage. Hence, we argue that the
monitoring and the analysis of existing domain names to extract these patterns allow to emulate
the composition process used by phishers in order to generate potential phishing domain names.
The domain names considered in this chapter are maliciously registered domain names. These are
composed of two parts, the main level domain (mld) and the public suffix (ps). The registered
domain mld.ps has been defined in Section 4.1. These maliciously registered domain names

124

7.1. Modeling a Phisher’s Language

Figure 7.1: Overview of the phishing domain names generation and validation process

are the ones targeted by our work. As presented in Section 4.1 with the different obfuscation
techniques, phishing domain names are often composed of appended meaningful words. We
introduce a method to analyse and build a model of words composing domain names in order to
generate new ones.

An overview of the domain names generation system is illustrated in Figure 7.1. The input of
the system is a set of domain names from which we extract features. This set can be composed of
any kind of domain names having similarity in their composition. In our case, since we want to
generate domain names likely to be used for phishing, this is a set of blacklisted phishing domain
names. Based on this set, the first step (1) decomposes the domain name and extracts the two
parts for which we build a model: the mld and the ps. Each of these two parts is divided into
words (2) and composition features are extracted. For the public suffix, a simple split according
to dots is sufficient. For the main level domain, a word segmentation technique [SH09] is used in
order to extract every meaningful word. The extracted features are then used to build a model
(3) by computing statistics. The length distribution of the main level domain in words is one
of these features for instance. This model is combined (4) with semantic extensions to enlarge
the generation scope. Generated domain names can be currently involved, have been involved
or will be involved in phishing activities. These must be tracked on a daily basis for instance, in
order to detect new phishing websites. The domain names are checked by the domain checker
(5) to confirm their existence and their malicious activities. This checking can be made using
one of the following technique: signature-based approach, honeypots, manual analysis, etc. Once
existence and maliciousness confirmed, checked domain names are added to a blacklist (6) that
can be integrated to various DNS based intrusion prevention systems.

7.1.1 Domain Names Features

We extract features representing the composition of malicious domain names. The trend to
embed several words in domain names characterizes phishing. Hence, we analyse and identify
which words are used, how many words compose a domain name, which words follow a given one
in phishing domain names. We introduce features representing this composition scheme in order
to build a model of domain names composition. This word composition model mainly applies to
the main level domain. Having a set of mlds M = {mld1,mld2, ...,mldn} extracted from a set
of domain names D = {d1, d2, ..., dn} and assuming W = {w1, w2, ..., wm} the set of all words
extracted from mld ∈ M , we define four statistical features extracted from M :

• #wlenn the count of main level domains mld ∈ M composed of n words.

125

Chapter 7. Proactive Discovery of Phishing Domain Names

• #mldw the count of main level domains mld ∈ M containing the word w ∈ W .

• #fisrtwordw the count of main level domains mld ∈ M starting with the word w ∈ W .

• #biwordsw1,w2
the count of main level domains mld ∈ M containing the word w1 followed

by w2 with (w1, w2) ∈ W 2.

We compute from these statistical features the corresponding distributions to be used in a
domain name generation model:

• the distribution of the main level domain length n ∈ N (in words):

distwlenn =
#wlenn

∑

i∈N#wleni
(7.1)

• the distribution of main level domains mld ∈ M containing the word w ∈ W :

distmldw =
#mldw

∑

i∈W #mldi
(7.2)

• the distribution of main level domains mld ∈ M starting with the word w ∈ W :

distfirstwordw =
#fisrtwordw

∑

i∈W #fisrtwordi
(7.3)

• the distribution of main level domains mld ∈ M containing the consecutive words w1 ∈ W
followed by w2 ∈ W :

distbiwordsw1,w2
=

#biwordsw1,w2
∑

i∈W #biwordsw1,i

(7.4)

For the set of public suffixes P = {ps1, ps2, ..., psn} extracted from the domain names D =
{d1, d2, ..., dn}, we define two simple features:

• #dps the count of domain names d ∈ D having the public suffix ps ∈ P .

• the distribution of domain names d ∈ D having the public suffix ps ∈ P :

distdps =
#dps

∑

i∈P #di
(7.5)

Main level domains composition is detailed using several features and distributions since
their composition is complex and this is the part defined by phishers. Public suffixes do not offer
flexibility in their composition. Phishers just have to pick one under which they can register
their phishing domain names. However, we represent the usage of different public suffixes with
different probabilities since some public suffixes are used more in malicious activities than in
others [AR14]. This is explained by public suffix popularity and by some registrars being more
careful than others when authorizing domain names registration.

126

7.1. Modeling a Phisher’s Language

7.1.2 Domain Names Generation Model

The generator designed for domain name generation is based on an n-gram model and a Markov
chain. Coming from natural language processing, n-grams [MS99] are successive grams sequences
of length n ∈ N, extracted from a string. For example, an n-gram with n = 2 is called a bigram,
an n-gram with n = 3 is a trigram. These grams are usually characters. Such a model is used
with characters in SDBF to generate subdomains as presented in Section 6.1.3. However, in
this chapter, the considered grams are words. N-gram analysis provides a way to study string
composition by gathering grams transitions with these sequences. To study transitions from one
word to the following one without considering previous context, bigrams are sufficient. Hence,
in the context of this study considering words, we especially focus on bigrams of words that are
called biwords.

Considering the following label macromediasetup, it is composed of four words being extracted
during the name decomposition process: macro, media, set, up. Three biwords are extracted from
this label and these are: macromedia, mediaset, setup. The probability of having these biwords
in a set of domain names has been defined in Equation (7.4). This probability represents in fact
the probability of having one word following a given one. This gives a model for domain names
composition. These probabilities of transitions with the words extracted from a set of domain
names are used to build a Markov chain model representing their composition.

A Markov chain [Mar71] is a mathematical system defined as a set of states S={s1,s2,...,sr}
and possible transitions between these states. A Markov chain undergoes transitions from one
state to another. Future states only depends on the current state, no previous state is considered
when computing a transition. Each possible transition between two states can be taken with a
transition probability. Shannon was the first to propose a Markov model of natural language in
[Sha48] to approximate the statistical structure of a piece of text. We use a Markov model the
same way to represent the domain name structure. The states of the Markov chains are defined
as the words w ∈ W and the probability of transition between two words/states w1 and w2 is
given by distbiwordsw1,w2

. In order to generate new names, the Markov chain is completed with
additional transitions that have never been observed. This technique is called additive smoothing
or Laplace smoothing. For each state s, a small probability (0.05) is assigned for transitions to all
the words w ∈ W for which s does not have any transition yet. This probability is shared between
the words according to the distribution distmldw given in Equation (7.2). The same method is
applied for the states s that do not have any existing transitions. In this case, their transitions
follow the exact probability given by the distribution distmldw. The initial state of the Markov
chain, i.e. the one from which the transition process can start is randomly selected for every
domain name generation using distfirstwordw in Equation (7.3). The count of transitions made
before the process ends and the domain name is generated is defined by distwlenn in Equation
(7.1). Given these two last parameters by applying n steps from a word w in the Markov chain,
a label is generated as the mld of a domain name.

A part of a created Markov chain is given in Table 7.1 for some transitions and the associated
probabilities, starting from the word/state pay. Figure 7.2 depicts a small Markov chain model
for generating domain names. This is composed of seven states, the only initial state is secure.
We can see in black the original transitions with their associated probabilities learned from the
learning set. Green transitions depict the transitions obtained using Laplace smoothing on the
state secure.

The words composing the main level domain of different malicious domain names often belong

127

Chapter 7. Proactive Discovery of Phishing Domain Names

Figure 7.2: Markov chain model example
Figure 7.3: Markov chain semantic exten-
sion

Transition per z for secure bucks bill process pay account soft page ...

Probability 0.13 0.1 0.06 0.06 0.06 0.03 0.03 0.03 0.03 0.03 0.03 ...

Table 7.1: Example of Markov chain transitions for the state pay

to one or more shared semantic fields. Given some malicious domain names such as xpantivirus-
local.com, xpantivirusplaneta.com, xpantivirusmundo.com and xpantivirusterra.com, it clearly ap-
pears that these are related. Applying the word extraction process on these domain names, the
words xp, anti and virus are extracted from all of them. Moreover, four words local, planeta,
mundo and terra are extracted from each of them. These four words are closely related, partic-
ularly the three last ones. Given one of these domain names, the remaining three can be found
easily by finding related words to planeta or mundo. However, even if this intuitive conclusion
is obvious for human, it is more complicated to implement in an automated system.

To improve our generation engine based on the Markov chain model, we use once again
DISCO. To each state of the Markov chain, we take the associated label l and compute Disco(l, 5)
returning the five words {w1, w2, w3, w4, w5} most related to l. Then, we compute sim(l, wi) for
each of these words, which gives the similarity score between l and wi. Sim(l, wi) has been
defined in Equation (4.3). We include this result in the Markov chain by providing alternative
word choices in each state. Once a transition to a state s containing the label l is chosen there
are two solutions:

1. The label l is selected to be part of the generated domain name with a probability 0.5.

2. One of the words wi from Disco(l, 5) is selected to be part of the generated domain name

with a probability 0.5× sim(l, wi)
∑5

k=1 sim(l, wk)
.

This semantic extension is depicted in Figure 7.3 for two states of the Markov chain model
from Figure 7.2. Including this semantic extension allows to generate domain names including
words that have not been observed in the domain names learning set. This increases the flexibility
of the approach and does not limit the malicious domain name discovery to the learning set.

A complete example of label generation is illustrated in Figure 7.4 for a main level domain.
The length of the label in words is first computed (1), then the first word that starts the label is
selected (2). The Markov chain is applied for the remaining words to generate (3). For each word
at the step (2) and (3), DISCO is applied to generate other words. To complete the process, a

128

7.2. Domain Names Features Evaluation

Figure 7.4: Main level domain generator

public suffix is appended to the generated main level domain. This is randomly selected following
the distribution distdps defined in Equation (7.5).

7.2 Domain Names Features Evaluation

For assessing our approach, two datasets are selected. The first one is a malicious dataset
composed of domain names from which maliciousness is confirmed. The second dataset is a
legitimate dataset containing non-malicious domain names. In a first step, these are used to
show that the features introduced in Section 7.1.1 allow to discriminate phishing domain names
from legitimate ones. In a second step, the malicious dataset is used to train the phishing domain
name generator to assess its efficiency.

7.2.1 Dataset

To compose the dataset of malicious domain names, three freely downloadable blacklists are
used. These blacklists are the same that were previously used in Chapter 4. These have been
selected because each of them proposes an historical list of blacklisted domain names ordered by
their discovery date. This is an essential dataset requirement in order to test the predictability of
the approach. Each blacklist has collected malicious domain names during at least three years.

• PhishTank [phi]: The downloaded historical blacklist contained 3,738 phishing URLs.

• DNS-BH [mala]: A list of 17,031 malicious domain names was available.

• MDL [malb]: This blacklist contained 80,828 URL entries.

DNS-BH and MDL are not only dedicated to phishing, but also to malware diffusion. These
two lists have been chosen because as described in [AR14], diffusion of malware designed for
data-stealing and particularly crimeware represents a large part of phishing activities. This var-
ious dataset allows also to strengthen the validation of the approach. Following the extraction
of the distinct domain names from the 101,597 URLs and the deletion of duplicated entries be-
tween the three lists, the final dataset contains 51,322 different registered domains mld.ps. Out
of these 51,322 domain names, 39,980 have their mld divisible in at least two parts. This proves
that the majority of phishing domain names have a main level domain composed of several words.

129

Chapter 7. Proactive Discovery of Phishing Domain Names

Figure 7.5: distwlenn | n ∈ {2; 10} for malicious and legitimate domain names

To complement this malicious dataset we add legitimate domain names. The legitimate
dataset is selected to show that even if malicious domain names use some brands included in the
URLs of popular websites in order to mimic them, these still disclose differences. Two sources
are chosen to compose this legitimate dataset. These are the same used in Chapter 4.

• Alexa [ale]: From Alexa’s top 1,000,000 websites list, 40,000 domain names are randomly
picked in the top 200,000 domain names.

• Passive DNS from a Luxembourg ISP: To diversify this dataset and in order to have the
same amount of domain names in each dataset (legitimate/malicious), we complement it
with 11,322 domain names extracted from DNS responses. DNS responses were passively
gathered from DNS recursive servers. We ensure that these domain names are not present
in the initial dataset from Alexa.

The legitimate dataset contains 51,322 entries. 38,712 names have their main level domain
mld divisible in at least two parts. Hence, we have two datasets: a legitimate and a malicious
dataset of equal size.

7.2.2 Features Analysis

The metrics and statistical parameters extracted from each dataset are compared to demonstrate
that the introduced features are different when extracted from malicious or legitimate domain
names. This is done to show that the domain name generator will be able to generate phishing
domain names when it learns a model from phishing domains. By showing that statistical features
being the base of the generator are different between malicious and legitimate domain names, it
proves the model can mimic the composition of each kind of domain names and that the model
will be different for each kind of domain names.

We first analyse the count of words n that composes the main level domain of malicious and
legitimate domain names: #wlenn. In this experiment only domain names that can be split in

130

7.2. Domain Names Features Evaluation

at least two parts are considered. The malicious dataset contains 39,980 such domain names
and the legitimate dataset 38,712. Figure 7.5 shows the distribution of the ratio of mlds that
are composed from 2 to 10 words (distwlenn | n ∈ {2; 10}) in the legitimate dataset and in the
malicious dataset.

We can see in Figure 7.5 that 69% of legitimate mlds are composed of two words whereas only
50% of malicious are. For all upper values of n, the ratio of malicious domain names is higher
than the legitimate one. This shows that malicious mlds tend to be composed of more words
than legitimate mlds. It confirms that phishers use several words in their maliciously registered
domain names as an obfuscation technique. This makes #wlenn a discriminative features for
phishing and legitimate domain names.

We further examine the composition of legitimate and malicious domain names. We analyse
the similarities of words used in main level domains (mld) and public suffixes (ps) of each dataset.
Two probabilistic distributions are extracted from the domain names of the two datasets:

• the different public suffixes of d ∈ D: ∀ps ∈ P,P1(ps) = distdps.

• the different words that compose the main level domains of d ∈ D: ∀w ∈ W,P2(w) =
distmldw.

To compare these probabilistic distributions and infer similarities and dissimilarities we use
the Hellinger Distance. The Hellinger Distance is a metric used to quantify the similarity (or
dissimilarity) between two probabilistic distributions P and Q. The Hellinger Distance is sym-
metric and bounded on [0; 1]. A score of 1 corresponds to a total dissimilarity (P ∩ Q = ∅)
and a score of 0 means that P and Q have the same probabilistic distribution. The Hellinger
Distance is defined in continuous space in Equation (7.6). The equivalent function in discrete
space distribution is given in Equation (7.7) and is the one that is considered to compute the
similarity between the distributions P1 and P2.

H2(P,Q) =
1

2

∫

(

√

dP

dλ
−
√

dQ

dλ

)2

dλ (7.6)

H2(P,Q) =
1

2

∑

x∈P∪Q

(

√

P (x)−
√

Q(x)
)2

(7.7)

This metric is preferred to other more usual metrics such as the Jaccard Index or the KL-
divergence. The Jaccard Index only considers the presence or not of an element in two datasets
but does not consider the probability associated to each element. The KL-divergence metric is a
non-symmetric measure and an unbounded function ([0;+∞]). In addition, the KL-divergence
requires that Q includes at least the same elements of P , i.e. ∀i, P (i) > 0 ⇒ Q(i) > 0.
This constraint may not be satisfied with our datasets and the Hellinger Distance can consider
disjoint probabilistic distributions. This makes the Hellinger Distance more suited to perform
probabilistic distributions comparison.

To compare legitimate and malicious domain names, rather than only compare P1 and P2

extracted from the whole malicious and the whole legitimate dataset, we split these in five
subsets of equal size. This allows not only to show the dissimilarity between malicious and
legitimate domain names but also to show similarities between malicious domain names and
similarities between malicious domain names. The malicious dataset and the legitimate dataset
are randomly split in five smaller subsets, mal-x and respectively leg-x | x ∈ {1; 5}, of equal size
(10,264 domain names).

131

Chapter 7. Proactive Discovery of Phishing Domain Names

leg-5 leg-4 leg-3 leg-2 leg-1 mal-5 mal-4 mal-3 mal-2
mal-1 0.133 0.136 0.133 0.129 0.134 0.014 0.012 0.013 0.014
mal-2 0.134 0.140 0.135 0.131 0.135 0.014 0.012 0.013
mal-3 0.135 0.139 0.134 0.131 0.136 0.013 0.013
mal-4 0.130 0.136 0.131 0.127 0.132 0.013
mal-5 0.134 0.138 0.132 0.129 0.134
leg-1 0.017 0.017 0.018 0.019
leg-2 0.018 0.020 0.018
leg-3 0.016 0.019
leg-4 0.017

0.0 0.04 0.08 0.12 0.16 0.20

Table 7.2: Hellinger Distance for ps (leg=legitimate, mal=malicious)

Table 7.2 shows the Hellinger Distance computed pairwise between all 10 subsets for the
public suffixe (ps) distributions: P1(ps). Hellinger Distance values are represented in the cells
of the table and a gray shaded key highlights these scores. The darker the cell is, the more
similar are the probabilistic distributions extracted from each compared subset, i.e. the darkest
cells represent a distance close to 0. Globally, the public suffixes are similar for domain names
extracted from all subsets, since the distance does not exceed the score 0.15 (0 < H(P,Q) < 0.15).
A clear difference is although present in H(P,Q) when P and Q are picked from the same dataset
(leg/leg or mal/mal), where we get a score H(P,Q) ≈ 0.015. However, when subsets of domain
names of different kinds are compared (leg/mal) the distance shows almost a ten-fold increase:
H(P,Q) ≈ 0.130. This shows that malicious domain names use similar public suffixes that are
different from those used by legitimate domain names.

Table 7.3 considers the distribution of words in main level domains (mld): P2(w). These
scores are depicted the same way as in Table 7.2 except that the gray color scale has a different
range. Here, the distributions are more scattered and show higher distances (0.4 < H(P,Q) <
0.6) meaning less similarities. However, the difference is more important between subsets created
from distinct datasets (mal/leg) where the distance reaches values around 0.56. When comparing
legitimate subsets we got Hellinger Distance values lower than 0.5 globally. Moreover, we can
see that malicious main level domains tend to be very similar in their composition and words
used. These domain names have the lowest distance (H(P,Q) ≈ 0.44) meaning that their
probabilistic distributions are close and most likely contain many common words belonging to a
limited vocabulary. This result highlight once again that malicious and legitimate domain names
are different. Seeing that malicious domain names show the most similarities is a good thing to
generate a composition model that can generalize and faithfully mimic these characteristics.

As a last feature analysis experiment, we extract the Markov chain model out of each full
dataset, legitimate and malicious. Table 7.4 provides the statistics of the Markov chain model of
mld composition extracted from each dataset. The count of initial states is given by Card(V) |
∀w ∈ V,#fisrtwordw > 0, these are the entry point of the Markov chain. The total count
of states in the Markov chain corresponds to Card(W) | ∀w ∈ W,#wordsw > 0. The count
of transitions before implementation of Laplace smoothing is given by Card(U2) | ∀(w1, w2) ∈

132

7.3. Phishing Domain Names Generation

leg-5 leg-4 leg-3 leg-2 leg-1 mal-5 mal-4 mal-3 mal-2
mal-1 0.564 0.571 0.561 0.566 0.565 0.446 0.439 0.443 0.438
mal-2 0.565 0.569 0.566 0.571 0.565 0.445 0.447 0.446
mal-3 0.561 0.566 0.563 0.569 0.564 0.448 0.444
mal-4 0.563 0.567 0.558 0.564 0.561 0.447
mal-5 0.564 0.565 0.554 0.555 0.558
leg-1 0.501 0.494 0.490 0.493
leg-2 0.493 0.497 0.496
leg-3 0.490 0.491
leg-4 0.489

0.4 0.44 0.48 0.52 0.56 0.6

Table 7.3: Hellinger Distance for words in mlds (leg=legitimate, mal=malicious)

U2,#biwordsw1,w2
> 0. This table strengthens the assertion that words present in malicious

main level domains are more related together than those present in legitimate main level domains.
As we can see, the Hellinger Distance is lower between malicious subsets compared to legitimate
subsets despite the higher count of words (states) in the Markov chain created from the malicious
dataset.

These experiments show that a generation model built from phishing domain names is likely
to generate domain names having characteristics specific to phishing domain names. This proac-
tive generation tool for maliciously registered domain would have a limited impact regarding
legitimate domain names generation since these have different characteristics.

Metrics Legitimate Malicious

initial states 14079 14234

states 23257 26987

transitions 48609 56286

Table 7.4: Markov chain statistics for main level domain model

7.3 Phishing Domain Names Generation

The dataset chosen for the rest of the experiments is the whole malicious dataset introduced in
Section 7.2.1. This dataset is split in two subsets and depending on the experiment performed,
the domain names selection technique to compose the subsets and the count of domain names in
each subset vary. One of these subsets is called the training set, from which the features described
in Section 7.1.1 are extracted in order to build the domain names generation model. Based on
it, new domain names are generated and their maliciousness is confirmed if these belong to the
second subset, called the testing set.

The term probing campaign is defined as the generation of one million unique mld.ps with the
domain names generator. These are checked in term of existence and maliciousness. A domain
name is considered as existing if it is actually reachable over the Internet, i.e. it is mapped to

133

Chapter 7. Proactive Discovery of Phishing Domain Names

an IP address. For each generated domain name, a DNS A request is performed and according
to the DNS response status, the domain name is considered as existing (status = NOERROR)
or non-existing (status = NXDOMAIN). Maliciousness is confirmed if the domain name belong
to the testing set, which is composed of blacklisted domain names.

7.3.1 Types of Generated Domains

The first part of the experiment analyses the existence and the type of generated domain names.
Five probing campaigns were run using a generation model trained on 10% of the malicious
dataset. These 10% domain names were randomly picked in the dataset. We analysed the type
of domain names that were generated out of these five millions domain names. Figure 7.6 is an
histogram depicting the results of this experiment. Each of the probing campaigns is represented
on the x-axis. Each of the five drawbars of the histogram represents the number of existing
domain names generated, i.e. these having a DNS reply with the status NOERROR. Existing
domain names are further divided in three categories being wildcarding, domain for sale and
unknown.

We can see that between 80,000 and 110,000 existing domain names were generated during
each probing campaign. Out of these, the majority represents wildcarded domain names (white
rectangles in Figure 7.6). Domain wildcarding is a technique that consists in associating an
IP address to all possible subdomains of a domain name by registering a domain name such as
*.yahoo.com. As a result all DNS queries sent for a domain name containing the suffix yahoo.com
are answered with a NOERROR status DNS response containing always the same IP address.
This technique is useful to tolerate Internet users typing mistakes, or misspelling of subdomains
without any consequence. However, some public suffixes such as .ws, .tk or .us.com apply also
wildcarding. As a result these public suffixes have been identified in order to discard all generated
mld.ps that contain one of them. These domain names get DNS replies with the good status
while not being necessarily registered and used. We can see that these domain names represent
between 75% and 85% (from 60,000 to 90,000) of the existing domain names discovered.

The remaining part is composed of two categories. First, some domain names are registered
but lead to websites of domain names resellers such as GoDaddy or Future Media Architect.
A lot of meaningful domain names belong to this category, around 4,000 per campaign. Some
examples of such domain names are freecolours.com or westeurope.com. Regarding a probing
campaign, the IP addresses obtained through DNS responses are stored and sorted by their
count of occurrences. The IP addresses having more than 50 occurrences are manually checked
to see if these are either related to real hosting or domain selling. Around 50 IP addresses and
ranges have been identified as leading to domain name resellers. These domain names are also
discarded in our study, as these are not really used while being registered. In addition, these are
not likely to be malicious domain names.

Second, the black part of the histogram in Figure 7.6 represents the domain names that are
unknown and have to be checked to confirm if these are related to phishing or not. As highlighted
in Figure 7.6, the remaining potential malicious domain names registered represent only between
15,000 and 20,000 domains out of one million of generated ones. These may be considered as
few domain names (only 2%) but since our method is a proactive one, all non-registered domain
names generated can potentially be used in future phishing campaigns. These are not existing
domain names yet. However, phishing websites lifetime is short. Domain names are maliciously
registered, used few hours before being taking down and not being accessible anymore. Thus
the existence of generated domain names must be checked regularly to discover new malicious
domain names.

134

7.3. Phishing Domain Names Generation

Figure 7.6: Proportion and type of existing gen-
erated domain names.

Figure 7.7: Cumulative frequency graph of do-
main names depending on their MCscore.

The reduction process presented to discard non-existing domain names, wildcarding domains
and domains for sale is automated and reduce the overhead of the maliciousness checking process.

Some domain names of the unknown part were identified as malicious and legitimate. This
was made using the remaining 90% of the malicious dataset and the legitimate dataset. Out of
the five probing campaigns, we had around 500 generated domain names confirmed as malicious
and around 200 generated domain names that were considered as legitimate per campaign. This
portion of legitimate domain names generated is considered as false positives i.e. domain names
generated as malicious while being legitimate. Out of one million domain names generated this
gives a 0.02% false positive rate for the generator. This score is quite low but to reduce this
number of uncorrectly generated malicious domain names, we computed a score for each of these
labelled generated domain names. This score, called the MCscore, measures the similitude
with the underlying training dataset, which has been used for building the model. Assuming a
registered domain name w1w2 . . . wn.ps where wi is the ith word composing the name. wi may
have been generated using DISCO from an original word observed w′

i. The MCscore is computed
using the probability of the transitions made in the Markov chain during the generation process.
This is described in Equation (7.8). The first word probability is multiplied by each probability of
crossed transition in the Markov chain. If some parts are found using DISCO, the similarity score
given by sim(w1, w

′
1) is used. If the word corresponding to the state is used without requiring

DISCO, we have sim(wi, wi) = 1.

MCscore = distfirstwordw′

1
× sim(w1, w

′
1)×

n
∏

i=1

distbiwordswi,w
′

i+1
× sim(wi+1, w

′
i+1) (7.8)

Figure 7.7 represents the cumulative frequency graph of domain names (in %) having a
MCscore lower than x ∈ [1e−6, 0.01]. Phishing domain names are represented with the red
curve and legitimate with the blue curve. We can see that globally phishing related domain
names have a higher MCscore than legitimate ones. Even if a high count of domain names are

135

Chapter 7. Proactive Discovery of Phishing Domain Names

labeled as unknown and some of these are legitimate, it is easy to discard a large part of these
in order to keep a set containing a main part of malicious domain names. If we consider as
malicious only the generated domain names having a MCscore higher than 0.001, then 93% of
the legitimate domain names are discarded while 57% of the malicious domain names are kept
according to Figure 7.7. This shows that using the most probable transitions in the Markov
chain leads to generate domain names most likely to be used for phishing activities. Using less
probable paths in the Markov chain leads to generate malicious but also legitimate domain names
currently in use. The MCscore can be used to avoid the use of a maliciousness domain checking
technique or to reduce its workload by testing only generated domain names having the lowest
scores.

7.3.2 Efficiency and Steadiness of Generation

This section assesses the variation of the efficiency of the malicious domain names discovery
regarding the count of domain names used to learn the model. The malicious dataset is split in
two part for this experiment: a training and a testing set. The training set is used to train the
generator by building the Markov Chain model from domain names contained in it. The testing
set is used to test if the domain names generated using the learned Markov model are actually
malicious or not. The generated domain names are checked against the part of the malicious set
that was not used to build the model, i.e. the testing set, and confirmed as malicious if they are
part of this. This assessment seeks to evaluate the count of know phishing domain names the
training set must contain in order to build a model that can faithfully represent the composition
of phishing domain names. Five probing campaigns were performed with a ratio that varies
from 10% training/90% testing (10/90) to 90% training/10% testing (90/10). The training and
testing subsets were randomly made up. Figure 7.8 shows the count of malicious domain names
generated per campaign depending on the total count of generated names from 0 to 1,000,000.
The five curves represent the five splitting ratio used with the proportion of the training set first
and then the proportion of testing set in percentage: training/testing.

Figure 7.8 shows that the best results are given using a 30% training/70% testing split. This
splitting ratio leads to discover 508 new phishing domain names out of one million generated. We
can see that a training set composed of only 10% of the phishing domains is capable to generate
more than 370 new domain names confirmed as malicious. However, bigger training sets to learn
the Markov model do not provide better results since fewer malicious domain names are generated
with a training set representing more than 50% of the malicious set. This can be explained by
the fact that the testing set is smaller, thus fewer generated domain names can be confirmed as
malicious according to this set. This shows as well that the Markov model needs few instances
of phishing domain names to learn a generator faithfully representing the composition of domain
names since few domain names in the training set are needed to generate a lot of new ones. It
is worth noting that with a smaller training set, more domain names are discovered faster. The
curve representing 10% training/90% testing grows fast, and after only 100,000 generations more
than half (217 domain names) of the total count of phishing domain names generated are found.
However, only this ratio seems to reach its limit in the count of discovered phishing domain
names after one million probes since the curve tends to a horizontal asymptote. This asymptote
is due to the low number of domain names in the training set, which explains that all the tracks
with the higher probability transitions have already been followed in the Markov chain. It shows
some limit of this model to generate a lot of different new domain names. For others split ratio,
following the curve’s trend, if more probes are performed, a reasonable assumption is that more
malicious domain names can be discovered.

136

7.3. Phishing Domain Names Generation

Figure 7.8: Count of malicious domain names generated depending on the total count of generated
domain names and on the variation of training/testing split ratio

Figure 7.9: Count of malicious domain names generated depending on the total count of generated
domain names: five probing campaigns with 30% training/70% testing split ratio

137

Chapter 7. Proactive Discovery of Phishing Domain Names

Figure 7.10: Distribution of malicious domain names discovered regarding the time they are
blacklisted

To assess the regularity and steadiness of the generation process depending on the composition
of the learning set we performed five similar probing campaigns with different learning set. We
selected the best split ratio: 30% training/70% testing to perform this experiment. For each
campaign we randomly made up different training sets and a testing sets from the malicious
set. Figure 7.9 depicts the results of this experiment with the count of malicious domain names
generated according to the total count of generated domain names. The five curves depicts the
five campaigns with different 30% training/70% testing sets. Observations are similar for every
campaigns, which lead to discover around 500 phishing domain names. Moreover, half of the
discovered phishing domain names are generated during the first 200,000 generations, highlighting
the ability of the system to generate the most likely malicious domain names in priority before
being discarded for next generations. This shows that the learning of the composition of domain
names is not dependant on the elements contained in the training set and in the testing set.

7.3.3 Predictability and Strategy

This experiment evaluates the time between the date when a malicious domain name can be
generated using the generator and the date it is actually used for phishing and blacklisted. The
training set is composed of the 10% oldest blacklisted domain names and the remaining 90%
belong to the testing set. The testing set represent 34 months of blacklisted domain names and
the training set 4 months. We chose this repartition to evaluate both the ability of the method
to learn a general generation model from a limited labelled domain set and its ability to generate
domain names a long time before they are used. Hence, we needed a small learning set and a
testing set covering a long period of time. Figure 7.10 depicts the result of this experiments.
All generated domain names were generated based on a malicious domain names set available

138

7.3. Phishing Domain Names Generation

Figure 7.11: Count of discovered malicious domain names depending on the adopted strategy

at t = 0. The histogram of Figure 7.10 shows the count of generated domain names that were
used for phishing and blacklisted at t + x, i.e. x months after generation. We see that a large
quantity of generated malicious domain names are used during a period of four months after their
generation, 14 in the two following months and 23 more in the next two months. This shows that
domain names composition follows fashion schemes because more generated malicious domain
names are used few time after the ones that are used to train the model. However, it is worth
noting that such domain names continue to be used years after these are generated showing that
even old datasets can be used to generate current phishing domain names.

We have described in Section 7.1.2 the two core building blocks for generating domain names:
the Markov chain model and the semantic extension module. The impact of each module on the
generation is assessed according to four strategies described below:

• MC: the Markov chain model without semantic extension is used.

• MC + 5 DISCO: the Markov chain model and for each state of the Markov chain the five
most related words (Disco(w, 5)) are tested. This scenario is the basic implementation
described in Section 7.1.2.

• MC + 5/20 DISCO: the Markov chain model and for each state of the Markov chain five
words randomly picked among the twenty most related words (Disco(w, 20)) are tested.

• MC + 5/50 DISCO: the Markov chain model and for each state of the Markov chain five
words randomly picked among the fifty most related words (Disco(w, 50)) are tested.

The objective of this experiment is to identify the best tradeoff between the success rates in
discovering rogue domain names depending on the computational effort. Figure 7.11 shows the
number of generated malicious domain names depending on the count of probes performed over

139

Chapter 7. Proactive Discovery of Phishing Domain Names

a probing campaign. The same training set is used to build the generation model for the four
different probing campaigns. It clearly comes out that the Markov chain model alone yields the
best results in term of malicious domain names discovered with a total of 370. DISCO strategies
are able to generate only between 57 and 90 malicious domain names over these campaigns
depending on the technique. However, it is worth noting that between 79% and 85% of these
generated domain names are unique, i.e. none of the other strategies are able to find them. Even
if DISCO strategies are less efficient than the basic Markov chain in term of confirmed malicious
domain names per generated domain names, these strategies lead to discover malicious domain
names that the basic model is not able to generate. If a global probing is targeted all the part
of the generation module must be used in order to discover the maximum of phishing related
domain names. However, the Markov chain model is sufficient to find out domain names with
minimum generation processes.

Conclusion

After exploring the solutions for phishing domain names identification in real-time in Part II, we
explored in this part proactive methods. Chapter 5 presented an efficient technique for identifying
phishing URLs in real-time only based on relatedness analysis of single URLs. We explored in
Chapter 6 the possibility to predict domain names using semantic properties of domain names
naming schemes. This was used in DNS probing applications and showed better results than
sate of the art techniques of DNS probing. Based on these first findings assessing the relevancy
of using natural language model and semantic analysis to represent domain names, we explored
in this chapter the way to apply it to phishing prevention. One main characteristic of phishing
campaigns and phishing websites is their short lifetime, making short reaction time to cope with
them paramount. Hence, rather than looking for reactive techniques or real-time techniques to
prevent phishing, we introduced a proactive phishing prevention technique.

This relies on the structural and lexical analysis of phishing domain names composition. We
introduced relevant features capturing the structural composition of domain names and showed
that these features have different values when extracted from phishing or legitimate domain
names. We showed that words composing phishing domain names belong to a limited vocabulary
that is different from the ones used in legitimate domain names. This leaded to build a natural
language model of phishing domain names. This model relies on the introduced features and
leverages a Markov chain model and an n-gram analysis. This model is extended with a semantic
module and is used as a phishing domain names generation technique to generate domain names
likely to be used by phishers in future phishing campaigns. We studied the efficiency of this
generation technique based using a set of malicious domain names to build the generation model.
The experiments showed that the model is able to generate numerous phishing domain names
that are actually used in malicious activities after their generation. Some legitimate domain
names were generated as well but a score computed during the generation process in the Markov
chain allows to discard most of them. This provides an interesting approach to cope with phishing
attacks by preventing connection to malicious link before these are actually used.

The fight against continual threats such as phishing used to rely on reactive techniques.
However, the techniques that have been develop to cope with this problem during the preceding
decades did not succeed to stem this threat. Phishers just developed new tricks and new sub-
terfuges to bypass the developed protection techniques. Hence, to efficiently treat this problem
there is a need to think faster than miscreant and predict in advance the new means they will
use to perpetrate their malicious activities. Such a solution is proposed in this chapter with a

140

7.3. Phishing Domain Names Generation

proactive blacklisting method able to predict domain names that will be used by phishers. This
technique is not foolproof since the malicious domain names generator generates some existing
legitimate domain names. Moreover, the main part of the generated domain names is not used
and will probably never be. Nevertheless, proactive prevention techniques are likely to be the
methods to definitely get rid of this continual threat.

141

Chapter 7. Proactive Discovery of Phishing Domain Names

142

General Conclusion

To cope with the ever growing phishing activities and their consequences, this document de-
scribed several challenges that researchers have to address in order to reverse this increasing
trend by developing phishing protection solutions. These include the need to develop fast detec-
tion techniques that can cope with short phishing attacks lifetime and that can be integrated in
real-time detection system without introducing delay. A second challenge is to develop phishing
protection methods with a large scope in order to deal with most phishing vectors. A third chal-
lenge is the reliability of phishing detection techniques, since phishs tend to mimic legitimate
contents it is difficult to develop techniques that can reliably identify phishs without misiden-
tifying legitimate contents. The last challenge relies less on technical aspects but more on the
usability of developed solutions in order that unsavvy users can understand and easily use the
developed protection techniques.

This document does not address all these challenges in order to provide a bulletproof protec-
tion against the whole range of phishing attacks. However, it provides some relevant contributions
to the fight against phishing, by introducing the use of semantic analysis and word relatedness
computation to identify phishing URLs. Even though the semantic analysis was already used
for phishing detection, this technique was applied only to content containing a lot of information
namely emails and webpages. We introduced in this document a technique to extract the se-
mantic context of domain names and URLs, which are locators containing limited information.
Lexical and semantic analysis of URLs has the advantage to rely only on information contained
in these entities, meaning that this applies to any phishing attack leveraging URLs. It allows to
cover a wide range of phishing attacks since URL are widely used in several phishing attacks.
Moreover, this analysis has been proved fast such that it should not impact user experience and
is able to detect in real-time phishs. Finally, for some applications including a URL recommen-
dation system, this technique presents high reliability this techniques highlight high reliability
that let envision real-world deployment.

The contribution of this document is to introduce the use of lexical and semantic analysis for
two applications:

• Phishing domain names and URLs detection

• Semantic based phishing domain names prediction

1 Summary of Contributions

Phishing Domain Names and URLs Detection

We presented two efficient methods to detect phishing domain names and phishing URLs respec-
tively. The first proposed method focused on the identification of phishing and more generally
malicious domain names. Since the information contained in single domain names can be limited

143

General Conclusion

for short domain names, we first proposed a technique to cluster domain names according to
their activity. This technique computes features from DNS information that was extracted from
passively monitored DNS replies. New features including IP scattering measures were introduced
in order to depict the dispersion of IP addresses mapped to a single domain name. As shown,
these features are highly relevant for distinguishing fluxing domain names from legitimate do-
main names. Studies showed that flux networks are highly used as support for phishing attacks
making their identification relevant to detect phishing attacks. Applying the k-means clustering
algorithm on the set of features led to form several clusters of domain names. Using manual
analysis, we identified the activities of domain names included in each cluster showing that the
DNS-based features we defined were relevant for distinguishing domain names usage including
the difference between malicious and legitimate domain names.

In order to automate the labelling process of domain clusters that are formed using DNS-based
features, we used the property that domain names are meaningful. Since, malicious domains
and fluxing domains are widely used for phishing activities, we explored one characteristic of
phishing domain names and URLs namely to be obfuscated. Phishers use their manipulation
skills to create domain names and URLs that will lure users by carefully choosing the words that
are embedded in their URLs. We presented a sequential technique to extract all the meaningful
words embedded in a domain name in order to form set of words from several domain names.
We introduced several metrics to compute the semantic relatedness between two sets of words
in order to show that words embedded in legitimate domain names belong to different semantic
fields than words used in phishing domain names. The evaluation of the introduced semantic
similarity metrics showed that our assumptions were correct and that legitimate domain names
are different from phishing domain names from a semantic composition point of view. The
defined metrics can be used to identify sets of phishing domain names in a computationally
efficient manner by comparing unknown set of domains to a labelled legitimate and malicious
domains set.

The last contribution of this part was a method using semantic relatedness evaluation of
the components that compose a single URL to infer its likelihood to be a phish. From the
insights brought by Chapters 4 about the use of specific words and semantic fields in phishing
URLs and domain names, the concept of intra-URL relatedness was defined. The computation
of features quantifying this relatedness led to identify single phishing URLs with high accuracy.
This technique relies only on lexical analysis of URL and the extraction of few features ensuring
its rapidity since it infers the phishingness of a URL in less than a second. This technique can
operate in real-time meeting the requirement of speed for a phishing detection techniques. It
focuses on the identification of phishing URLs meeting as well the requirement of coverage, since
a large range of phishing attacks including phishing emails, fake websites, link injection in web
pages or drive-by download is covered. Finally the relevancy of the proposed features is assessed
by the reliability of the machine learning based phish identification we built based on them. The
usage of this in a URL reputation system can reach over 99% accuracy for most URLs.

Semantic Based Phishing Domain Names Prediction

Since time is a paramount parameter in phishing detection and to go further in the early identi-
fication of phishs we explored the possibility to predict phishing domain names used by phishers.
The applications of such technique are to prevent the malicious registration of domain names or
to build predictive blacklists for instance. Witnessing the fact that domain names are meaningful
entities, which are composed by humans, we showed that their composition follow semantic sim-
ilarity patterns that can be learned. For memorisation purposes several subdomains of a single

144

2. Research Perspectives

domain names are semantically related with relationship such as synonymy, antonymy, entailment
or hyponymy. Hence, by inferring these relationships using semantic relatedness computation,
we proved that the subdomains of a domain name are predictable and presented a method for
DNS probing that outperforms the related work relying on predefined dictionary of labels.

The findings of this first research work were further used as a basis to build domain names
that are likely to be used for phishing. Studying the composition of maliciously registered do-
main names, we observed that these are composed of several meaningful words and modelized
this composition with a Markov Chain Model. We further showed that words used in legitimate
and phishing domain names belong to different semantic fields since these show low semantic
relatedness when compared. Exploring this statement, we conclude that using a model of com-
position extracted from phishing domain names we can generate new domain names having the
characteristics of existing phishing domains. The experiments performed with the built phishing
domain names generator assessed that it is able to produce domain names that will be used for
phishing months or years before these are actually registered and used. This produces as well
a limited number of legitimate domain names showing some shortcomings and confirming that
phishing domain names are difficult to spot since these mimic the composition of legitimate ones.
However, the contributions presented in this document showed that semantic analysis of domain
names is a relevant solution to discriminate phishing from legitimate domain names.

Using semantic analysis of the composition of domain names and URLs to protect form
phishing provides solutions for three of the four introduced requirements that are speed, reliability
and coverage. The presented solutions provide either low latency, for phishing URLs rating, or
no latency at all, for predictive methods based on domain names generation models. These are
reliable especially for real-time techniques of URL identification reaching >99% accuracy and
present large coverage.

2 Research Perspectives

One requirement that is not addressed by the contributions presented in this manuscript is the
concrete usability of semantic analysis results by unsavvy users. Even though, it was theoretically
assessed efficient, no real world experiment with a sample of test users was carried out. Moreover,
the considered test sets for assessment were limited in size and the scalability of the methods
was not assessed. Hence, the results presented in this document raise some research perspectives
for future work.

Combination of technical solutions with user intervention.

Even though some work [ECH08] already studied the efficiency of different warning solutions to
prevent phishing and their capacity to be understood and considered by users. The efficiency of
the introduced technique to be used by users and its efficiency depending on the implementation
mode as automated blocking system or recommendation system for instance, must be studied. In
a similar manner the relevancy of the potential phishing related displayed information on raising
user awareness and their ability to teach user must be studied. Automated phishing detection
techniques have an essential role in the fight against phishing but due to their subjection to false
positives, these must be coupled with user intervention. The fight against phishing can only be
won if we make progress in both the development of efficient protection techniques and in raising
user awareness. Moreover, these two fields must not be separated in different studies but must

145

General Conclusion

be jointly examined in order to evaluate the impact of each on the other in order to tailor easily
usable phishing protection techniques.

Extension with other semantic analysis techniques.

This document proposed the use of lexical and semantic analysis of URLs to detect phishs. Some
state of the art techniques of semantic analysis based on Mutual Information computation [Hin90]
were used with DISCO [Kol08, Kol09]. Another technique based on the mining of search engine
query data was introduced in Chapter 5 to cope with the a priori inefficiency of existing solutions
to address the needed task. However, it would be worth applying techniques such as TF-IDF
[SM83] or LSA [LD97] to the domain cluster comparison performed in Chapter 4. The former was
successfully used in CANTINA [ZHC07] to detect phishing web pages and can possibly give good
results if applied to domain names. Additionally, a study of word occurrences and frequencies
can be performed for phishing and legitimate domain names composition in order to see if the
phishing language defined is different from the language usually used to compose legitimate
domain names. Other features extracted from domain names and URLs and introduced in state
of the art work [BWSW10, LMF11, BSHA14] should be as well integrated to improve the results
presented in this document. Specifically, the machine learning based phishing rating system
introduced in Chapter 5 can be improved using these features.

Usage of more refined machine learning and natural language processing techniques.

Even though in Chapter 5, we presented the relevancy of the introduced features set according to
several supervised machine learning algorithm, the same exhaustive study was not applied to ev-
ery proposed technique. The clustering method proposed in Chapter 3 relies on a basic Euclidean
distance and other distance to group the domain names should be tested such as the Manhattan
distance or the Minkowski distance for instance. Other techniques than centroid-based clustering
should be tested as well, like distribution-based clustering and density-based clustering. These
techniques may be more amenable to group domain names according to their related activities
and to separate malicious from legitimate domain names. Similarly, the technique used to model
the composition of phishing domain names in Chapter 7 is a basic Markov Chain model. This
modelling can be improved by using more more refined models such as a Hidden Marvov Model
(HMM) or by modelling the phisher’s language as a formal grammar.

Correlation of other data sources with semantic relatedness features.

While the main focus of this document is the use of semantic analysis to identify phishs, we used
as well DNS information to complement this technique when needed. The correlation of multiple
data sources can be worth to improve the accuracy of semantic based phishing protection tech-
niques. Other work already used host-based information, domain name reputation information
or leveraged existing blacklist to improve phishs detection accuracy. We explored as well this
track by proposing to combine information extracted from URLs to DNS information, honeypot
information and IP flow records in order to detect malicious communications [MJSE14]. Such
data correlation system can have a wider action scope than just phishing detection but can de-
tect as well network intrusions or malware delivery by monitoring other network communications
than HTTP or DNS traffic. This raises as well other challenges through the treatment of the
large amount of information to correlate and the use of distributed computing and storage system
seems mandatory.

146

2. Research Perspectives

Scalability of phishing protection.

We have seen that the proposed methods of phishing protections rely on data mining and ma-
chine learning strategies. During experiments, to assess their relevancy, the introduced methods
were applied to small sample dataset containing from tens to hundreds of thousands URLs or
domain names. However, with almost one billion online webpages currently, we must consider
the scalability issues of the methods to be implemented in real-world scenarios. We already
leveraged distributed data storage and processing solutions for DNS data analysis with Hadoop.
Similarly ,the inference of intra-URL relatedness was performed with streaming analytics solu-
tion e.g. Storm. However, we did not proceed to large scale evaluation with high usage of these
services dealing with millions of instances as it is supposed to be used. In such scenario, even
though the used solutions are supposed to scale, some issues can be raised and the conception
of new adapted distributed processing and storage solutions may be needed to cope with the
workload that may face the system in order to stay usable in real-time conditions. The best
way to assess this scalability capability is to deploy for real usage the solutions proposed in this
document. It would provide as well results related to the real efficiency of the proposed methods
to cope with phishing attacks.

Transversal security applications for semantic relatedness analysis.

This work explores the use of semantic relatedness evaluation and composition of URLs and
domain names. The use of semantic analysis of contents is relevant in a phishing context since
this is a swindle where phishers use text manipulation to lure their victims. While it was already
used to detect phishing webpages and emails, we introduced in this document applications to
phishing domain names and URLs. A promising research topic would be to applied similar
techniques of word composition and semantic relatedness analysis to other contents like phishing
related malware products such as fake antivirus that use partly social engineering to trap users in
buying fake upgrade. Others fields that use meaningful word representation to identify resources
such Content Centric Networking and Named Data Networking can leverage semantic analysis
to identify malicious contents as it is done for phishing URLs and domain names.

147

General Conclusion

148

List of Figures

1 Phishing attacks and phishing domain names recorded every year (source:APWG) 2

1.1 Phishing vectors classification . 14
1.2 Most targeted industry sectors for the 3rd quarter 2014 (source: APWG) 15
1.3 Example of security toolbar (Netcraft toolbar) 19

2.1 Domain Name Space hierarchy and path to the node snt 32
2.2 DNS resolution of the domain name www.inria.fr 32
2.3 Phishing web site hosting using a double flux network 37
2.4 Different DNS probing locations . 40

3.1 Passive DNS Monitoring Architecture . 51
3.2 Computation steps for Sip1 . 55
3.3 Features statistics . 60
3.4 WCSS values for 2-15 clusters obtained with k-means 63
3.5 Feature values according to cluster number . 64

4.1 Malicious domain set identification: architecture overview 71
4.2 Word extraction for securelogin34ebay.com.my-securephishing-domain.co.uk . . . 72
4.3 Unlabelled domain set identification process . 76
4.4 Similarity score Sim3 depending on the count of domain names in the set 81
4.5 Similarity score Sim3 depending on the proportion of malicious domain names in the set 81

5.1 Word extraction for securelogin34ebay.com.my-securephishing-domain.co.uk . . . 91
5.2 Distributed URL processing with Storm topology 93
5.3 Repartition of the count of embedded words per URL 94
5.4 Box-and-whisker diagram for Jaccard based features (min/max) 96
5.5 Phishing classification results for seven classifiers 99
5.6 ROC curve for Random Forest classification . 100
5.7 Phishing and legitimate URL partition according to rating ranges 100

6.1 Semantic DNS probing system overview . 107
6.2 Horizontal and vertical exploration for surf.apple.com 111
6.3 Ratio of newly generated valid subdomains depending on limh. 115
6.4 Cumulative frequency graph of discovered subdomains depending on limv. 116
6.5 Percentage (%Impi) of newly discovered subdomains for each domain names . . . 117
6.6 Count (|Newi|) of newly discovered subdomains for each domain names 118
6.7 Count of newly discovered subdomains regarding the strategy used. 119

6.8 Count of DNS requests made per domain name to probe. 120

149

List of Figures

6.9 Count of DNS request made per subdomain in the initial dataset. 120
6.10 Ratio of newly discovered subdomain per probe. 121

7.1 Overview of the phishing domain names generation and validation process 125
7.2 Markov chain model example . 128
7.3 Markov chain semantic extension . 128
7.4 Main level domain generator . 129
7.5 distwlenn | n ∈ {2; 10} for malicious and legitimate domain names 130
7.6 Proportion and type of existing generated domain names. 134
7.7 Cumulative frequency graph of domain names depending on their MCscore. . . . 134
7.8 Count of malicious domain names generated depending on the total count of generated domain names and
7.9 Count of malicious domain names generated depending on the total count of generated domain names: fiv
7.10 Distribution of malicious domain names discovered regarding the time they are blacklisted138
7.11 Count of discovered malicious domain names depending on the adopted strategy 139

150

List of Tables

1.1 Phishing vectors targeted by phishing protection methods 24
1.2 The extent to which phishing protection methods meet requirements 26

2.1 DNS related malicious activities and the techniques to detect them 45

3.1 Expected feature values depending on domain names activity 57
3.2 Passive DNS capture statistics for dataset Luxembourg and dataset France . . . 58
3.3 IPCount and SubDom features for some domain names 59
3.4 Feature values repartition . 61

4.1 Example of obfuscated URLs for the domain name paypal.com 69
4.2 Example of co-occurrence count (2 windows centered on services) 74
4.3 Values of Sim1 computed between malicious and legitimate subsets 78
4.4 Values of Sim2 × 103 computed between malicious and legitimate subsets 79
4.5 Values of Sim3 computed between malicious and legitimate subsets 80

5.1 Subset of most phishing targeted brands with mld & mld.ps 88
5.2 Count of labels matching at least one related word for 4 tools 88
5.3 Example of term results from Google Trends and Yahoo Clues for {paypal} . . . 90
5.4 Intra-URL relatedness features description . 91
5.5 Statistical values of features extracted from legitimate and phishing datasets . . . 97
5.6 Information Gain values for the 12 features . 98
5.7 Confidence interval for classification results . 99
5.8 Detailed classification results for Random Forest (threshold = 0.76) 100

6.1 Probing results for 24 domain names . 119

7.1 Example of Markov chain transitions for the state pay 127
7.2 Hellinger Distance for ps (leg=legitimate, mal=malicious) 132
7.3 Hellinger Distance for words in mlds (leg=legitimate, mal=malicious) 133
7.4 Markov chain statistics for main level domain model 133

151

List of Tables

152

Bibliography

[AA04] Derek Atkins and Rob Austein. Rfc 3833: Threat analysis of the domain name
system (dns), 2004.

[AAL+05] Roy Arends, Rob Austein, Matt Larson, Dan Massey, and Scott Rose. Rfc 4033:
Dns security introduction and requirement, 2005.

[ADL+10] Manos Antonakakis, David Dagon, Xiapu Luo, Roberto Perdisci, Wenke Lee, and
Justin Bellmor. A centralized monitoring infrastructure for improving DNS se-
curity. In Proceedings of the 13th Symposium on Recent Advances in Intrusion
Detection, Lecture Notes in Computer Science, pages 18–37. Springer Berlin Hei-
delberg, 2010.

[aka] Akamai Content Delivery Network. http://www.akamai.com/ (last visited on
2015-04-21).

[AKM+11] Mikhail Afanasyev, Tadayoshi Kohno, Justin Ma, Nick Murphy, Stefan Savage,
Alex C. Snoeren, and Geoffrey M. Voelker. Privacy-preserving network forensics.
Communications of the ACM, 54(5):78–87, 2011.

[AKS14] Shivam Aggarwal, Vishal Kumar, and S. D. Sudarsan. Identification and detection
of phishing emails using natural language processing techniques. In Proceedings of
the 7th International Conference on Security of Information and Networks, SIN
’14, pages 217:217–217:222. ACM, 2014.

[ale] Alexa WebSites ranking. http://www.alexa.com/ (last visited on 2015-04-21).

[APD+10] Manos Antonakakis, Roberto Perdisci, David Dagon, Wenke Lee, and Nick Feam-
ster. Building a dynamic reputation system for dns. In Proceedings of the 19th
USENIX Security Symposium, SEC ’10, pages 18–18. USENIX Association, 2010.

[APL+11] Manos Antonakakis, Roberto Perdisci, Wenke Lee, Nikolaos Vasiloglou, II, and
David Dagon. Detecting malware domains at the upper dns hierarchy. In Pro-
ceedings of the 20th USENIX Security Symposium, SEC ’11, pages 1–16. USENIX
Association, 2011.

[APN+12] Manos Antonakakis, Roberto Perdisci, Yacin Nadji, Nikolaos Vasiloglou, Saeed
Abu-Nimeh, Wenke Lee, and David Dagon. From throw-away traffic to bots:
Detecting the rise of dga-based malware. In Proceedings of the 21st USENIX
Conference on Security Symposium, SEC ’12, pages 24–24. USENIX Association,
2012.

153

Bibliography

[apw04] Phishing Activity Trends Report: January, 2004. Technical Report January, 2004,
APWG, 2004.

[apw14] Phishing Activity Trends Report: 2nd Quarter 2014. Technical Report 2Q2014,
APWG, 2014.

[AR14] Greg Aarin and Rod Rasmussen. Global Phishing Survey 1H2014: Trends and
Domain Name Use. Technical Report 1H2014, APWG, 2014.

[Ayc12] John Aycock. What’s in a name. . . generator? Journal in Computer Virology,
8(1-2):53–60, 2012.

[BCN01] Nevil Brownlee, Kc Claffy, and Evi Nemeth. Dns measurements at a root server.
In Proceedings of the Global Telecommunications Conference, GLOBECOM ’01,
pages 1672–1676. IEEE, 2001.

[BCP+08] Andre Bergholz, Jeong Ho Chang, Gerhard Paaß, Frank Reichartz, and Siehyun
Strobel. Improved phishing detection using model-based features. In Proceedings
of the 5th Conference on Email and Anti-Spam, CEAS ’08, pages 1–10, 2008.

[BG10a] Kenton Born and David Gustafson. Detecting dns tunnels using character fre-
quency analysis. arXiv preprint, 2010.

[BG10b] Kenton Born and David Gustafson. Ngviz: Detecting dns tunnels through n-gram
visualization and quantitative analysis. In Proceedings of the Annual Workshop on
Cyber Security and Information Intelligence Research, CSIIRW ’10, pages 47:1–
47:4. ACM, 2010.

[BH06] Alexander Budanitsky and Graeme Hirst. Evaluating wordnet-based measures of
lexical semantic relatedness. Computational Linguistics, 32(1):13–47, 2006.

[BJKP14] Bastian Braun, Martin Johns, Johannes Koestler, and Joachim Posegga. Phish-
safe: Leveraging modern javascript api’s for transparent and robust protection.
In Proceedings of the 4th ACM Conference on Data and Application Security and
Privacy, CODASPY ’14, pages 61–72. ACM, 2014.

[BKKB11] Leyla Bilge, Engin Kirda, Christopher Kruegel, and Marco Balduzzi. EXPOSURE:
Finding malicious domains using passive DNS analysis. In Proceedings of the 18th
Annual Network and Distributed System Security Symposium, NDSS ’11. Internet
Society, 2011.

[Blo70] Burton H. Bloom. Space/time trade-offs in hash coding with allowable errors.
Communications of the ACM, 13(7):422–426, 1970.

[BMM+12] Ignacio N. Bermudez, Marco Mellia, Maurizio M. Munafo, Ram Keralapura, and
Antonio Nucci. Dns to the rescue: Discerning content and services in a tangled
web. In Proceedings of the 2012 ACM Conference on Internet Measurement Con-
ference, IMC ’12, pages 413–426. ACM, 2012.

[BN12] Andreas Berger and Eduard Natale. Assessing the real-world dynamics of dns. In
Proceedings of the 4th International Conference on Traffic Monitoring and Anal-
ysis, TMA ’12, pages 1–14. Springer-Verlag, 2012.

154

[BNC03] Andre Broido, Evi Nemeth, and Kc Claffy. Spectroscopy of dns update traffic. In
Proceedings of the 2003 ACM SIGMETRICS International Conference on Mea-
surement and Modeling of Computer Systems, SIGMETRICS ’03, pages 320–321.
ACM, 2003.

[Bre01] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

[BSHA14] Phoebe A. Barraclough, Graham Sexton, Alamgir Hossain, and Nauman Aslam.
Intelligent phishing detection parameter framework for e-banking transactions
based on neuro-fuzzy. In Proceedings of the Science and Information Conference,
pages 545–555. IEEE, 2014.

[BWSW10] Aaron Blum, Brad Wardman, Thamar Solorio, and Gary Warner. Lexical feature
based phishing url detection using online learning. In Proceedings of the 3rd ACM
Workshop on Artificial Intelligence and Security, AISec ’10, pages 54–60. ACM,
2010.

[CDM10] Teh-Chung Chen, Scott Dick, and James Miller. Detecting visually similar web
pages: Application to phishing detection. ACM Transactions on Internet Tech-
nology, 10(2):5:1–5:38, 2010.

[CGD08] Debra L. Cook, Vijay K. Gurbani, and Michael Daniluk. Phishwish: A stateless
phishing filter using minimal rules. In Proceedings of the Conference on Financial
Cryptography and Data Security, Lecture Notes in Computer Science, pages 182–
186. Springer Berlin Heidelberg, 2008.

[CH90] Kenneth W. Church and Patrick Hanks. Word association norms, mutual infor-
mation, and lexicography. Computational Linguistics, 16(1):22–29, 1990.

[cis] The Internet of Things. http://share.cisco.com/internet-of-things.html (last vis-
ited on 2015-04-21).

[CKV08] Marco Cova, Christopher Kruegel, and Giovanni Vigna. There is no free phish: An
analysis of "free" and live phishing kits. In Proceedings of the USENIX Workshop
on Offensive Technologies, WOOT ’08. USENIX Association, 2008.

[CL12] Hyunsang Choi and Heejo Lee. Identifying botnets by capturing group activities
in {DNS} traffic. Computer Networks, 56(1):20–33, 2012.

[CLLK07] Hyunsang Choi, Hanwoo Lee, Heejo Lee, and Hyogon Kim. Botnet detection by
monitoring group activities in dns traffic. In Proceedings of the 7th IEEE Inter-
national Conference on Computer and Information Technology, CIT ’07, pages
715–720. IEEE, 2007.

[clo] Amazon CloudFront CDN. http://aws.amazon.com/cloudfront/ (last visited on
2015-04-21).

[CLTM04] Neil Chou, Robert Ledesma, Yuka Teraguchi, and John C. Mitchell. Client-side de-
fense against web-based identity theft. In Proceedings of the 11th Annual Network
and Distributed System Security Symposium, NDSS ’04, pages 1–16, 2004.

155

Bibliography

[CSDM14] Teh-Chung Chen, Torin Stepan, Scott Dick, and James Miller. An anti-phishing
system employing diffused information. ACM Transactions on Information and
System Security, 16(4):16:1–16:31, 2014.

[CTD+12] Alper Caglayan, Mike Toothaker, Dan Drapeau, Dustin Burke, and Gerry Eaton.
Behavioral analysis of botnets for threat intelligence. Information Systems and
e-Business Management, 10(4):491–519, 2012.

[CV05] Rudi L. Cilibrasi and Paul M. B. Vitanyi. Clustering by compression. IEEE
Transactions on Information Theory, 51(4):1523–1545, 2005.

[CV07] Rudi L. Cilibrasi and Paul M. B. Vitanyi. The google similarity distance. IEEE
Transactions on Knowledge and Data Engineering, 19(3):370–383, 2007.

[CWFC08] Sebastian Castro, Duane Wessels, Marina Fomenkov, and Kimberly Claffy. A
day at the root of the internet. SIGCOMM Computer Communication Review,
38(5):41–46, 2008.

[DG04] Jeffrey Dean and Sanjay Ghemawat. MapReduce: simplified data processing on
large clusters. In Proceedings of the 6th Symposium on Opearting Systems Design
& Implementation (OSDI), pages 137–150. USENIX Association, 2004.

[dmo] DMOZ - the Open Directory Project. http://www.dmoz.org/ (last visited on
2015-04-21).

[dns] DNSenum. https://code.google.com/p/dnsenum/ (last visited on 2015-04-21).

[DOK92] Peter B. Danzig, Katia Obraczka, and Anant Kumar. An analysis of wide-area
name server traffic: A study of the internet domain name system. In Proceedings of
the ACM SIGCOMM Conference on Data Communication, SIGCOMM ’92, pages
281–292. ACM, 1992.

[DRNDJ13] Philippe De Ryck, Nick Nikiforakis, Lieven Desmet, and Wouter Joosen. Tab-
shots: Client-side detection of tabnabbing attacks. In Proceedings of the 8th ACM
SIGSAC Symposium on Information, Computer and Communications Security,
ASIACCS ’13, pages 447–456. ACM, 2013.

[DT05] Rachna Dhamija and J. Doug Tygar. The battle against phishing: Dynamic
security skins. In Proceedings of the 2005 Symposium on Usable Privacy and
Security, SOUPS ’05, pages 77–88. ACM, 2005.

[DTH06] Rachna Dhamija, J. Doug Tygar, and Marti Hearst. Why phishing works. In Pro-
ceedings of the ACM CHI Conference on Human Factors in Computing Systems,
CHI ’06, pages 581–590. ACM, 2006.

[DTMV12] Luca Deri, Lorenzo Luconi Trombacchi, Maurizio Martinelli, and Daniele Van-
nozzi. Towards a passive dns monitoring system. In Proceedings of the 27th
Annual ACM Symposium on Applied Computing, SAC ’12, pages 629–630. ACM,
2012.

[eba] eBay Toolbar. http://pages.ebay.com.au/securitycentre/ebay-toolbar.html (last
visited on 2015-04-21).

156

[ECH08] Serge Egelman, Lorrie F. Cranor, and Jason Hong. You’ve been warned: An em-
pirical study of the effectiveness of web browser phishing warnings. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’08,
pages 1065–1074. ACM, 2008.

[fie] Fierce Domain Scan - RSnake. http://ha.ckers.org/fierce/ (last visited on 2015-
04-21).

[FKP10] Mark Felegyhazi, Christian Kreibich, and Vern Paxson. On the potential of proac-
tive domain blacklisting. In Proceedings of the 3rd USENIX Conference on Large-
scale Exploits and Emergent Threats, LEET ’10, pages 6–6. USENIX Association,
2010.

[FM14] Mohammed Nazim Feroz and Susan Mengel. Examination of data, rule generation
and detection of phishing url using online logistic regression. In Proceedings of the
IEEE Conference on Big Data, BigData ’14, pages 241–250. IEEE, 2014.

[FS10] George Forman and Martin Scholz. Apples-to-apples in cross-validation studies:
Pitfalls in classifier performance measurement. SIGKDD Exploration Newsletter,
12(1):49–57, 2010.

[FST07] Ian Fette, Norman Sadeh, and Anthony Tomasic. Learning to detect phishing
emails. In Proceedings of the 16th International Conference on World Wide Web,
WWW ’07, pages 649–656. ACM, 2007.

[gar07] Gartner survey shows phishing attacks escalated in 2007. Technical report, Gartner
Research, 2007.

[GLLA07] Mohamed G. Gouda, Alex X. Liu, Lok M. Leung, and Mohamed A. Alam. SPP:
An anti-phishing single password protocol. Computer Networks, 51(13):3715–3726,
2007.

[gooa] Google Docs. https://docs.google.com/ (last visited on 2015-04-21).

[goob] Google Safe Browsing. https://developers.google.com/safe-browsing/ (last visited
on 2015-04-21).

[gooc] Google Trends. http://www.google.com/trends/ (last visited on 2015-04-21).

[GPCR07] Sujata Garera, Niels Provos, Monica Chew, and Aviel D Rubin. A framework for
detection and measurement of phishing attacks. In Proceedings of the 2007 ACM
Workshop On Recurring Malcode, WORM ’07, pages 1–8. ACM, 2007.

[GPGL11] Sophie Gastellier-Prevost, Gustavo Gonzalez Granadillo, and Maryline Laurent.
Decisive heuristics to differentiate legitimate from phishing sites. In Proceedings of
the conference on network and information systems security, SAR-SSI ’11, 2011.

[GSMyG+11] Binod Gyawali, Thamar Solorio, Manuel Montes-y Gómez, Bradley Wardman, and
Gary Warner. Evaluating a semisupervised approach to phishing url identification
in a realistic scenario. In Proceedings of the 8th Conference on Email and Anti-
Spam, CEAS ’11, pages 176–183, 2011.

157

Bibliography

[HA13] Isredza R. A. Hamid and Jemal H. Abawajy. Profiling phishing email based on
clustering approach. In Proccedings of the 12th Conference on Trust, Security and
Privacy in Computing and Communications, TrustCom ’13, pages 628–635, 2013.

[hba] Apache HBase. http://hbase.apache.org/ (last visited on 2015-04-21).

[HCNK+14] Seth Hardy, Masashi Crete-Nishihata, Katharine Kleemola, Adam Senft, Byron
Sonne, Greg Wiseman, Phillipa Gill, and Ronald J. Deibert. Targeted threat
index: Characterizing and quantifying politically-motivated targeted malware. In
Proceedings of the 23rd USENIX Security Symposium, SEC ’14, pages 527–541.
USENIX Association, 2014.

[HEH+09] Mark Hall, Frank Eibe, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann,
and Ian Witten. The WEKA Data Mining Software: An Update. SIGKDD
Explorations Newsletter, 11(1):10–18, 2009.

[HF08] Cormac Herley and Dinei Florêncio. A profitless endeavor: Phishing as tragedy of
the commons. In Proceedings of the 2008 Workshop on New Security Paradigms,
NSPW ’08, pages 59–70. ACM, 2008.

[HFP11] Shuang Hao, Nick Feamster, and Ramakant Pandrangi. Monitoring the initial
dns behavior of malicious domains. In Proceedings of the 2011 ACM SIGCOMM
Conference on Internet Measurement Conference, IMC ’11, pages 269–278. ACM,
2011.

[HGRF08] Thorsten Holz, Christian Gorecki, Konrad Rieck, and Felix C Freiling. Measuring
and detecting fast-flux service networks. In Proceedings of the 15th Annual Network
and Distributed System Security Symposium, NDSS ’08, pages 125–134. Internet
Society, 2008.

[HHW+10] Cheng Huang, Nick Holt, Y. Angela Wang, Albert Greenberg, Jin Li, and Keith W.
Ross. A DNS reflection method for global traffic management. In Proceedings of
the USENIX annual technical conference, USENIXATC ’10, pages 1–6. USENIX
Association, 2010.

[Hin90] Donald Hindle. Noun classification from predicate-argument structures. In Pro-
ceedings of the 28th Annual Meeting on Association for Computational Linguistics,
ACL’90, pages 268–275. Association for Computational Linguistics, 1990.

[HJ08] Amir Herzberg and Ahmad Jbara. Security and identification indicators for
browsers against spoofing and phishing attacks. ACM Transactions on Internet
Technology, 8(4):16:1–16:36, 2008.

[HW79] John A. Hartigan and Manchek A. Wong. Algorithm AS 136: A k-means clustering
algorithm. Applied Statistics, 28:100–108, 1979.

[HWLR08] Cheng Huang, Angela Wang, Jin Li, and Keith W. Ross. Measuring and evaluating
large-scale CDNs (Paper withdrawn at Mirosoft’s request). In Proceedings of the
8th ACM SIGCOMM conference on Internet measurement, IMC ’08, pages 15–29.
ACM, 2008.

158

[int15] Number of worldwide internet users from 2000 to 2014.
http://www.statista.com/statistics/273018/number-of-internet-users-worldwide/
(last visited on 2015-04-21), 2015.

[isc] Internet Systems Consortium - Security Information Exchange.
http://www.isc.org/ (last visited on 2015-04-21).

[Jai10] Anil K. Jain. Data clustering: 50 years beyond k-means. Pattern Recognition
Letters, 31(8):651–666, 2010.

[JJJM07] Tom N. Jagatic, Nathaniel A. Johnson, Markus Jakobsson, and Filippo Menczer.
Social phishing. Communications of the ACM, 50(10):94–100, 2007.

[JS04] Jaeyeon Jung and Emil Sit. An empirical study of spam traffic and the use of
dns black lists. In Proceedings of the 4th ACM SIGCOMM conference on Internet
measurement, IMC ’04, pages 370–375. ACM, 2004.

[JSBM02] Jaeyeon Jung, Emil Sit, Hari Balakrishnan, and Robert Morris. Dns perfor-
mance and the effectiveness of caching. IEEE/ACM Transactions on Networking,
10(5):589–603, 2002.

[Kam04] Dan Kaminsky. Ozymandns: a dns tunnel. http://en.cship.org/wiki/OzymanDNS
(last visited on 2015-04-21), 2004.

[KFMK05] Abhinav Kamra, Hanhua Feng, Vishal Misra, and Angelos D. Keromytis. The
effect of DNS delays on worm propagation in an IPv6 Internet. In Proceedings of
IEEE Infocom, INFOCOM ’05, pages 2405–2414. IEEE, 2005.

[KIJ11] Mahmoud Khonji, Youssef Iraqi, and Andrew Jones. Lexical url analysis for dis-
criminating phishing and legitimate websites. In Proceedings of the 8th Conference
on Email and Anti-Spam, CEAS ’11, pages 109–115, 2011.

[KIJ13] Mahmoud Khonji, Youssef Iraqi, and Andrew Jones. Phishing detection: A liter-
ature survey. IEEE Communications Surveys & Tutorials, 15(4):2091–2121, 2013.

[Kil03] Adam Kilgarriff. Thesauruses for natural language processing. In Proceedings
of the International Conference on Natural Language Processing and Knowledge
Engineering, pages 5–13. IEEE, 2003.

[Kit14] Scott Kitterman. Rfc 7208: Sender policy framework (spf) for authorizing use of
domains in email, version 1, 2014.

[Kol08] Peter Kolb. DISCO: A Multilingual Database of Distributionally Similar Words. In
Proceedings of KONVENS 2008 – Ergänzungsband: Textressourcen und lexikalis-
ches Wissen, pages 37–44, 2008.

[Kol09] Peter Kolb. Experiments on the difference between semantic similarity and relat-
edness. In Proceedings of the 17th Nordic Conference of Computational Linguis-
tics, NODALIDA ’09, pages 81–88. Northern European Association for Language
Technology, 2009.

159

Bibliography

[KRA+07] Ponnurangam Kumaraguru, Yong Rhee, Alessandro Acquisti, Lorrie Faith Cra-
nor, Jason Hong, and Elizabeth Nunge. Protecting people from phishing: The
design and evaluation of an embedded training email system. In Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems, CHI ’07, pages
905–914. ACM, 2007.

[Kuc14] Murray Kucherawy. Rfc 7372: Email authentication status codes, 2014.

[LD97] Thomas K. Landauer and Susan T. Dumais. A solution to plato’s problem: The
latent semantic analysis theory of acquisition, induction, and representation of
knowledge. Psychological review, 104(2):211–240, 1997.

[LD10] Jimmy Lin and Chris Dyer. Data-Intensive Text Processing with MapReduce (Syn-
thesis Lectures on Human Language Technologies). Morgan and Claypool Publish-
ers, 2010.

[Ler10] Reuven M. Lerner. At the forge: Redis. Linux Journal, 2010.

[Lin98] Dekang Lin. Automatic retrieval and clustering of similar words. In Proceedings
of the 17th International Conference on Computational Linguistics, COLING ’98,
pages 768–774. Association for Computational Linguistics, 1998.

[LLCT14] Lung-Hao Lee, Kuei-Ching Lee, Hsin-Hsi Chen, and Yuen-Hsien Tseng. Poster:
Proactive blacklist update for anti-phishing. In Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security, CCS ’14, pages
1448–1450. ACM, 2014.

[LLF+11] He Liu, Kirill Levchenko, Márk Félegyházi, Christian Kreibich, Gregor Maier, Ge-
offrey M Voelker, and Stefan Savage. On the effects of registrarlevel intervention.
In Proceedings of the 4th Usenix Workshop on Large-Scale Exploits and Emergent
Threats, LEET ’11. USENIX Association, 2011.

[LM10] Avinash Lakshman and Prashant Malik. Cassandra: A decentralized structured
storage system. ACM SIGOPS Operating System Review, 44(2):35–40, 2010.

[LMF11] Anh Le, Athina Markopoulou, and Michalis Faloutsos. PhishDef: URL names
say it all. In Proceedings of IEEE Infocom, INFOCOM ’11, pages 191–195. IEEE,
2011.

[LMKK07] Christian Ludl, Sean McAllister, Engin Kirda, and Christopher Kruegel. On the
effectiveness of techniques to detect phishing sites. In Proceedings of Detection of
Intrusions and Malware, and Vulnerability Assessment, DIMVA ’07, pages 20–39.
Springer, 2007.

[LSZ02] Richard Liston, Sridhar Srinivasan, and Ellen Zegura. Diversity in dns performance
measures. In Proceedings of the 2nd ACM SIGCOMM Workshop on Internet Mea-
surment, IMW ’02, pages 19–31. ACM, 2002.

[LXP+11] Gang Liu, Guang Xiang, Bryan A. Pendleton, Jason I. Hong, and Wenyin Liu.
Smartening the crowds: Computational techniques for improving human verifica-
tion to fight phishing scams. In Proceedings of the Seventh Symposium on Usable
Privacy and Security, SOUPS ’11, pages 8:1–8:13. ACM, 2011.

160

[mala] DNS-BH - Malware Domain Blocklist. http://www.malwaredomains.com (last
visited on 2015-04-21).

[malb] Malware Domain List. http://www.malwaredomainlist.com (last visited on 2015-
04-21).

[Mar71] Andrey Markov. Extension of the Limit Theorems of Probability Theory to a Sum
of Variables Connected in a Chain. In Dynamic Probabilistic Systems (Volume I:
Markov Models), chapter Appendix B, pages 552–577. John Wiley & Sons, Inc.,
1971.

[MD88] Paul Mockapetris and K. J. Dunlap. Development of the domain name system.
In Proceedings of the ACM SIGCOMM Conference on Data Communication, SIG-
COMM ’88, pages 123–133. ACM, 1988.

[ME12] Samuel Marchal and Thomas Engel. Large scale DNS analysis. In Proceedings
of the 6th IFIP International Conference on Autonomous Infrastructure, Man-
agement, and Security, and Vulnerability Assessment, AIMS ’12, pages 151–154.
Springer-Verlag, 2012.

[MFSE12a] Samuel Marchal, Jérôme François, Radu State, and Thomas Engel. Proactive
discovery of phishing related domain names. In Research in Attacks, Intrusions,
and Defenses, RAID ’12, pages 190–209. Springer-Verlag, 2012.

[MFSE12b] Samuel Marchal, Jérôme François, Radu State, and Thomas Engel. Semantic
based DNS forensics. In Proceedings of the International Workshop on Information
Forensics and Security, WIFS ’12, pages 91–96. IEEE, 2012.

[MFSE14a] Samuel Marchal, Jérôme François, Radu State, and Thomas Engel. PhishScore:
hacking phishers’ minds. In Proceedings of the 10th International Conference on
Network and Service Management, CNSM ’14, pages 46–54, 2014.

[MFSE14b] Samuel Marchal, Jérôme François, Radu State, and Thomas Engel. PhishStorm:
Detecting phishing with streaming analytics. IEEE Transactions on Network and
Service Management, 11(4):458–471, December 2014.

[MFW+12] Samuel Marchal, Jérôme François, Cynthia Wagner, Radu State, Alexandre Du-
launoy, Thomas Engel, and Olivier Festor. DNSSM: A large scale passive DNS
security monitoring framework. In Proceedings of the Network Operations and
Management Symposium, NOMS ’12, pages 988–993. IEEE, 2012.

[MFWE12] Samuel Marchal, Jérôme François, Cynthia Wagner, and Thomas Engel. Semantic
exploration of DNS. In Proceedings of NETWORKING 2012, pages 370–384.
Springer-Verlag, 2012.

[MG08] D. Kevin McGrath and Minaxi Gupta. Behind phishing: An examination of
phisher modi operandi. In Proceedings of the 1st Usenix Workshop on Large-Scale
Exploits and Emergent Threats, LEET ’08. USENIX Association, 2008.

[mic] Microsoft SmartScreen Filter. http://windows.microsoft.com/en-us/internet-
explorer/products/ie-9/features/smartscreen-filter (last visited on 2015-04-21).

161

Bibliography

[Mil95] George A. Miller. WordNet: A lexical database for english. Commununications of
the ACM, 38(11):39–41, 1995.

[MJSE14] Samuel Marchal, Xiuyan Jiang, Radu State, and Thomas Engel. A big data
architecture for large scale security monitoring. In Proceedings of the IEEE Inter-
national Congress on Big Data, BigData Congress’14, pages 56–63. IEEE, 2014.

[MKK08] Eric Medvet, Engin Kirda, and Christopher Kruegel. Visual-similarity-based
phishing detection. In Proceedings of the 4th International Conference on Secu-
rity and Privacy in Communication Netowrks, SecureComm ’08, pages 22:1–22:6.
ACM, 2008.

[MMN08] John McHugh, Ron McLeod, and Vagishwari Nagaonkar. Passive network foren-
sics: behavioural classification of network hosts based on connection patterns.
ACM SIGOPS Operating Systems Review, 42(3):99–111, 2008.

[MNPS07] Loizos Michael, Wolfgang Nejdl, Odysseas Papapetrou, and Wolf Siberski. Im-
proving distributed join efficiency with extended bloom filter operations. In Pro-
ceedings of the 21st International Conference on Advanced Information Networking
and Applications, pages 187–194, 2007.

[Moc87a] Paul Mockapetris. Rfc 1034: Domain names - concepts and facilities, 1987.

[Moc87b] Paul Mockapetris. Rfc 1035: Domain names - implementation and specification,
1987.

[MS99] Christopher D. Manning and Hinrich Schütze. Foundations of Statistical Natural
Language Processing. MIT Press, Cambridge, MA, USA, 1999.

[MSSV09a] Justin Ma, Lawrence K. Saul, Stefan Savage, and Geoffrey M. Voelker. Beyond
blacklists: Learning to detect malicious web sites from suspicious urls. In Proceed-
ings of the 15th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD ’09, pages 1245–1254. ACM, 2009.

[MSSV09b] Justin Ma, Lawrence K. Saul, Stefan Savage, and Geoffrey M. Voelker. Identifying
suspicious urls: An application of large-scale online learning. In Proceedings of the
26th Annual International Conference on Machine Learning, ICML ’09, pages
681–688. ACM, 2009.

[MTM14] Rami M. Mohammad, Fadi A. Thabtah, and Lee McCluskey. Predicting phishing
websites based on self-structuring neural network. Neural Computing and Appli-
cations, 25(2):443–458, 2014.

[net] Netcraft Toolbar. http://toolbar.netcraft.com/ (last visited on 2015-04-21).

[net15] Web Server Survey. Technical Report Januray 2015, Netcraft, 2015.

[NMAM09] Nikos Nikiforakis, Andreas Makridakis, Elias Athanasopoulos, and Evangelos P.
Markatos. Alice, what did you do last time? fighting phishing using past activ-
ity tests. In Proceedings of the 3rd European Conference on Computer Network
Defense, pages 107–117. Springer Verlag, 2009.

162

[Oll05] Gunter Ollmann. The phishing guide - understanding & preventing phishing at-
tacks. Technical report, Next Generation Security Software Ltd., 2005.

[PAS+04] Jeffrey Pang, Aditya Akella, Anees Shaikh, Balachander Krishnamurthy, and Srini-
vasan Seshan. On the responsiveness of dns-based network control. In Proceedings
of the 4th ACM SIGCOMM Conference on Internet Measurement, IMC ’04, pages
21–26. ACM, 2004.

[PB07] Al-Mukaddim K. Pathan and Rajkumar Buyya. A taxonomy and survey of content
delivery networks. Technical report, Grid Computing and Distributed Systems
Laboratory - University of Melbourne, 2007.

[PB08] David Plonka and Paul Barford. Context-aware clustering of DNS query traffic.
In Proceedings of the 8th ACM SIGCOMM conference on Internet measurement,
IMC ’08, pages 217–230. ACM, 2008.

[PCDL09] Roberto Perdisci, Igino Corona, David Dagon, and Wenke Lee. Detecting mali-
cious flux service networks through passive analysis of recursive DNS traces. In
Proceedings of the Annual Computer Security Applications Conference, ACSAC
’09, pages 311–320. IEEE, 2009.

[phi] PhishTank: Out of the Net, into the Tank. http://www.phishtank.com/ (last
visited on 2015-04-21).

[PKKG10] Pawan Prakash, Manish Kumar, Ramana R. Kompella, and Minaxi Gupta. Phish-
Net: Predictive blacklisting to detect phishing attacks. In Proceedings of IEEE
Infocom, INFOCOM ’10, pages 1–5. IEEE, 2010.

[PKP06] Bryan Parno, Cynthia Kuo, and Adrian Perrig. Phoolproof phishing prevention.
In Proceedings of Financial Cryptography and Data Security, Lecture Notes in
Computer Science, pages 1–19. Springer Berlin Heidelberg, 2006.

[pon14] Consumers’ perception about privacy & security: Do they still care ? Technical
Report October 2014, Ponemon Institue, 2014.

[pub] Public Suffix List. https://publicsuffix.org/list/ (last visited on 2015-04-21).

[RJM+05] Blake Ross, Collin Jackson, Mike Miyake, Dan Boneh, and John C. Mitchell.
Stronger password authentication using browser extensions. In Proceedings of the
14th USENIX Security Symposium, SEC ’05, pages 527–541. USENIX Association,
2005.

[RKG06] Pin Ren, John Kristoff, and Bruce Gooch. Visualizing dns traffic. In Proceedings of
the 3rd International Workshop on Visualization for Computer Security, VizSEC
’06, pages 23–30. ACM, 2006.

[RMTP08] Moheeb Abu Rajab, Fabian Monrose, Andreas Terzis, and Niels Provos. Peeking
through the cloud: Dns-based estimation and its applications. In Proceedings
of the International Conference on Applied Cryptography and Network Security,
pages 21–38. Springer Berlin Heidelberg, 2008.

[rsa14] RSA Fraud Report - 2013 a year in review. Technical Report January 2014, EMC2

- RSA, 2014.

163

Bibliography

[RW12] Venkatesh Ramanathan and Harry Wechsler. phishgillnet-phishing detection using
probabilistic latent semantic analysis. EURASIP Journal on Information Security,
pages 1–22, 2012.

[SBJ08] Sushant Sinha, Michael Bailey, and Farnam Jahanian. Shades of grey: On the
effectiveness of reputation-based "blacklists". In Proceedings of the 3rd Interna-
tional Conference on Malicious and Unwanted Software, MALWARE ’2008, pages
57–64. IEEE, 2008.

[SCH+09] Steve Sheng, Lorrie F. Cranor, Jason Hong, Brad Wardman, Gary Warner, and
Chengshan Zhang. An empirical analysis of phishing blacklists. In Proceedings of
the 6th Conference on Email and Anti-Spam, CEAS ’09, pages 1–10, 2009.

[SH09] Toby Segaran and Jeff Hammerbacher. Beautiful Data: The Stories Behind Elegant
Data Solutions, chapter 14. O’Reilly Media, 2009.

[Sha48] Claude E. Shannon. A mathematical theory of communication. The Bell system
technical journal, 27:379–423,623–656, 1948.

[SHK+10] Steve Sheng, Mandy Holbrook, Ponnurangam Kumaraguru, Lorrie Faith Cranor,
and Julie Downs. Who falls for phish?: A demographic analysis of phishing suscep-
tibility and effectiveness of interventions. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, CHI ’10, pages 373–382. ACM, 2010.

[SKG12] Craig A. Shue, Andrew J. Kalafut, and Minaxi Gupta. Abnormally Malicious
Autonomous Systems and Their Internet Connectivity. IEEE/ACM Transactions
on Networking, 20(1):220–230, 2012.

[SLM10] Fabio Soldo, Anh Le, and Athina Markopoulou. Predictive blacklisting as an
implicit recommendation system. In Proceedings of IEEE Infocom, INFOCOM
’10, pages 1–9. IEEE, 2010.

[SM83] Gerard Salton and Michael J. McGill. Introduction to modern information re-
trieval. McGraw-Hill, New York, 1983.

[ssa08] SSAC Advisory on Fast Flux Hosting and DNS. Technical Report SAC 025,
ICANN Security and Stability Advisory Committee, 2008.

[sto] Storm - Distributed and fault-tolerant realtime computation.
https://storm.apache.org/ (last visited on 2015-04-21).

[str10] 2010 Identity Fraud Survey Report. Technical report, Javelin Strategy & Research,
2010.

[TGM+11] Kurt Thomas, Chris Grier, Justin Ma, Vern Paxson, and Dawn Song. Design and
evaluation of a real-time url spam filtering service. In Proceedings of the IEEE
Symposium on Security and Privacy, S&P ’11, pages 447–462. IEEE, 2011.

[TH09] Hicham Tout and William Hafner. Phishpin: An identity-based anti-phishing ap-
proach. In Proceedings of the International Conference on Computational Science
and Engineering, pages 347–352. IEEE Computer Society, 2009.

164

[Tur01] Peter D. Turney. Mining the Web for Synonyms: PMI-IR Versus LSA on TOEFL.
In Proceedings of the 12th European Conference on Machine Learning, EMCL ’01,
pages 491–502. Springer-Verlag, 2001.

[TVBP10] Jonathan T. Trostle, Bill Van Besien, and Ashish Pujari. Protecting against dns
cache poisoning attacks. In Proceedings of the 6th IEEE Workshop on Secure
Network Protocols, NPSec ’10, pages 25–30. IEEE, 2010.

[vRDSP14] Roland van Rijswijk-Deij, Anna Sperotto, and Aiko Pras. Dnssec and its potential
for ddos attacks: A comprehensive measurement study. In Proceedings of the 2014
Conference on Internet Measurement Conference, IMC ’14, pages 449–460. ACM,
2014.

[VSB09] Ricardo Villamarín-Salomón and José Carlos Brustoloni. Bayesian bot detection
based on dns traffic similarity. In Proceedings of the 2009 ACM Symposium on
Applied Computing, SAC ’09, pages 2035–2041. ACM, 2009.

[Wei05] Florian Weimer. Passive DNS Replication. In Proceedings of the 17th annual
FIRST Conference, pages 1–13, 2005.

[WFBc04] Duane Wessels, Marina Fomenkov, Nevil Brownlee, and kc claffy. Measurements
and laboratory simulations of the upper dns hierarchy. In Proceedings of the In-
ternational Conference on Passive and Active Network Measurement, PAM ’04,
pages 147–157. Springer Berlin Heidelberg, 2004.

[WFS+12] Cynthia Wagner, Jérôme François, Radu State, Thomas Engel, Gérard Wagener,
and Alexandre Dulaunoy. SDBF: Smart DNS brute-forcer. In Proceedings of the
Network Operations and Management Symposium, NOMS ’12, pages 1001–1007.
IEEE, 2012.

[Whi09] Tom White. Hadoop: The Definitive Guide. O’Reilly Media, 2009.

[WHLY06] Yao Wang, Ming-zeng Hu, Bin Li, and Bo-ru Yan. Tracking anomalous behaviors
of name servers by mining dns traffic. In Proceedings of the Conference on Frontiers
of High Performance Computing and Networking, pages 351–357. Springer Berlin
Heidelberg, 2006.

[WMG06] Min Wu, Robert C. Miller, and Simson L. Garfinkel. Do security toolbars actually
prevent phishing attacks? In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI ’06, pages 601–610. ACM, 2006.

[WML06] Min Wu, Robert C. Miller, and Greg Little. Web wallet: Preventing phishing
attacks by revealing user intentions. In Proceedings of the Second Symposium on
Usable Privacy and Security, SOUPS ’06, pages 102–113. ACM, 2006.

[WRN10] Colin Whittaker, Brian Ryner, and Marria Nazif. Large-scale automatic classifica-
tion of phishing pages. In Proceedings of the 17th Annual Network and Distributed
System Security Symposium, NDSS ’10. Internet Society, 2010.

[WSS11] Zheng Wang and Tseng Shian-Shyong. Anomaly detection of domain name system
(dns) query traffic at top level domain servers. Scientific Research and Essays,
6(18):3858–3872, 2011.

165

Bibliography

[WT99] Alma Whitten and J. Doug Tygar. Why johnny can’t encrypt: A usability eval-
uation of pgp 5.0. In Proceedings of the 8th USENIX Security Symposium, SEC
’99, pages 169–184. USENIX Association, 1999.

[XH09] Guang Xiang and Jason I. Hong. A hybrid phish detection approach by iden-
tity discovery and keywords retrieval. In Proceedings of the 18th International
Conference on World Wide Web, WWW ’09, pages 571–580. ACM, 2009.

[XHRC11] Guang Xiang, Jason I. Hong, Carolyn P. Rose, and Lorrie F. Cranor. Cantina+:
A feature-rich machine learning framework for detecting phishing web sites. ACM
Transactions on Information and System Security, 14(2):21:1–21:28, 2011.

[XXXB09] Yuchi Xuebiao, Wang Xin, Li Xiaodong, and Yan Baoping. Dns measurements at
the .cn tld servers. In Proceedings of International Conference on Fuzzy Systems
and Knowledge Discovery, FSKD ’09, pages 540–545. IEEE, 2009.

[XYA+08] Yinglian Xie, Fang Yu, Kannan Achan, Rina Panigrahy, Geoff Hulten, and Ivan
Osipkov. Spamming botnets: Signatures and characteristics. In Proceedings of
the ACM SIGCOMM Conference on Data Communication, SIGCOMM ’08, pages
171–182. ACM, 2008.

[yah] Yahoo Clues. http://clues.yahoo.com/analysis (last visited on 2013-10-24).

[YRRR10] Sandeep Yadav, Ashwath Kumar Krishna Reddy, A.L. Narasimha Reddy, and
Supranamaya Ranjan. Detecting algorithmically generated malicious domain
names. In Proceedings of the 10th ACM SIGCOMM Conference on Internet Mea-
surement, IMC ’10, pages 48–61. ACM, 2010.

[YRRR12] Sandeep Yadav, Ashwath Kumar Krishna Reddy, A.L. Narasimha Reddy, and
Supranamaya Ranjan. Detecting algorithmically generated domain-flux attacks
with dns traffic analysis. IEEE/ACM Transactions on Networking, 20(5):1663–
1677, 2012.

[YS02] Zishuang Ye and Sean Smith. Trusted paths for browsers. In Proceedings of the
11th USENIX Security Symposium, SEC ’02, pages 1–17. USENIX Association,
2002.

[YS06] Ka-Ping Yee and Kragen Sitaker. Passpet: Convenient password management and
phishing protection. In Proceedings of the Second Symposium on Usable Privacy
and Security, SOUPS ’06, pages 32–43. ACM, 2006.

[ZBW07] Bojan Zdrnja, Nevil Brownlee, and Duane Wessels. Passive monitoring of DNS
anomalies. In Proceedings of the 4th International Conference on Detection of
Intrusions and Malware, and Vulnerability Assessment, DIMVA ’07, pages 129–
139. Springer-Verlag, 2007.

[ZECH07] Yue Zhang, Serge Egelman, Lorrie Cranor, and Jason Hong. Phinding phish:
Evaluating anti-phishing tools. In Proceedings of the 14th Annual Network and
Distributed System Security Symposium, NDSS ’07, pages 1–16, 2007.

[zeu] ZeuS Tracker - ZeuS blocklist. http://zeustracker.abuse.ch (last visited on 2015-
04-21).

166

[ZHC07] Yue Zhang, Jason I. Hong, and Lorrie F. Cranor. Cantina: A content-based
approach to detecting phishing web sites. In Proceedings of the 16th International
Conference on World Wide Web, WWW ’07, pages 639–648. ACM, 2007.

[ZPU08] Jian Zhang, Phillip A. Porras, and Johannes Ullrich. Highly predictive blacklisting.
In Proceedings of the 17th USENIX Security Symposium, SEC ’08, pages 107–122.
USENIX Association, 2008.

167

Bibliography

168

Résumé

L’hameçonnage, ou phishing en anglais, est un type d’escroqueries modernes qui cible les utilisa-
teurs de moyens électroniques de communications tels que les téléphones ou les ordinateurs. Les
escrocs qui perpétuent ces activités sont nommés hameçonneurs ou phishers. Leur objectif est
de persuader leurs victimes d’effectuer certaines actions pour leur propre profit. Les hameçon-
neurs utilisent leur pouvoir de persuasion pour créer des messages électroniques ou des sites
Internet capables de leurrer et de manipuler leurs naïves victimes. Ils utilisent des mots et des
phrases soigneusement choisis pour établir une atmosphère de confiance avec leurs victimes afin
de les pousser à effectuer certaines actions. Bien que les anciennes méthodes d’escroqueries vi-
sait directement le vol d’argent ou l’obtention de services à titre grâcieux, la principale cible de
l’hameçonnage est le vol de données électroniques confidentielles appartenant à ses victimes, car
ce type de données a pris de la valeur récemment.

La croissance d’Internet a facilité l’usage de services qui n’étaient réalisés auparavant que
par le biais de contacts physiques directs. Certains services basiques tels que la presse écrite
ou télévisée, des enseignements en ligne ou des bibliothèques scientifiques sont maintenant
disponibles sur Internet. D’autres services plus personnalisés tels que les services de paiement
en ligne, de gestion bancaire ou de vente par correspondance sont également accessibles. Ces
services personnalisés sont sensibles car ils sont généralement relatifs à de la gestion d’argent et
d’informations confidentielles. Par conséquent, l’obtention d’accès à ces services est précieuse
afin de voler l’information et l’argent qui y sont stockés. Par exemple, obtenir suffisamment de
renseignements à propos d’une personne peut conduire à une usurpation d’identité. Une identité
usurpée peut être utilisée pour agir dans d’autres escroqueries en nom et place de cette personne
afin de cacher et protéger l’identité du véritable escroc. Cette même identité usurpée peut être
aussi utilisée pour accéder à des services Internet en prétendant être le détenteur d’un compte
pour ces services. Cela représente en fait le principal objectif recherché par les hameçonneurs :
voler les informations requises pour accéder à des services Internet sensibles.

L’hameçonnage est apparu il y a près de 20 ans et ses premières victimes furent des utilisa-
teurs de fournisseur d’accès Internet dont les hameçonneurs essayaient de voler les informations
d’accès aux comptes par le biais d’emails usurpant l’identité d’administrateurs. Les attaques
d’hameçonnage ciblent généralement les utilisateurs de services sensibles donnés et relatifs à des
sociétés données. Les hameçonneurs attirent les clients de ces sociétés en prétendant en être
les représentants afin de demander des informations relatives à l’utilisation de leurs services.
Ces informations volées représentent principalement des données d’accès à des sites Internet ou
des numéros de carte bancaire. Les attaques d’hameçonnage utilisent beaucoup de vecteurs dif-
férents mais dans une proportion prédominante elles s’appuient sur des courriels et des faux sites
Internet qui imitent ceux des services légitimes qu’elles visent. Un point commun à de nom-
breuses attaques est en fait l’utilisation de lien Internet dirigeant les victimes vers des contenus
malveillants. L’utilisation d’URLs offusquées et contenant des noms de domaine malveillantspour
représenter ces liens Internet est très répandue et a fortement augmenté récemment.

De même, au fil des années, les activités d’hameçonnage ont considérablement augmenté en
termes d’attaques perpétrées et de nombre de sociétés ciblées. Cette augmentation des attaques
d’hameçonnage est soulignée par un préjudice financier grandissant et qui a atteint 5,9 milliards
de dollars en 2013 [rsa14]. Il existe quatre principales raisons à cette augmentation :

169

1. L’augmentation de la surface d’attaque : au fil des années, le nombre d’utilisateurs d’Internet
étant de potentielles victimes, a augmenté pour atteindre environ trois milliards aujourd’hui,
comparativement à seulement un demi-milliard en 2001. Le même constat est fait pour
le nombre d’appareils connectés à Internet qui est estimé à des dizaines de milliards, et
ce nombre devrait doubler d’ici 2020. Cela augmente le nombre de vecteurs physiques
d’hameçonnage qui ne sont plus limités aux ordinateurs de bureau ou aux téléphones, mais
incluent également des ordinateurs portables, des smartphones ou des tablettes. Enfin de
plus en plus de services Internet sont disponibles et peuvent être ciblés par les attaques
d’hameçonnage comme le souligne le nombre de près d’un milliard de sites Internet en ligne
de nos jours. Ainsi, de nombreuses nouvelles victimes potentielles, vecteurs physiques et
services sont disponibles pour les hameçonneurs et laissent la possibilité pour de nouvelles
attaques d’être perpétrées.

2. La variété des attaques : les appels téléphoniques, les SMS, les courriels ou les sites
Internet sont des exemples de technologies de communication utilisées pour perpétrer
l’hameçonnage. Protéger les utilisateurs contre cette variété d’attaques est difficile et les
techniques de prévention et de détection existantes ne concernent que certaines d’entre elles.
De nombreuses techniques de détection de courriels d’hameçonnage ou de sites Internet
d’hameçonnage existent, mais leur champ d’application est limité à quelques attaques bien
que des dizaines d’autres existent. Par conséquent, dans le contexte actuel, une protection
globale contre l’hameçonnage implique l’utilisation de plusieurs techniques indépendantes.
De nos jours, le filtrage du courrier électronique, les avertissements des navigateurs Inter-
net et les techniques d’authentification de sites Internet sont utilisés conjointement pour
protéger contre l’hameçonnage. Cependant, certaines attaques parviennent encore à con-
tourner cette protection incrémentale de façon telle, que les conséquences de l’hameçonnage
sont grandissantes.

3. Le nombre croissant d’hameçonneurs et d’attaques perpétrées : le premier phénomène
s’explique par le fait que l’hameçonnage est une activité facile à perpétrer et nécessitant
peu de compétences techniques. Le principal effort, pour construire une attaque, est investi
dans les astuces d’ingénierie sociale utilisées. De plus, une attaque d’hameçonnage peut être
facilement perpétrée par des escrocs techniquement non qualifiés grâce à la disponibilité
à la fois de kits d’hameçonnage prêts à l’emploi et d’infrastructures à faible coût pour
déployer les attaques. L’augmentation du nombre d’attaques perpétrées s’explique par la
diminution du revenu par attaque, forçant les hameçonneurs à lancer plus de campagnes
afin de maintenir un revenu constant de leurs activités délictueuses. L’hameçonnage est un
délit perpétré par beaucoup d’individus et pour de bas revenus. Par conséquent, les contre-
mesures ciblées contre les hameçonneurs sont inefficaces, vu leur nombre, pour réduire cette
activité.

4. Le manque de prise de conscience des utilisateurs : cette raison est le principale et concerne
le manque de prise de conscience face au risque associé aux communications électroniques
et la valeur des informations stockées sur les sites Internet. La plupart des personnes ne
sont pas préoccupés par l’impact du vol de leur mot de passe, de leur numéro de carte
bancaire ou l’usurpation de leur identité. Ce manque de préoccupations ne les motive pas
à protéger leurs données du vol. La sécurité est un objectif secondaire pour la plupart des
utilisateurs et leur connaissance technique limitée ne leur permet pas d’améliorer le niveau
de sécurité de leurs communications électroniques. Les nouveaux crédules utilisateurs de
moyens modernes de communications électroniques sont des cibles faciles pour les hameçon-

170

neurs qui peuvent facilement les piéger. Cette ignorance généralisée est la principale raison
de l’efficacité des attaques d’hameçonnage.

L’hameçonnage est une activité qui ne cesse de croître. De nombreux facteurs expliquent son
expansion et l’augmentation de son préjudice financier pour atteindre plusieurs milliards de dol-
lars chaque année [gar07, str10, rsa14]. La variété des attaques d’hameçonnage, l’augmentation
des victimes potentielles et des vecteurs physiques, la facilité de commettre cette escroquerie mod-
erne et l’ignorance généralisée des victimes en font une activité préoccupante. Outre son impact
financier, l’hameçonnage fait naître des préoccupations concernant l’utilisation des moyens de
communications électroniques. Les utilisateurs de ces technologies voient le vol d’informations
personnelles et leur utilisation abusive comme un événement très susceptible de se produire.
Cette perception de l’hameçonnage comme une fatalité et non comme un problème qui peut être
résolu conduit à éroder la confiance présente entre les utilisateurs de moyens de communications
électroniques. Un risque direct de cette perte de confiance est l’abandon de technologies tels
que les courriels comme moyen de communication. Cela rend la lutte contre l’hameçonnage
primordiale pour préserver l’utilisation généralisée de cette technologie.

Pour faire face à cette épineux problème, nous proposons dans ce document de nouvelles
techniques pour combattre l’hameçonnage. Ces techniques s’appuient sur nos observations des
attaques d’hameçonnage dans l’optique de développer une solution permettant de lutter effi-
cacement contre. Les techniques proposées s’appuient sur l’analyse des noms de domaines et
URLs utilisés pour perpétrer des attaques d’hameçonnage et prend en compte le fait que ces
noms de domaines sont créés par des humains pour piéger d’autres humains. Nous analysons à
la fois la composition sémantique des noms de domaine et les caractéristiques techniques rela-
tives aux noms de domaine pour proposer différentes solutions d’identification rapide d’attaques
d’hameçonnage.

Dans une première partie de ce document nous décrivons ce qu’est l’hameçonnage, les tech-
niques utilisées pour le perpétrer et les moyens développés pour le combattre. Nous identifions
également les exigences auxquelles doit répondre une technique de détection d’hameçonnage pour
être efficace. Dans un second temps, nous présentons le principe de l’analyse et de la surveillance
des noms de domaine et du système qui gère ces domaines : le Système de Noms de Domaine
(DNS). Ensuite, nous passons à la présentation des contributions avec une première méthode
de groupement de noms de domaine en fonction de leurs activités. Une méthode automatique
d’identification de noms de domaine impliqués dans des activités d’hameçonnage est présen-
tée. Cette méthode repose sur l’inférence de similarité sémantique entre les noms de domaine.
Ensuite, nous présentons une méthode d’identification et d’évaluation d’URLs d’hameçonnage.
Finalement, les deux dernières contributions de ce document se focalisent sur la prédiction des
noms de domaines qui seront utilisés pour des activités d’hameçonnage futures et présentent des
générateurs de noms de domaines reposant sur des modèles sémantiques.

L’Hameçonnage et ses Techniques de Protection

L’hameçonnage est une menace persistante qui s’appuie sur de nombreux moyens pour être
perpétrée, en utilisant des subterfuges techniques et de l’ingénierie sociale. L’hameçonnage n’est
pas un problème de sécurité qui vise une brèche dans l’implémentation d’un système ou d’un
réseau, mais il se focalise sur les faiblesses de leurs utilisateurs, ce qui en fait un problème difficile
à résoudre. Malgré 20 ans d’existence et les forces engagées pour sensibiliser les utilisateurs
de moyens électronique de communication, l’hameçonnage est un problème qui provoque un
préjudice financier grandissant au fil du temps. Beaucoup d’attaques différentes sont utilisées

171

pour perpétrer l’hameçonnage. Elles incluent les courriels qui prétendent être envoyer par des
entités légitimes, les faux sites Internet qui imitent des sites légitimes, les sites Internet vendant
des produits à bas coûts ou encore des faux programmes d’antivirus. Cette diversité rend son
combat difficile car ces différents vecteurs requièrent de multiples techniques pour être détectés.
De plus, les attaques d’hameçonnage sont très rapides et durent généralement moins de 12 heures
mais parviennent néanmoins à causer de lourdes pertes financières dans ce court laps de temps.

A la vue des caractéristiques des attaques d’hameçonnage, nous définissons quatre exigences
primordiales que doivent présenter une technique de protection contre l’hameçonnage afin d’être
efficace:

• Vitesse : vu que les attaques d’hameçonnage font de gros dégâts monétaire en peu de
temps et surtout pendant les premières heures d’une attaque, l’identification d’une attaque
doit être rapide pour limiter ses effets néfastes. De plus, si elle doit être utilisée dans un
contexte tel que la navigation Internet, une méthode de protection ne doit pas impacter
cette activité en introduisant de la latence.

• Universalité : une méthode de protection doit être en mesure de protéger contre un maxi-
mum de type d’attaques.

• Fiabilité : une méthode de protection doit être capable de détecter un maximum d’attaques
d’hameçonnage. Toutefois, celle-ci doit également être fiable et ne pas identifier comme de
l’hameçonnage une communication légitime.

• Facilité d’utilisation : une méthode de protection doit être facile à utiliser et à comprendre
par les utilisateurs. La plupart des utilisateurs et en particulier les victimes d’hameçonnage
n’ont que des connaissances techniques limitées et peu de connaissance de la façon dont
les attaques d’hameçonnage sont effectuées. Ainsi, cette méthode doit tenir compte de ce
paramètre et être adaptée pour être facilement utilisable.

De nombreuses techniques ont été développées pour combattre l’hameçonnage au cours des
dix dernières années. Les premières propositions consistaient dans le renforcement des techniques
d’authentification entre les internautes et les sites Internet qu’ils consultaient. Cependant ces
techniques ont été inefficaces car trop compliquées à utiliser par les utilisateurs inexpérimentés.
Pour la même raison, les barres de sécurité qui s’ajoutent sur les navigateurs Internet n’ont pas
été adoptées car elles ajoutaient des contraintes aux utilisateurs pour vérifier la légitimité d’un
site Internet. Ces barres de sécurité proposent généralement des informations à propos d’un site
Internet visité et que l’utilisateur doit interpréter afin de confirmer sans authenticité. Une faib-
lesse des barres de sécurité est leur faible efficacité dans l’identification des sites d’hameçonnage,
les rendant très peu fiables. Une dernière méthode de protection qui fut développée contre
l’hameçonnage fut les listes noires de noms de domaines et d’URLs. Ces listes sont constituées
grâce aux rapports et à la vérification par des utilisateurs de sites Internet suspicieux. Ces
listes noires peuvent être alors intégrées à des navigateurs Internet et à des clients de messagerie
électronique pour filtrer les sites et courriels malveillants. Leur processus, reposant sur une véri-
fication humaine, rend les listes noires très fiables. Elles sont cependant lentement mises à jour
et n’incluent pas beaucoup de sites d’hameçonnage nouvellement apparus car non reportés par
les utilisateurs.

Pour faire face à ce problème de rapidité, des techniques d’identification automatisées d’at-
taques d’hameçonnage ont été développées. Elles n’ont pas ce problème de retard de mise à jour
car elles identifient les attaques à la volée. Les principales solutions proposées sont appliquées

172

à l’identification des courriels d’hameçonnage, les sites Internet d’hameçonnage et les URLs im-
pliquées dans des attaques d’hameçonnage. L’identification des courriels d’hameçonnage et des
sites Internet d’hameçonnage est très spécifique puisqu’elle se focalise sur des types restreints
d’attaques, limitant leur universalité d’application. Dans une autre perspective, le temps pour
identifier les attaques reste obscur et beaucoup de travaux réalisé ne publient pas leur per-
formance en terme de rapidité ou présentent de fortes latences supérieures à cinq secondes et
qui se montreraient problématique pour une usage en temps réel. Par exemple, les techniques
pour l’identification des sites Internet d’hameçonnage s’appuient sur l’extraction de nombreuses
caractéristiques des pages Internet, ce qui prend du temps.

Une dernière méthode existante pour identifier les attaques d’hameçonnage consiste en l’-
analyse des URLs. Cette technique utilise uniquement le contenu d’une URL et en réalise une
analyse lexicale, ce qui a l’avantage d’être rapide à réaliser. De plus, les URLs sont utilisés dans
beaucoup d’attaques d’hameçonnage faisant de cette méthode de protection celle ayant la portée
la plus large. Une limitation des méthodes existantes basées sur l’analyse lexicale est qu’elles ont
une précision moindre que les techniques utilisant plus de paramètres comme le contenu d’une
page Internet ou des informations relatives au serveur hébergeant un site Internet. En outre, les
modèles d’identification appris par ces techniques reposent sur des heuristiques statiques liées à
l’utilisation de certains mots dans une URL ou à trouver un nombre spécifique de caractères. Cela
limite la capacité d’adaptation de ces approches dans certains contextes, comme par exemple un
changement de tendance dans la composition des URLs d’hameçonnage ou l’attaque de nouveaux
services par les hameçonneurs.

L’analyse des techniques de protection contre l’hameçonnage montre qu’il y a un besoin de
développer de nouvelles méthodes car aucune d’entre-elles ne remplit les quatre critères présentés
afin d’obtenir une technique de protection efficace. De nouvelles solutions doivent être proposées
et ces solutions de détection doivent être rapides, avoir un large champ d’application, être facile
à comprendre et à utiliser pour les utilisateurs et être fiable. Utiliser des méthodes d’analyse
lexicales comme base pour de nouvelles améliorations, en particulier dans la fiabilité, semble
être l’approche la plus prometteuse car ces solutions sont déjà rapides et ont un large champs
d’application, réunissant deux critères primordiaux.

Surveillance du Système de Noms de Domaine

Le Système de Noms de Domaine (DNS) est un élément clé du fonctionnement d’Internet. Il
assure la découverte des ressources sur Internet en mémorisant simplement un nom de domaine
facile à retenir. Sa fonction principale est de traduire des noms de domaine en adresses IP. En
fait il permet d’associer n’importe quel type d’information à un nom de domaine. L’accès aux
ressources Internet avec un mécanisme de traduction d’adresses IP fournit un grand avantage pour
les services Internet en renforçant leur disponibilité et permettant d’effectuer de l’équilibrage de
charge entre plusieurs serveurs. Ceci permet également une récupération rapide en cas de panne
d’un serveur en changeant simplement dans un enregistrement DNS l’adresse IP du serveur
défectueux par celle d’un serveur en état de fonctionnement. Le DNS est utilisé pour améliorer
la disponibilité et la diffusion des contenus sur Internet à travers les réseaux de diffusion de
contenu (CDNs ou Content Delivery Networks). Il a également d’autres applications comme la
diffusion de listes noires par exemple et est donc utilisé pour de nombreuses applications qui vont
au delà de sa conception et de son rôle initial.

Malheureusement, ce service est également utilisé pour renforcer les activités malveillantes en
fournissant un moyen de cacher la véritable infrastructure des réseaux malveillants tels que les

173

réseaux de zombies ou botnets ou les serveurs hébergeant des sites d’hameçonnage par exemple.
Ce processus est réalisé grâce à l’utilisation de réseaux de flux ou flux networks. Le fluxing
consiste à faire fréquemment changer les adresses IP associées avec un même nom de domaine.
Ainsi, un même contenu sera toujours représenté par le même nom de domaine mais sa localisation
physique changera constamment. Ce processus est utilisé pour durcir le processus de lutte contre
la diffusion de contenus malveillants sur Internet comme les sites d’hameçonnage. Cependant,
effectuer cet usage du système de nom de domaine présente certaines caractéristiques qui peuvent
être identifiées en analysant le trafic DNS.

Le suivi et l’analyse du trafic DNS a été utilisé à plusieurs fins, allant de l’évaluation des
performances du réseau à la détection des menaces. Plusieurs emplacements de surveillance peu-
vent être choisis en fonction des fins souhaitées, la mise à l’échelle requise et le respect de la vie
privée des utilisateurs. Certains chercheurs ont proposé des solutions pour recueillir et analyser
le trafic DNS afin d’identifier les réseaux de flux malveillants étant le support de réseaux de zom-
bies et des activités d’hameçonnage. Des caractéristiques sont extraites des paquets DNS afin de
représenter la nature des noms de domaines observés en utilisant des techniques de classification.
Ces solutions proposées s’appuient sur l’accumulation de grandes quantités de trafic DNS. Cela
implique une latence élevée dans l’identification des noms de domaine malveillants, qui n’est pas
problématique pour la détection des réseaux de zombies car ces derniers opèrent sur de longues
périodes de temps allant de quelques mois à plusieurs années. Cependant, l’application à la détec-
tion d’hameçonnage est limitée en raison de la courte durée de vie des attaques d’hameçonnage.
Certaines techniques ont une portée limitée puisqu’elles ne peuvent être exploités que par cer-
tains acteurs d’Internet car elles s’appuient sur la surveillance du trafic DNS à des niveaux
supérieurs de la hiérarchie DNS. Quelques travaux portant sur l’analyse lexicale des noms de do-
maine montrent de bonnes perspectives dans l’identification des noms de domaines malveillants.
Les solutions d’analyse lexicale proposées sont rapides puisqu’elles ne nécessitent pas de grande
quantité de données DNS. Toutefois, les applications de ces techniques sont limitées à la détec-
tion de tunnels DNS ou à la détection de noms de domaine générés algorithmiquement. Outre le
fait que certains services légitimes comme les CDNs utilisent des algorithmes pour générer leurs
noms de domaine, les noms de domaine d’hameçonnage ne le sont généralement pas, limitant
donc l’application de ces techniques au problème de l’hameçonnage.

Par conséquent, l’étude lexicale de noms de domaine couplé avec des données DNS peut se
montrer prometteuse pour l’identification des noms de domaine d’hameçonnage. Cependant,
des techniques plus élaborées doivent être développés afin de différencier les noms de domaine
d’hameçonnage des noms de domaine légitimes. Une solution pourrait résider dans l’étude des
mots qui composent les noms de domaines et de leurs significations afin d’observer si certains
mots ou champs sémantiques sont utilisés différemment dans les noms de domaine légitimes et
dans ceux d’hameçonnage.

Surveillance à Grande Echelle du Système de Noms de Domaine

pour Identifier les Noms de Domaine Malveillants

Etant un service de base d’Internet, le système de noms de domaine recèle une quantité d’-
informations extrêmement riche pour la surveillance de la sécurité d’un réseau. Une activité
d’intérêt majeur liée aux abus d’utilisation du système de noms de domaine est la diffusion de
contenus malveillants comme des sites Internet d’hameçonnage. L’hébergement de ces contenus
s’appuie principalement sur une activité décrite précédemment à savoir le changement fréquent
des adresses IP associés à un même nom de domaine ou fluxing. Ces noms de domaine sont

174

représentés par des caractéristiques spécifiques au niveau du DNS. Certaines de ces caractéris-
tiques sont le nombre élevé d’adresses IP associées à un nom de domaine unique ou le faible
temps de vie des enregistrements DNS associés à ces noms de domaines. Ces caractéristiques ne
peuvent cependant être calculées qu’à partir de données DNS agrégées pour un nom de domaine
unique. Par conséquent, une surveillance continue du trafic DNS est nécessaire pour inférer ce
genre d’activité et une inspection au cas par cas des paquets DNS n’est pas suffisante. La surveil-
lance sur une longue période de temps du trafic DNS peut générer de grande quantité de données
qu’il convient de stocker dans un système approprié. De même, l’exploitation et l’analyse des
données stockées nécessite également des techniques appropriées.

Nous proposons donc une architecture pour surveiller le trafic DNS et le capturer. Cette
architecture présente les moyens de capturer le trafic DNS passivement et de le stocker de manière
distribuée pour des raisons de mise à l’échelle. La méthode de capture proposée a les avantages
de préserver l’anonymat des utilisateurs émettant des requêtes DNS et d’éviter la redondance
des paquets DNS capturés, favorisant ainsi un gain d’espace de stockage. Le système de stockage
s’appuie sur des bases de données distribuées et chaque nom de domaine observé est stocké avec
neuf caractéristiques le représentant et permettant d’inférer le type d’activité auquel il est lié, et
notamment une activité légitime ou malveillante. Ces caractéristiques sont entre autres:

• le nombre d’adresses IP qui lui sont associées,

• la dispersion de ces adresses sur différents réseaux,

• la période de validité moyenne de ses enregistrements,

• le nombre de requêtes observées pour ce nom de domaine,

• la période de temps sur laquelle il a été observé,

• le nombre de sous-domaines qu’il détient,

• le nombre de serveurs étant autoritaires pour délivrer de l’information à propos de ce nom
de domaine.

Ces caractéristiques sont choisies car elles permettent d’inférer la dynamique, la longévité,
l’importance et la stabilité d’un nom de domaine. Ces critères sont déterminants pour distinguer
les noms de domaine effectuant du fluxing de ceux ayant une activité légitime. Les données
capturées sont exploitées par un système distribué de traitement de donnés étant Hadoop. Nous
appliquons une méthode de regroupement ou clustering sur ces données afin de grouper ensemble
les noms de domaine ayant une activité similaire grâce à l’algorithme des K-means.

Cette méthode de capture fut appliquée dans deux réseaux de différente nature permettant
ainsi de recueillir deux ensembles de données différents de traces DNS. En appliquant l’algorithme
de regroupement des K-means sur ces jeux de données, nous avons été capable de former sept
groupes de noms de domaine présentant différentes caractéristiques. Après analyse manuelle de
certains éléments de ces groupes, nous avons constaté que certains groupes contenaient unique-
ment des noms de domaine étant très populaires et un autre uniquement des noms de domaine
avec une faible popularité. Les noms de domaine utilisés dans la diffusion de contenu (CDN)
étaient rassemblés dans un même groupe, de même que les noms de domaines suivant les com-
portements des utilisateurs et finalement les noms de domaines impliqués dans les réseaux de
flux étaient également rassemblés ensemble. Le résultat de cette expérience tend à prouver que
la capture et l’analyse de données DNS est adaptée à l’identification des noms de domaines
impliqués dans des activités malveillantes.

175

Plusieurs travaux concernant l’analyse passive de données DNS ont été précédemment effec-
tués. Cependant, nous sommes les premiers à proposer l’utilisation d’un système de traitement
de données distribué pour des raisons de mise à l’échelle qui sont dues à la grande quantité de
données à traiter. En outre, les travaux existants se focalisent sur l’identification des noms de
domaine malveillants en utilisant généralement des méthodes de classification alors que nous
utilisons une méthode de regroupement qui ne nécessitent aucune connaissance préalable sur la
nature des noms de domaine à traiter. Nous proposons également de nouvelles caractéristiques
permettant d’identifier les noms de domaine malveillant à partir de données DNS comme la
dispersion des adresses IP associées à un nom de domaine.

Cette technique, tout en étant efficace à première vue, a quelques inconvénients. L’emplace-
ment des sondes de capture est un facteur important qui influe sur les valeurs des caractéristiques
que l’on extrait des paquets DNS pour un même nom de domaine. Par conséquent, pour obtenir
des caractéristiques représentatives d’un nom de domaine donné, plusieurs sondes DNS doivent
être déployées à travers Internet. Sans ce déploiement à grande échelle, les résultats du regroupe-
ment peuvent être faussés par un intérêt local de certains utilisateurs pour des noms de domaine
donnés. Une autre exigence de ce genre de méthode est l’accumulation de plusieurs paquets DNS
concernant un même nom de domaine pour obtenir des caractéristiques représentatives. Cela
introduit une latence dans l’identification des noms de domaine malveillants. Enfin, l’ensemble
des données à analyser doit être équilibré. Si le nombre de noms de domaine malveillants est
trop faible, il y a de fortes chances que ces derniers ne soient pas suffisamment représentatifs
pour former un groupe indépendant de noms de domaine malveillants et qu’ils soient mélangés
avec des noms de domaine légitimes.

Identification des Noms de Domaine d’Hameçonnage en Utilisant

leur Parenté Sémantique

Pour compléter et faire face à certaines lacunes de la méthode passive d’analyse de données
DNS présentée précédemment, nous introduisons une nouvelle technique pour identifier les noms
de domaine d’hameçonnage. Alors que la première proposition repose sur des caractéristiques
extraites des paquets DNS, cette nouvelle méthode s’appuie sur l’analyse sémantique des noms de
domaine et permet d’identifier automatiquement des groupes de noms de domaine inconnu comme
étant malveillants ou non. Cette méthode repose sur le fait que les hameçonneurs enregistrent
des noms de domaine utilisant un vocabulaire spécifique pour piéger leur victime grâce à des
liens offusqués. Nous proposons donc d’identifier ce vocobulaire utilisé dans les nom de domaine
malveillants et de prouver qu’il est différent de celui utilisé dans les noms de domaine légitimes.

Pour ce faire, nous extrayons les mots composant les noms de domaine et créons une liste de
couple contenant les mots extraits et leur fréquence d’apparition composant ainsi une distribution
probabiliste des mots composants un nom de domaine. Comme certains nom de domaine peu-
vent être courts nous extrayons ces distributions probabilistes d’un groupe de noms de domaine
préalablement formés car ayant des similitudes. La méthode de regroupement précédemment
proposée et reposant sur de l’analyse de données DNS peut être utilisée à cette fin. Une fois une
distribution probabiliste des mots composant des noms de domaine obtenue, nous proposons de
quantifier les similarités sémantiques entre deux distributions. Nous cherchons à démontrer par
ce biais que les mots composant des noms de domaine malveillants et les mots composants des
noms de domaine légitimes appartiennent à des champs sémantiques différents et qu’identifier
cette différence peut conduire à leur distinction. Nous proposons donc trois métriques basées sur
des méthodes de l’état de l’art et permettant de quantifier la similarité sémantique entre deux

176

distributions probabilistes de mots. Par transition, vu que ces distributions sont extraites de
groupes de noms de domaine, ces métriques permettent de quantifier la similarité sémantique
entre deux groupes de noms de domaine.

Afin de tester la validité de cette approche, nous calculons les trois métriques introduites
entre différents ensembles de noms de domaine malveillants et légitimes. Cinq ensembles de
noms de domaine malveillants et cinq ensemble de noms de domaine légitimes sont comparés
deux à deux en utilisant les trois métriques. La conclusion est la même pour l’évaluation des
différentes métriques :

• les groupes de noms de domaine légitimes montrent une grande similarité entre eux,

• les groupes de noms de domaine malveillants montrent une grande similarité entre eux,

• les groupes de noms de domaine légitimes lorsqu’ils sont comparés aux groupes de noms de
domaine malveillants montrent une faible similarité étant de l’ordre de 20% à 30% inférieure
aux deux précédents cas de figure.

Ces résultats montrent effectivement que les mots composant les noms de domaine malveil-
lants sont différents des mots composant les noms de domaine légitimes. Cette différence peut
être exploitée en utilisant les métriques proposées pour identifier des groupes de noms de domaine
comme malveillants ou légitimes. En comparant successivement un groupe de noms de domaine
inconnu à un groupe de référence de nom de domaine malveillants et à un groupe de référence
de noms de domaine légitimes, et en prenant en compte la plus grande similarité obtenue, nous
pouvons en conclure la nature du groupe inconnu. Nous montrons empiriquement qu’un groupe
de noms de domaine doit au moins comporter dix éléments pour être analysé et pour obtenir un
résultat concluant.

De par sa conception cette méthode ne nécessite pas de déploiement à grande échelle de sondes
DNS contrairement à la précédente méthode. Cependant, il faut une phase d’apprentissage sur
des données labélisées afin d’avoir des groupes de référence pour effectuer une comparaison.
Ceci est un inconvénient car les techniques d’hameçonnage évoluent très vite et les modèles
sémantiques des noms de domaine malveillants peuvent évoluer également. En outre, l’approche
sémantique présentée ne peut s’appliquer qu’à des groupes de noms de domaine et non à des
noms de domaine individuels. Par conséquent, un regroupement préalable des noms de domaine
doit être réalisé, ce qui introduit un délai, tout du moins au moment de l’initialisation de cette
méthode afin de former des groupes initiaux de noms de domaine. Cependant, après cette étape,
de nouveaux noms de domaine capturés peuvent être inclus dans les groupes déjà formés pouvant
ainsi proposer une détection en temps réel des noms de domaine malveillants.

Une technique pour identifier individuellement les noms de domaine ou les URLs d’hameçon-
nage sans phase d’apprentissage aurait les avantages des deux précédentes méthodes sans en
avoir leurs faiblesses. Une telle méthode pourrait identifier en temps réel les noms de domaine
ou les URLs d’hameçonnage sans délai engendré par une phase d’initialisation.

Evaluation des URLs d’Hameçonnage en Utilisant des Relations

Sémantiques

Pour répondre aux limitations des méthodes précédemment présentées et parvenir à identifier
individuellement des attaques d’hameçonnage sans délai, nous proposons une méthode pour
identifier en temps réel les URLs d’hameçonnage. Pour étendre l’analyse sémantique proposée
précédemment et obtenir plus de mots ayant du sens à analyser, nous proposons de focaliser cette

177

analyse sur des URLs complètes et non plus seulement des noms de domaine. Cette méthode
repose sur une observation que nous avons faite à propos des URLs d’hameçonnage. Lors de
leur composition, la plus grande partie de ces URLs peut être définie de façon libre exceptée
une partie qui est le nom de domaine car ce dernier doit être enregistré auprès d’une entité
d’enregistrement qui s’assure qu’un nom de domaine n’est enregistré que par une seule personne
et que seule cette personne a donc le contrôle des ressources qui sont associées à ce nom de
domaine. Par conséquent, un hameçonneur doit utiliser d’autres noms de domaine que celui
de la société ou du site Internet qu’il attaque car celui-ci est déjà enregistré. Cependant, pour
leurrer ses victimes il va faire en sorte que le reste de l’URL qu’il compose, ressemble le plus
possible à l’originale du site Internet qu’il attaque. Nous déduisons de cette observation que
les différents mots composant les URLs légitimes sont tous apparentés alors que les noms de
domaine des URLs d’hameçonnage vont présenter des différences. Nous nommons ce concept de
parenté entre les mots composant une URL la parenté intra URL.

Quantifier cette parenté entre les éléments composant une URL est similaire à l’inférence
de similarité sémantique entre des mots ou des groupes de mots que nous avons précédem-
ment présentée. Cependant, les composants des URLs sont spécifiques et beaucoup d’entre eux
n’apparaissent pas dans des dictionnaires empêchant l’utilisation de méthodes existantes pour
inférer les liens de parenté. C’est pourquoi nous utilisons les données de requêtes faites aux mo-
teurs de recherches pour évaluer les liens de parenté entre des mots composants les URLs. Les
requêtes faites aux moteurs de recherches contiennent généralement des associations de mots,
services et sites Internet correspondant aux attentes des utilisateurs. Ces associations de mots
dénotent une parenté entre ces mots dans l’esprit des utilisateur et c’est exactement ce que les
hameçonneurs cherchent à identifier et copier lorsqu’ils composent leurs URLs. En utilisant ces
données de moteurs de recherches qui sont librement accessibles pour des moteurs de recherche
tels que Yahoo et Google, nous faisons des requêtes pour les différents mots inclus dans une URL
afin de créer des caractéristiques dénotant la parenté intra URL. Douze caractéristiques sont
calculées grâce à cette technique. L’extraction de ces paramètres à partir d’un jeux de données
d’URLs légitimes et d’un autre jeu de données d’URLs d’hameçonnage nous permet d’utiliser
un algorithme d’apprentissage automatique afin de construire deux modèles représentant les car-
actéristiques que présentent les URLs d’hameçonnage et les URLs légitime en terme de parenté
intra URL. Ces modèles peuvent être ensuite utilisés pour identifier des URLs inconnues comme
des URLs d’hameçonnage ou comme des URLs légitimes. Une extension que nous proposons
permet également d’utiliser cet algorithme d’apprentissage automatique pour donner une note
dénotant le niveau de malveillance d’une URL.

Cette technique a été testée sur un ensemble de 96,018 URLs composé pour moitié d’URLs
légitimes et pour l’autre moitié d’URLs d’hameçonnage. Les expériences montrent que le jeu
de 12 caractéristiques révèle des différences entre les URLs légitimes et celles d’hameçonnage
prouvant que notre concept de parenté intra URL permet de distinguer l’hameçonnage des ac-
tivités légitimes. L’utilisation de notre algorithme d’apprentissage automatique sur le jeu de
caractéristiques permet de classifier correctement 94,91% des URLs du jeu de test avec un taux
de faux positifs de 1,44%. Le calcul, sur le jeu de test, de la note représentant le niveau de
malveillance d’une URL permet d’identifier correctement 83,97% des URLs du jeu de test avec
une précisions supérieur à 99%. La mise en œuvre de ce système en s’appuyant sur des techniques
distribuées d’analyse en temps réel prouve être rapide en étant capable d’analyser une URL en
moins d’une seconde. Cette technique réunit trois des quatre critères que nous avons définis pour
développer une méthode de détection d’hameçonnage efficace : elle est rapide, fiable et couvre un
large champs d’attaque car elle s’applique aux URLs qui sont employées dans nombre d’attaques
d’hameçonnage.

178

Les trois techniques précédemment présentées pour identifier les URLs et les noms de domaine
d’hameçonnage sont efficaces et les améliorations apportées de façon incrémentale permettent de
présenter une solution répondant à trois des quatre critères définis. Des conclusions intéressantes
ont été présentées en observant la composition de noms de domaine et URLs d’hameçonnage, à
savoir que ceux-ci ont un caractère prévisible en terme de mots et de champs sémantiques utilisés
dans leur composition. En conséquence, afin d’améliorer l’efficacité des techniques de protection
contre l’hameçonnage, nous proposons d’explorer les moyens de passer d’une détection des at-
taques à une prévision des attaques en s’appuyant sur le caractère prédictible de la composition
des noms de domaine d’hameçonnage.

Sondage du Système de Noms de Domaine Reposant sur les Rela-

tions Sémantiques

Pour passer de la détection à la prédiction des noms de domaine utilisés pour perpétrer de
l’hameçonnage, nous explorons dans cette partie le caractère prévisible des noms de domaine.
Certains travaux ont déjà démontré cette caractéristique en fournissant des méthodes efficaces
pour découvrir les différents sous-domaines d’un nom de domaine grâce à des dictionnaires de
mots couramment utilisés à cet effet. Ces méthodes de sondage du DNS sont cependant basiques
et peu adaptables. Ainsi, pour compléter ces méthodes, nous proposons une nouvelle technique de
sondage du DNS afin de découvrir les sous-domaines d’un nom de domaine en s’appuyant sur les
similarités sémantiques que présentent les sous-domaines d’un même nom de domaine. En effet,
les différents sous-domaines d’un même nom de domaine sont fréquemment donnés par une même
personne et pour des raisons de mémorisation ces noms sont souvent apparentés. Nous supposons
donc qu’en disposant d’un jeu initial de sous-domaines d’un même nom de domaine, nous pouvons
découvrir de nouveau nom de domaine en testant des mots sémantiquement apparentés.

Nous présentons trois modules capables de générer de nouveau mots susceptibles d’être des
sous-domaines d’un nom de domaine donné et ce, en utilisant une liste de sous-domaines déjà
connus. Ces modules sémantiques analysent la composition des noms de domaine en extrayant
les mots les composant. Un premier module cherche les mots apparentés aux sous-domaines
existants. Un second module essaie de découper les sous-domaines en plusieurs mots ayant du sens
afin de former de nouveaux sous-domaines en combinant des mots apparentés. Le dernier module
identifie si les noms de domaine sont composés d’une partie numérique et tente d’incrémenter et
décrémenter cette composante afin de découvrir de nouveaux sous-domaines. Les trois modules
sont combinés afin de générer des mots susceptibles d’être des sous-domaines.

Pour tester la validité de cette approche nous avons sélectionné 24 noms de domaine popu-
laires que nous avons sondés en utilisant trois méthodes existantes afin de créer un jeu initial de
sous-domaines sur lequel notre méthode peut être appliquée. Pour chaque mot généré par notre
méthode, une requête DNS est faite afin de vérifier si le potentiel sous-domaine en est effective-
ment un ou non. Les tests réalisés montrent que sur la base des jeux initiaux de sous-domaines,
notre méthode est capable de découvrir entre 84% et 102% de nouveaux sous-domaines, signifiant
qu’elle est capable de doubler le nombre de sous-domaines connu en moyenne. Ceci montre que
cette méthode est complémentaire avec les solutions existantes. De plus, en fusionnant les jeux
initiaux produits par les trois différents outils de sondage de noms de domaine de l’état de l’art,
le sondage sémantique améliore encore de 30% le nombre de sous-domaines connus en moyenne.

Cela montre que l’analyse de parenté sémantique dans les noms de domaine est capable
d’extraire le modèle de composition de ces noms. En utilisant soigneusement les informations

179

extraites nous pouvons construire des modèles capables de prédire les noms de domaine qui
sont susceptibles d’être utilisés. Le résultat des expériences réalisées montre que les noms de
domaine sont prévisibles puisque nous avons pu découvrir les sous-domaines de noms de domaine
populaires. Bien que la tâche de prédire des sous-domaines est plus facile que la prédiction des
noms de domaine complets, ceci donne des indices sur l’applicabilité des techniques d’inférence
de parenté sémantique pour prédire les noms de domaine complets.

Découverte Proactive des Noms de Domaines d’Hameçonnage

Après avoir abordé les solutions pour l’identification des noms de domaine et des URLs d’-
hameçonnage en temps réel, nous venons d’aborder l’applicabilité de l’analyse sémantique pour
prédire les noms de domaine légitimes en usage. Cette technique fut appliquée à du sondage
du DNS et a présenté de meilleurs résultats que les techniques proposées dans l’état de l’art.
Sur la base de ces premières conclusions, nous proposons d’explorer les manières d’appliquer
les modèles de langage naturel et l’analyse sémantique à la prévention de l’hameçonnage. Une
caractéristique principale des campagnes d’hameçonnage est leur courte durée de vie, rendant une
réaction rapide primordiale afin d’y faire face. Ainsi, plutôt que d’utiliser des techniques réactives
ou d’identification en temps réel pour combattre l’hameçonnage, nous présentons une technique
prédictive à cette fin. Cette méthode se présente sous la forme d’une liste noire prédictive
composée de noms de domaine qui sont susceptibles d’être utilisé pour de l’hameçonnage. Elle
présente les avantages des listes noires en étant facilement intégrable dans un client de messagerie
électronique ou un navigateur Internet tout en supprimant l’inconvénient de latence dans la mise
à jour.

La composition de cette liste noire repose sur l’analyse structurelle et lexicale de la com-
position des noms de domaine d’hameçonnage existants. Nous présentons des caractéristiques
pertinentes pour capturer la composition structurelle des noms de domaine. Ces caractéristiques
sont le nombre de mots composant un niveau de nom de domaine, les mots utilisés dans les noms
de domaine, les TLDs utilisés et les transitions entre les différents mots. Nous montrons que
ces caractéristiques ont des valeurs différentes lorsqu’elles sont extraites de noms de domaine
d’hameçonnage ou de noms de domaine légitimes. Les mots qui composent les noms de domaine
d’hameçonnage appartiennent à un vocabulaire réduit qui est différent de celui utilisé dans les
noms de domaine légitimes. Ces caractéristiques permettent donc de construire un modèle re-
posant sur le langage naturel pour les noms de domaine d’hameçonnage. Ce modèle repose sur
un modèle de chaîne de Markov qui permet de générer de nouveau noms de domaine suivant les
règles de composition qu’il a appris. Il est étendu avec un module sémantique afin d’accroître la
variété des noms de domaine générés.

Nous avons étudié l’efficacité de cette technique en utilisant un ensemble de noms de domaine
d’hameçonnage afin de construire le modèle de génération. Les expériences ont montré que le
modèle appris est capable de générer de nombreux noms de domaine d’hameçonnage qui sont
effectivement utilisés dans des activités malveillantes après leur génération. Certains noms de
domaine légitimes sont également générés, mais dans de faibles proportions et un score calculé
pendant le processus de génération de la chaîne de Markov permet d’identifier la plupart d’entre
eux. Ceci fournit une approche intéressante pour faire face aux attaques d’hameçonnage en em-
pêchant la connexion à une ressource malveillante avant qu’elle ne soit effectivement disponible.

La lutte contre les menaces persistantes telles que l’hameçonnage s’appuyait jusqu’alors sur
des techniques réactives. Cependant, les techniques qui ont été développées pour combattre ce
problème n’ont pas réussi à enrayer cette menace. Les hameçonneurs développent continuelle-

180

ment de nouvelles attaques et nouveaux subterfuges pour contourner les techniques de protection
mises en œuvre. Ainsi, pour traiter efficacement ce problème, il est nécessaire de réfléchir plus
vite que les hameçonneurs et de prévoir à l’avance les nouveaux moyens qu’ils utiliseront pour
perpétrer leurs activités malveillantes. Une telle solution est proposée avec cette méthode de
composition de liste noire prédictive qui est en mesure de prédire les noms de domaine qui seront
utilisés dans de futures attaques d’hameçonnage. Cette technique n’est pas infaillible car elle
génère une part non négligeable de noms de domaine légitimes. En outre, la plus grande partie
des noms de domaine générés n’est pas encore utilisée et ne le sera probablement jamais. Néan-
moins, les techniques de prévention proactives sont susceptibles d’être les méthodes permettant
de se débarrasser de la menace persistante qu’est l’hameçonnage.

Pour combattre les activités d’hameçonnage et leurs néfastes conséquences qui ne cessent de
croître, cette thèse présente plusieurs défis qu’il convient de relever afin d’inverser cette tendance,
en développant des solutions efficaces pour protéger les utilisateurs de moyens de communications
électroniques de l’hameçonnage. Il y a d’abord une nécessité de développer des techniques de
détection rapides et capables de faire face aux attaques d’hameçonnage ayant une courte durée
de vie. Ces techniques doivent pouvoir être intégrées dans un système de détection en temps
réel qui ne détériorerait pas la qualité d’utilisation des applications auxquelles elles seraient
intégrées comme des navigateurs Internet par exemple. Un deuxième défi consiste à développer
des méthodes de protection anti-hameçonnage avec une grande portée afin de faire face à la
majorité des attaques d’hameçonnage. Un troisième défi est de développer des techniques de
détection d’hameçonnage fiables, car les contenus d’hameçonnage ont tendance à imiter des
contenus légitimes rendant leur identification compliquée. Le dernier défi résidait moins dans
des aspects techniques, mais plus sur la convivialité d’utilisation des solutions développées afin
que les utilisateurs inexpérimentés puissent facilement comprendre et utiliser ces techniques.

Cette thèse ne traite pas tous ces défis afin de fournir une protection infaillible contre
l’ensemble des attaques d’hameçonnage. Cependant, elle fournit quelques contributions per-
tinentes qui améliorent le combat contre l’hameçonnage, en introduisant l’utilisation de l’analyse
de parenté sémantique et de la composition des noms de domaine et des URLs pour identifier
les attaques d’hameçonnage. Bien que l’analyse de parenté sémantique ait déjà été utilisée pour
la détection d’attaque d’hameçonnage dans le passé, elle fut appliquée uniquement à des con-
tenus contenant beaucoup d’informations à savoir des courriels et des pages Internet. Nous avons
présenté dans ce document différentes techniques pour extraire le contexte sémantique des noms
de domaine et des URL, qui sont des localisateurs contenant peu d’informations. L’analyse lexi-
cale et sémantique des URLs a l’avantage de s’appuyer uniquement sur des informations contenues
dans ces entités, ce qui signifie que cette méthode s’applique à toutes attaques d’hameçonnage
utilisant des URLs. Ceci permet de couvrir un large éventail d’attaques d’hameçonnage car les
URLs sont utilisées dans un grand nombre d’entre elles. En outre, cette technique s’est montrée
rapide d’exécution de telle façon qu’elle ne détériorerait pas l’expérience des utilisateurs en étant
capable de détecter des attaques en temps réel. Enfin, pour certaines applications comme un
système de recommandation d’URLs par exemple, cette technique présente une grande fiabilité
laissant envisager un déploiement dans le monde réel.

Une exigence qui n’est pas abordée par les contributions présentées dans cette thèse est
la facilité d’utilisation des résultats obtenus par des utilisateurs inexpérimentés. Bien que ces
techniques se soient montrées théoriquement efficaces, aucune étude de leur utilisabilité n’a été
effectuée avec un groupe d’utilisateurs. En outre, les ensembles de test considérés pour les
évaluations étaient de taille limitée ne permettant pas d’évaluer la capacité de mise à l’échelle de
nos solutions bien qu’elles soient conçues sur des modèles distribués devant permettre ce passage

181

à l’échelle. De même, nous n’avons pas effectué de réel déploiement de ces techniques dans le
monde réel. Par conséquent, les résultats présentés dans cette thèse soulèvent des nouvelles
perspectives pour des travaux de recherche futurs.

182

Abstract

Phishing is a kind of modern swindles that targets electronic communications users and
aims to persuade them to perform actions for a another’s benefit. Miscreants performing this
activity are named phishers and employ their power of persuasion to tailor socially engineered
messages able to deceive their gullible victims. A popular example of phishing activities is
the stealing of web services account login information or credit card information using fake
websites or spoofed emails. However, several means are used to perform phishing attacks and
several goals are sought, which harden the fight against phishing. Despite the forces engaged
to get rid of this threat, phishing remains a concerning problem since the financial damage it
causes is increasing overtime. Moreover, the perceived fatality about being a victim of phishing
erodes the trust among users and threaten the use of electronic means as way of communicating.
Existing solutions to cope with phishing attacks are not adapted to their short lifetime and the
variety of means used to perform them, making them inefficient. Crowd verified blacklists, emails
content analysis techniques or web page content analysis techniques did not succeed to reverse
the increasing trend presented by phishing consequences. None of these solutions present the
essential requirements that must meet a phishing protection technique to be efficient and which
are speed, coverage, reliability and usability.

Stating that phishing attacks rely mostly on social engineering and that most phishing vec-
tors leverage directing links represented by domain names and URLs, we introduce new solutions
to cope with phishing. These solutions rely on the lexical and semantic analysis of the compo-
sition of domain names and URLs. Both of these resource pointers are created and obfuscated
by phishers to trap their victims. Hence, we demonstrate in this document that phishing do-
main names and URLs present similarities in their lexical and semantic composition that are
different form legitimate domain names and URLs composition. We use this characteristic to
build models representing the composition of phishing URLs and domain names using machine
learning techniques and natural language processing models. The built models are used for sev-
eral applications such as the identification of phishing domain names and phishing URLs, the
rating of phishing URLs and the prediction of domain names used in phishing attacks. All the
introduced techniques are assessed on ground truth data and show their efficiency by meeting
speed, coverage and reliability requirements. This document shows that the use of lexical and
semantic analysis can be applied to domain names and URLs and that this application is relevant
to detect phishing attacks.

Keywords: phishing detection, DNS monitoring, semantic analysis, URL lexical analysis, In-
ternet security, machine learning

183

184

L’hameçonnage est une escroquerie moderne qui cible les utilisateurs de communications électroniques et vise

à les convaincre de réaliser des actions pour le bénéfice d’un individu nommé hameçonneur. Les hameçonneurs

emploient leur pouvoir de persuasion pour formuler des messages capables de tromper leurs crédules victimes. Un

exemple populaire d’hameçonnage est le vol d’information relative à des comptes de sites internet ou de numéro

de carte de crédit en utilisant de faux sites internet ou des courriels falsifiés. Cependant, beaucoup de techniques

sont utilisées pour effectuer des attaques d’hameçonnage et beaucoup d’objectifs sont recherchés, rendant difficile

la lutte contre l’hameçonnage. Malgré les forces engagées pour se débarrasser de cette menace, l’hameçonnage

reste un problème important si l’on considère le préjudice financier grandissant qu’il provoque. Les solutions

existantes pour combattre les attaques d’hameçonnage ne sont pas adaptées à leur courte durée d’exécution et à

la variété des moyens utilisés pour les réaliser, les rendant inefficaces. Les listes noires, l’analyse du contenu des

courriels ou des pages internet sont tant de techniques qui ne sont pas parvenus à inverser la tendance. Aucune

de ces solutions ne présente les exigences essentielles auxquelles doivent répondre une technique de protection

efficace contre l’hameçonnage et qui sont la vitesse, l’universalité, la fiabilité et la facilité d’utilisation.

Constatant que les attaques d’hameçonnage s’appuient essentiellement sur de l’ingénierie sociale et que la

plupart des attaques d’hameçonnage utilisent des liens représentés par des noms de domaine et des URLs, nous

proposons de nouvelles solutions pour combattre l’hameçonnage. Ces solutions reposent sur une analyse lexicale

et sémantique de la composition des noms de domaine et des URLs. Ces deux pointeurs de ressources sont créés et

offusqués par les hameçonneurs pour piéger leurs victimes. Ainsi, nous démontrons dans cette thèse que les noms

de domaine et les URLs utilisés dans des attaques d’hameçonnage présentent des similitudes dans leur composition

lexicale et sémantique, et que celles-ci sont différentes des caractéristiques présentées par les noms de domaine et

les URL légitimes. Nous utilisons ces caractéristiques pour construire des modèles représentant la composition

des URLs et des noms de domaine d’hameçonnage en utilisant des techniques d’apprentissage automatique et

des méthodes de traitement du langage naturel. Les modèles construits sont utilisés pour des applications telles

que l’identification de noms de domaine et des URLs d’hameçonnage, la notation des URLs d’hameçonnage et la

prédiction des noms de domaine utilisés dans les attaques d’hameçonnage. Les techniques proposées sont évaluées

sur des données réelles et elles montrent leur efficacité en répondant aux exigences de vitesse, d’universalité et de

fiabilité. Cette thèse démontre que l’utilisation de l’analyse lexicale et sémantique peut être appliqué aux noms

de domaine et aux URLs et que cette utilisation est pertinente pour détecter les attaques d’hameçonnage.

Phishing is a kind of modern swindles that targets electronic communications users and aims to persuade them

to perform actions for a another’s benefit. Miscreants performing this activity are named phishers and employ

their power of persuasion to tailor socially engineered messages able to deceive their gullible victims. A popular

example of phishing activities is the stealing of web services account login information or credit card information

using fake websites or spoofed emails. However, several means are used to perform phishing attacks and several

goals are sought, which harden the fight against phishing. Despite the forces engaged to get rid of this threat,

phishing remains a concerning problem since the financial damage it causes is increasing overtime. Moreover, the

perceived fatality about being a victim of phishing erodes the trust among users and threaten the use of electronic

means as way of communicating. Existing solutions to cope with phishing attacks are not adapted to their short

lifetime and the variety of means used to perform them, making them inefficient. Crowd verified blacklists, emails

content analysis techniques or web page content analysis techniques did not succeed to reverse the increasing

trend presented by phishing consequences. None of these solutions present the essential requirements that must

meet a phishing protection technique to be efficient and which are speed, coverage, reliability and usability.

Stating that phishing attacks rely mostly on social engineering and that most phishing vectors leverage

directing links represented by domain names and URLs, we introduce new solutions to cope with phishing. These

solutions rely on the lexical and semantic analysis of the composition of domain names and URLs. Both of these

resource pointers are created and obfuscated by phishers to trap their victims. Hence, we demonstrate in this

document that phishing domain names and URLs present similarities in their lexical and semantic composition

that are different form legitimate domain names and URLs composition. We use this characteristic to build

models representing the composition of phishing URLs and domain names using machine learning techniques and

natural language processing models. The built models are used for several applications such as the identification of

phishing domain names and phishing URLs, the rating of phishing URLs and the prediction of domain names used

in phishing attacks. All the introduced techniques are assessed on ground truth data and show their efficiency by

meeting speed, coverage and reliability requirements. This document shows that the use of lexical and semantic

analysis can be applied to domain names and URLs and that this application is relevant to detect phishing attacks.

	General Introduction
	Context
	Issues and Challenges in Phishing
	Organization of Contributions

	Part I State of The Art and Background
	Phishing and Protection Techniques
	Phishing: an Online Con Game
	Definition and History
	Phishing Vectors
	Economic Impact and Evolution
	Challenges to Fight Phishing

	Phishing Prevention Techniques
	Strong Authentication Schemes
	Security Toolbars
	Blacklists

	Phishing Detection Techniques
	Phishing Emails Detection
	Web Page Content Analysis
	URL Analysis

	Domain Name System Monitoring
	The Domain Name System
	Organization and Implementation
	DNS Usage
	DNS Misuses and Security Issues

	DNS Monitoring
	DNS Monitoring Strategies
	Performance Evaluation and Anomaly Detection
	Malicious Activity Detection

	Part II Phishing Domain Names and URLs Detection
	Large Scale Passive DNS Monitoring for Identifying Malicious Domains
	Passive DNS Monitoring Architecture
	DNS Data Gathering
	Distributed Storage and Processing System

	Data Mining in DNS Space
	DNS Features Extraction
	Domain Names Clustering

	Experimental Evaluation
	Dataset
	Feature Analysis
	K-means Clustering Evaluation

	Phishing Domain Name Identification Based on Word Relatedness
	Phishing URL Obfuscation
	Obfuscation Techniques
	Obfuscation Words Semantic

	Semantic Analysis of Domain Names
	Word Extraction
	Word Relatedness Computation
	Similarity Metrics

	Domain Sets Comparison
	Dataset
	Similarity Metrics Evaluation
	Domains Set Size and Composition

	Semantic Based Phishing URLs Rating
	Intra-URL Relatedness Analysis
	URL Word Extraction
	Shortcomings of Word Relatedness Evaluation Tools
	Search Engine Query Data
	Feature Computation

	Implementation
	Distributed Word Relatedness Inference
	Bloom Filter for Features Computation

	Phishing URL Detection
	Dataset
	Features Analysis
	URL Classification
	URL Rating

	Part III Semantic Based Phishing Domain Names Prediction
	Semantic DNS Probing
	Smart DNS Probing
	Hostnames Composition Schemes
	System Overview
	Smart DNS Brute Forcer

	Semantic Discovery of Subdomains
	Similar Names
	Incremental Discovery
	Splitter

	DNS Probing Evaluation
	Methodology
	Exploration Parameters
	Performance Evaluation

	Proactive Discovery of Phishing Domain Names
	Modeling a Phisher's Language
	Domain Names Features
	Domain Names Generation Model

	Domain Names Features Evaluation
	Dataset
	Features Analysis

	Phishing Domain Names Generation
	Types of Generated Domains
	Efficiency and Steadiness of Generation
	Predictability and Strategy

	
	General Conclusion
	Summary of Contributions
	Research Perspectives
	List of Figures
	List of Tables

	Bibliography

