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Notations

R the set of real numbers

R≥0 the set of non-negative real numbers

R
n n-dimensional real Euclidean space

R
n×m the set of n×m real matrices

Z≥0 the set of non-negative integers

Z>0 the set of positive integers

K a continuous function γ : R≥0 → R≥0 is of class K if it is zero at zero,

and strictly increasing

K∞ a continuous function γ : R≥0 → R≥0 is of class K∞ if it is of class K,

and γ(s) → ∞ as s→ ∞
KL a continuous function γ : R≥0 × R≥0 → R≥0 is of class KL if

for each t ∈ R≥0, γ(., t) is of class K and

for each s ∈ R≥0, γ(s, .) is decreasing to zero

λmin(A) the minimum eigenvalue of the real symmetric matrix A

λmax(A) the maximum eigenvalue of the real symmetric matrix A

AT the transpose of the matrix A

A−T the inverse of the transposed and vice versa, A−T = (A−1)T = (AT )−1

diag (A1, · · · , AN ) block-diagonal matrix with the entries A1, · · · , AN on the diagonal

⋆ stands for symmetric blocks in a matrix

A > 0 symmetric positive definite matrix A

A < 0 symmetric negative definite matrix A

|x| the Euclidean norm of the vector x ∈ R
n, defined as |x| :=

√
xTx

|A| the 2-norm of the matrix A ∈ R
n×m, defined as |A| :=

√
λmax(ATA)

Σ(Q) stands for Q+QT for any square matrix Q

In the identity matrix of dimension n
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(x, y) denotes the vector [xT , yT ]T for x ∈ R
n and y ∈ R

m

∀ for all

:= left-hand side is defined by right-hand side

=: right-hand side is defined by left-hand side

∈ belongs to

⊂ subset

∩ intersection

∪ union

→ tend to, or mapping to

lim limit

sup supremum

inf infimum

dom φ domain of function φ

TC(x) the tangent cone to the set C ⊂ R
n at the point x ∈ R

n

〈∇V (x), υ〉 standard directional derivative of the differentiable function V at x along

the vector field υ

V ◦(x; υ) generalized directional derivative of Clarke of the function V at x in the direction υ



Résumé en français

Les systèmes contrôlés via un réseau sont des systèmes dans lesquels le process et le contrôleur

communiquent via un canal de communication numérique partagé. L’utilisation d’un réseau

offre de nombreux avantages en termes de flexibilité, de complexité de câblage, de coût et

de facilité de maintenance, par rapport aux connexions point-à-point conventionnelles. Pour

ces raisons, le systèmes commandés via un réseau sont de plus en plus populaires. On peut

citer comme champs applicatifs l’industrie chimique, les raffineries, les centrales électriques, les

avions, les réseaux de transport d’eau, les usines industrielles, les réseaux d’énergie, le contrôle

environnemental, voir [13, 76] par exemple. En contre-partie, réseau induit des contraintes de

communication telles que l’échantillonnage irrégulier, la quantification des signaux, des pertes

de paquets, des retards de communication variables, voir par exemple [45, 48, 125]. Il est donc

nécessaire de construire des lois de commande qui garantissent la stabilité du système tout en

prenant en compte ces contraintes. Nous nous concentrons dans le cadre de cette thèse aux

limitations induites par l’échantillonnage des signaux, et ignorons les autres effets possibles.

Le commande à transmissions événementielles consiste à définir les instants de transmission

selon un critère dépendant de l’état du système et non d’une horloge à l’instar des implanta-

tions périodiques. Dans ce dernier cas, la période d’échantillonnage doit être inférieure à une

valeur maximale qui dépend du système en question. Bien que cette stratégie soit facile à mettre

en œuvre, il n’est pas évident que l’échantillonnage périodique permette une utilisation effi-

cace du réseau. En effet, que le système soit en régime permanent ou transitoire n’a aucun

impact sur le nombre de transmissions. Dans le cadre de la commande, il semble plus approprié

d’adapter les instants de transmissions à l’état du système d’où l’idée de commande à transmis-

sions événementielles. Ainsi, l’utilisation des ressources de calcul et de communication peut

être réduite significativement comparée aux méthodes périodiques. L’idée est de surveiller en

permanence l’état du système et de déclencher une transmission (et donc de fermer la boucle de
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commande) uniquement lorsqu’un critère prédéfini est satisfait, voir [1, 7, 10, 22, 43, 103, 120].

Ce paradigme est actuellement le sujet de nombreux travaux.

La plupart des résultats existants sur le commande à transmissions événementielles supposent

que les mesures complètes de l’état sont disponibles. L’application de ces résultats est donc

limitée puisqu’ils excluent de facto les lois de commande par retour de sortie. Il s’avère que

lorsque seule une sortie du système est mesurée, le problème devient beaucoup plus complexe.

Il devient en effet de garantir un temps minimum entre deux transmissions ce qui est nécessaire

pour que le contrôleur soit implantable. Il est donc important de développer des commandes par

retour de sortie à transmissions événementielles.

Objectifs et contributions

Motivé par les discussions précédentes, dans cette thèse, nous étudions le problème de la com-

mande par retour de sortie à transmissions événementielles. En particulier, nous traitons les

sujets suivants :

• Nous développons une conception basée sur l’émulation pour stabiliser une classe de

systèmes non linéaires.

• Nous présentons une procédure pour concevoir simultanément la loi de commande et de

la condition de déclenchement pour les systèmes linéaires afin de réduire davantage la

quantité de transmissions.

• Nous proposons une méthode adaptée aux systèmes non linéaires dont la dynamique ont

deux échelles de temps. En particulier, nous nous appuyons uniquement sur la connais-

sance d’une approximation de la dynamique lente.

Plan de la Thèse

Cette thèse est organisée de la façon suivante.

Chapitre 1 : Introduction

Nous définissons dans un premier temps les systèmes contrôlés via un réseau et nous présentons

ensuite les techniques de conception de lois de commande. Ensuite, nous introduisons le principe
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de la commande à transmissions événementielles et nous expliquons ses avantages par rap-

port aux implantations périodiques. Nous passons alors en revue les résultats existants dans la

littérature sur ce thème et nous montrons les difficultés techniques générées par les commandes

par retour de sortie. Enfin, nous présentons nos objectifs et nos contributions.

Chapitre 2 : Conception de lois de commandes à transmission événementielles pour des

systèmes non linéaires

Nous proposons une méthode de synthèse de lois de commande événementielle par retour de sor-

ties pour des systèmes non linéaires. Cette approche est dite par émulation, puisqu’un retour de

sortie est tout d’abord construit en temps continu, en ignorant l’échantillonnage, puis le critère de

transmission est conçu. Le problème est modélisé comme un système hybride. La loi de trans-

mission proposée consiste à combiner une horloge temporelle et un critère dépendant de la sortie

afin de garantir l’existence d’un temps minimal entre deux transmissions. Les résultats sont ap-

pliqués à deux systèmes physiques, ainsi qu’aux systèmes linéaires stabilisables et détectables.

Le cas particulier de la commande par retour d’état est également abordé.

Chapitre 3 : Co-conception pour les systèmes linéaires

Ce chapitre étend les résultats du Chapitre 2 afin de simultanément concevoir le loi de retour

de sortie et le critère de transmission pour stabiliser des systèmes linéaires (il ne s’agit plus de

synthèse par émulation). Nous présentons des inégalités matricielles linéaires qui permettent la

synthèse en question. Nous expliquons ensuite comment exploiter ces résultats pour optimiser

l’échantillonnage. Nous proposons d’abord une méthode pour agrandir le temps minimal entre

deux transmissions, puis nous présentons une méthode d’optimisation heuristique pour réduire

les transmissions.

Chapitre 4 : Systèmes singulièrement perturbés

Dans ce chapitre, nous examinons la synthèse de commande à transmissions événementielles

pour la stabilisation de systèmes dont la dynamique évolue selon deux échelles de temps. Notre

objectif est de concevoir la commande directement à partir du modèle approximé du système

lent (les dynamiques rapides sont ignorées).

Nous suivons l’approche par émulation : nous supposons que nous savons résoudre le problème

en absence d’échantillonnage et ensuite nous étudions comment concevoir la règle de transmis-

sion en présence des contraintes de communication. Nous proposons dans un premier temps

un modèle hybride et nous expliquons qu’une loi de déclenchement que garantit la stabilité
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et l’existence d’un temps minimal uniforme entre deux transmissions pour le modèle lent ne

garantit pas toujours l’existence d’un tel temps pour le système global. Nous présentons ensuite

des conditions suffisantes sur le système hybride singulièrement perturbé et nous présentons les

résultats principaux. Ensuite, nous montrons que les résultats sont applicables à une classe des

systèmes globalement Lipschitziens qui inclue les systèmes linéaires comme un cas particulier.

Finalement, avons appliqué les résultats sur un modèle d’avion F-8.

Chapitre 5 : Conclusions

Dans ce chapitre, nous présentons les conclusions générales, nous mettons en évidence les con-

tributions principales et nous fournissons quelques pistes pour la recherche future.

Annexe A : Preuves

Nous fournissons les preuves de résultats du Chapitre 4.

Annexe B : Rappels mathématiques

Nous rappelons quelques préliminaires mathématiques ainsi que les outils fondamentaux requis

pour cette thèse.
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Control.

Articles de conférence
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Symposium on Mathematics Theory of Networks and Systems, Groningen, Pays-Bas, pp.
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Presentation

Networked control systems (NCS) are systems in which the plant and the controller communi-

cate with each other via a shared digital communication channel. Traditionally, the control laws

are implemented on dedicated platforms and the communication with the plant is performed

through point-to-point rigid connections which leads to complex wiring/diagnostic and high cost

of maintenance. The utilization of NCS offers attractive benefits in terms of flexibility, reduced

complexity in wiring connections, lower cost and ease of maintenance. Due to these advantages,

the incorporation of a network in the feedback loop is becoming more and more popular in a

wide range of applications. Examples include chemical processes, refineries, power plants, air-

planes, water transportation networks, industrial factories, energy collection networks (such as

wind farms), environmental monitoring, battlefield and supervision. However, the insertion of

a network in the feedback loop induces communication constraints (variable transmission inter-

vals, quantization errors, delays, packet dropouts, and scheduling) which may seriously affect

the control objectives. A significant challenge in NCS is therefore to achieve the control objec-

tives (in terms of stability and performance) despite these limitations. In conventional setups,

data transmissions are time-driven and two successive transmission instants are constrained to

be less than a fixed constant, called the maximum allowable transmission interval (MATI). Al-

though time-triggering is appealing from the analysis and implementation point of view, it is not

clear that this paradigm is always suitable in the context of NCS. Indeed, the same amount of

transmissions per unit of time is generated even when transmissions are not necessary, in view

of the control objectives, which may lead to an inefficient and excessive usage of the network.

To overcome this shortcoming, event-triggered control has been proposed as an alternative.

Event-triggered control is an implementation technique in which the transmission instants are

defined based on a state dependent criterion. The idea is to continuously measure the plant state

and to close the feedback loop only when it is needed in view of the stability and/or perfor-

mance requirements. This may significantly reduce the amount of transmissions compared to
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the time-triggered paradigm, which is essential for NCS. We note that ETC is also attractive in

the context of embedded control systems to reduce the amount of control updates, and there-

fore computation, and to save the energy of battery powered sensors by reducing the number

of transmissions. This paradigm is receiving a considerable interest in the control community

nowadays. Most of the existing results assume that the full state measurement is available and

can be used for feedback. This is not realistic in many applications. It appears that the design of

output feedback event-triggered controllers is much more challenging, in particular because it is

more difficult to ensure the existence of a minimum amount of time between two control input

updates which is crucial for the controller to be implementable. Few results in the literature have

addressed this problem and mostly for linear systems. The purpose of this thesis is to provide

methodological tools for the design of output feedback event-triggered controllers for different

classes of systems.

Objectives and contributions

The results of this thesis are threefold:

• We develop an emulation-based design for output feedback event-triggered controllers to

stabilize a class of nonlinear systems.

• We present a co-design procedure to simultaneously design the output feedback law and

the event-triggering condition for linear systems in order to further reduce the amount of

transmissions.

• We propose stabilizing event-triggered controllers for nonlinear systems whose dynamics

have two-time scales. In particular, we only rely on the knowledge of an approximate

model of the slow dynamics.

Outline of the Thesis

The remainder of this thesis is organized as follows.
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Chapter 1: Introduction

We provide a brief overview on NCS and ETC. We first start by defining NCS and we then

present the main control design approaches. Next, we introduce the basic concept of ETC and

we explain its advantages compared to time-triggered implementation. Afterwards, we review

the existing results approaches on ETC and we demonstrate the technical difficulties when the

full state measurements cannot accessed by the controller. Finally, we present our objectives

and contributions.

Chapter 2: Emulation design for nonlinear systems

We study the emulation design of output feedback event-triggered controllers to stabilize a class

of nonlinear systems. First, we derive the hybrid model of the NCS and we formally state the

problem. Next, we propose sufficient conditions to guarantee an asymptotic stability property

for the closed-loop system. We apply the technique on two physical nonlinear examples. We

then show how the obtained results can be applied to the particular cases of LTI systems and to

state feedback controllers.

Chapter 3: Co-design for LTI systems

This chapter extends the results of Chapter 2 to the joint design of the output feedback law and

the event-triggering condition for LTI systems. The required conditions are formulated as LMI

conditions which are computationally tractable. Then, we show how the LMI can be used to

enlarge the guaranteed minimum inter-transmission time and to heuristically reduce the amount

of transmissions. The results are illustrated on a numerical example.

Chapter 4: Singularly perturbed systems

We investigate the stabilization of two-time scales systems by event-triggered controllers based

only on an approximate model describing the slow dynamics, by following the emulation ap-

proach. We show that a triggering law which guarantees the stability and the existence of a

uniform minimum amount of time between two transmissions for the slow model may not en-

sure the existence of such a time for the overall system. Then, we propose sufficient conditions

on the hybrid singularly perturbed system to guarantee the closed-loop stability of the original
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system as well as the existence of a dwell-time for the inter-transmission times. Next, we show

that the results are applicable to a class of globally Lipschitz systems which encompasses LTI

systems as a particular case. Finally, we apply the results to the autopilot control of an F-8

aircraft model.

Chapter 5: Conclusions

We give general conclusions, we highlight the main contributions, and we provide directions for

future research.

Appendix A: Proofs of Chapter 4

We provide the proofs of some of the results of Chapter 4.

Appendix B: Mathematical review

We recall some mathematical preliminaries and fundamental tools that support the presentation

of the technical results.

Publications

The following publications have been accepted or are under review, based on the presented

material in this thesis.

Journal papers

• M. Abdelrahim, R. Postoyan and J. Daafouz, Event-triggered control of nonlinear singu-

larly perturbed systems based only on the slow dynamics, Automatica, accepted.

• M. Abdelrahim, R. Postoyan, J. Daafouz and D. Nešić, Stabilization of nonlinear systems

using event-triggered output feedback laws, submitted for publication to IEEE Transac-

tions on Automatic Control.
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• M. Abdelrahim, R. Postoyan and J. Daafouz, Event-triggered control of nonlinear singu-

larly perturbed systems based only on the slow dynamics, In Proceedings of the 9th IFAC

Symposium on Nonlinear Control Systems, Invited Paper, Toulouse, France, pp. 347-352,

2013.

• M. Abdelrahim, R. Postoyan, J. Daafouz and D. Nešić, Stabilization of nonlinear systems

using event-triggered output feedback laws, In Proceedings of the 21th International Sym-

posium on Mathematics Theory of Networks and Systems, Groningen, The Netherlands,

pp. 274-281, 2014.

• M. Abdelrahim, R. Postoyan, J. Daafouz and D. Nešić, Co-design of output feedback

laws and event-triggering conditions for linear systems, In Proceedings of the 53rd IEEE

Conference on Decision and Control, Los Angeles, U.S.A., 2014.





Chapter 1

Introduction

1.1 Networked control systems

NCS are feedback systems in which the control loop is closed over a (shared) network. NCS

essentially consist of four components, see Figure 1.1:

- sensors to collect plant measurements;

- controller;

- actuators to execute the control inputs;

- communication network to transfer information from the sensors to the controller and/or from

the controller to the actuators.

Plant

SensorsActuators

Controller

Network

FIGURE 1.1: Block diagram of NCS.
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NCS offer great benefits compared to the conventional point-to-point connection in terms of

lighter wiring, lower installation costs, greater abilities for diagnosis, flexible reconfiguration

and ease of maintenance. However, the insertion of a shared network in the feedback loop

induces the following constraints and phenomena on data transmissions ([13], [125]):

• Variable inter-transmission times. In NCS, the next transmission instant for each

node1 is usually determined by local control units. These local controllers may have lim-

ited processing power and clocks with low accuracy. Hence, the resulted inter-transmission

times may become uncertain and time varying.

• Scheduling. A rule called protocol is typically used to orchestrate transmissions of the

different nodes over the channel. When the plant sensors are distributed for instance, and

therefore not assigned to the same node, this implies that the controller only receives a

partial knowledge of the plant output at each transmission instant.

• Quantization errors. This phenomenon occurs due to the A/D conversion of the plant

analog signal since, at each transmission instant, the plant measurement has to be repre-

sented by a finite number of bits. The deviation between the analog value and its corre-

sponding binary conversion is known as the quantization error.

• Packet dropouts. The sharing of a limited communication bandwidth by many control

loops and applications may not allow the sensors to transmit data immediately when it is

needed since the network may be busy by other tasks. As a result, some packets may be

lost or arrive out of date.

• Time delays. Each node may have to wait a certain amount of time before sending its

packet. Furthermore, the transmission time over the network may not negligible. These

phenomena lead to time delays.

The presence of one or more of these network-induced constraints can damage the closed-loop

performance or even lead to instability. Therefore, it is strongly required to develop well-suited

control techniques for NCS to handle these issues. In this thesis, we focus on the first commu-

nication constraint, i.e. variable inter-transmission times.

1A node is a component connected to the network.
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1.1.1 Control design approaches

Inserting a shared network in the feedback loop increases the design complexity of control sys-

tems and requires to develop methodologies specifically adapted to NCS. In fact, the design of

NCS combines the domains of control systems, communication networks (and real-time com-

puting). The main control design techniques in the literature are: emulation, co-design, and

direct discrete-time. We briefly present these techniques in the following and we refer the reader

to [46], [12] for more detailed explanation and literature review.

1.1.1.1 Emulation

The emulation approach consists in first synthesizing the controller in continuous-time, while

ignoring the network effects. Then the network is taken into account and sufficient conditions

on the latter are derived to maintain the properties ensured by the controller, see e.g. [65], [45].

This approach is appealing as it allows to use available tools in continuous-time to design the

controller. On the other hand, the conditions imposed on the network are constrained by the

initial choice of the controller, and these may be too conservative. In this context, it has been

shown in the literature that for digital controllers designed by emulation, the inter-transmission

times have to be less than the MATI to maintain stability of NCS, see e.g. [113], [112], [78].

1.1.1.2 Co-design

In the emulation approach, the feedback law and the network are separately designed in a se-

quential manner which may lead to restrictive conditions on the network. For instance, we may

need to work with a very small MATI to preserve stability. One solution to avoid this issue is

to simultaneously design the feedback law and the network. Note that this co-design strategy is

more challenging since it is required to simultaneously take care of the controller design and its

implementation which may result in conflicting constraints. For more explanation and literature

review on this approach, we refer the reader to [91], [127], [21], [12].

1.1.1.3 Direct discrete-time

An alternative approach is to synthesize the controller directly based on the discrete time model

of the plant. The design procedure consists in three steps, see e.g. [19], [77], [31]:



16 Chapter 1. Introduction

1. Obtain a discrete-time model of the plant.

2. Design the controller to stabilize the closed-loop system.

3. Verify the closed-loop stability of the true model, i.e. the continuous-time plant with the

sampled input.

The main drawback of this strategy is that it is very difficult to obtain the exact discrete-time

model of the plant, in particular for nonlinear systems, since we need to know an explicit analytic

solution of the differential equation that describes the continuous-time dynamics. On the other

hand, if an approximate discrete-time model is used, it is not obvious that the designed controller

for the approximate model will stabilize the true model of the NCS, see e.g. [80]. Therefore,

most existing results on this design strategy are dedicated to linear systems [46].

1.2 Event-triggered control

In convention setups, the feedback laws are implemented in a time-triggered fashion such that

two transmission instants are separated by (at most) the MATI. Although this strategy is appeal-

ing from the implementation point of view, it is not obvious that time-triggering is appropriate

for NCS. First, the transmission interval is usually designed such that the closed-loop stability

is guaranteed in all possible situations. To do so, the design has to be carried out based on the

worst case scenario which may result in a small MATI bound. The second reason is that the time-

triggered approach has a blind nature since the transmission instants are generated regardless the

system state. This may lead to an inefficient usage of the computation and the communication

resources. Intuitively, if the system has reached a desired equilibrium point and no disturbance

is acting on the plant, there is no need to close the loop and to calculate a new control input, but

the time-triggered paradigm keeps doing so. In the last decades, many researchers suggested to

develop alternative implementation policies such that the amount of transmissions is adapted to

the current plant state. This may allow to significantly reduce the usage of the communication

and computation resources. ETC has been proposed in this context.

1.2.1 The idea

ETC is a control strategy in which the loop is closed only when a designed state-dependent

criterion is violated, see e.g. [10], [7], [103], [44], [8], [1], [43] and the references therein.
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The event-triggered controller consists of two parts: a triggering-condition which decides the

next transmission instant and a feedback law which generates the control input based on the last

transmitted value of the plant measurements, see Figure 1.2.

Plant

Event-triggering

mechanism

Controller
y(t)ŷ(t)u(t)û(t)

FIGURE 1.2: Event-triggered control schematic [22].

ETC was originally motivated by the following considerations (see [7], [10]):

• Close to the human behaviour. Event-triggered implementation is close in nature to

the way a human behaves as a controller which only samples and takes a control decision

when some events occur, like in the car driving.

• Natural approach for many applications. ETC is natural in many contexts, examples

include speed control of internal combustion engines, the control of production rate for

manufacturing systems, motion control where an angle or a position are measured by

encoders, systems with relay feedback and many other examples.

• Time-triggered implementation may be inefficient or difficult to implement. In

modern distributed control systems, it becomes difficult or inefficient to stick to the time-

triggered paradigm, in particular for NCS since the channel may be shared by many pro-

cesses.

• Event-triggered control may reduce transmissions. Since the transmission instants

are adapted to the current system state, this may lead to a significant reduction in the

amount of communication via the network as shown in e.g. [11], [8], [90], [25], [56],

[88].

A fundamental issue in ETC is to ensure the existence of a uniform strictly positive lower bound

on the inter-transmission times. This requirement is essential to prevent the occurrence of Zeno
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phenomenon, i.e. to avoid the generation of an infinite number of transmissions in a finite time.

This task induces non trivial difficulties in the stability analysis. Note that the existence of such a

lower bound on the inter-transmission times is not only useful to prove stability but also because

two triggering instants cannot occur arbitrarily close in time in practice due to the hardware

limitations.

Several terminologies in literature are used to refer to the ETC, related to the context where it has

been applied. The term send-on-delta is used in the context of sensor networks, e.g. [73], [102],

[86], while the term level-crossing sampling has been utilized in context of signal conversion

and processing, see e.g. [2], [66], [37]. In the control systems community, the terminologies

deadband sampling [81], [109], Lebesgue sampling [11], [9] are also equivalently used to refer

to ETC.

1.2.2 Hybrid model

Consider the case where the controller communicates with the plant via a digital channel. In this

section, we derive a model of event-triggered control systems in the case where the feedback

law only has access to an output of the plant for the sake of generality (like in [22], [30], [87]).

Consider the nonlinear plant model

ẋp = fp(xp, u), y = gp(xp), (1.1)

where xp ∈ R
np is the plant state, u ∈ R

nu is the control input, y ∈ R
ny is the measured output

of the plant. Assume that the plant is stabilized by general dynamic controller of the form

ẋc = fc(xc, y), u = gc(xc, y), (1.2)

where xc ∈ R
nc is the controller state. Note that, by setting u = gc(y), we obtain a static

controller. Since the feedback loop is closed via a digital channel, the plant output and the

control input are sent only at some transmission instants ti, i ∈ Z≥0, see Figure 1.2. At each

transmission instant, the plant output is sent to the controller which computes a new control

input that is instantaneously transmitted to the plant. We assume that this process is performed

in a synchronous manner and we ignore the computation times and the possible transmission
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delays. In that way, we obtain

ẋp = fp(xp, û) t ∈ [ti, ti+1]

ẋc = fc(xc, ŷ) t ∈ [ti, ti+1]

u = gc(xc, ŷ)

˙̂y = 0 t ∈ [ti, ti+1]

˙̂u = 0 t ∈ [ti, ti+1]

ŷ(t+i ) = y(ti)

û(t+i ) = u(ti),





(1.3)

where ŷ and û respectively denote the last transmitted values of the plant output and of the

control input. We assume that zero-order-hold devices are used to generate the sampled values ŷ

and û between two successive transmission instants which leads to ˙̂y = 0 and ˙̂u = 0 for almost

all t ∈ [ti, ti+1], i ∈ Z≥0. Other types of holding function can be considered ([64]) but we do

not investigate those in this thesis. After each transmission instant, ŷ and û are reset to the actual

values of y and u, respectively. We introduce the network-induced error e := (ey, eu) ∈ R
ne ,

where

ey := ŷ − y

eu := û− u,
(1.4)

which are reset to 0 at each transmission instant. Note that when static output feedback controller

are considered, we have that eu = 0 and we only consider ey.

We observe that the closed-loop system is a hybrid dynamical model since it combines continuous-

time evolutions, to model the plant and the controller dynamics, and discrete phenomena which

model transmissions. Many modeling frameworks have been developed in the literature to cap-

ture the hybrid nature of dynamical models. Examples include hybrid dynamical systems [33],

[34], mixed logical dynamical (MLD) models [14], complementarity systems [108], [39], hy-

brid automata [47], hybrid inclusions or impulsive systems [35], [38] and switching systems

[59]. Among these frameworks, we choose to model NCS using the hybrid formalism of [34],

as in [22], [30], [1]. This choice is justified by the fact that this approach provides an efficient

and compact method to describe general hybrid systems. In addition, this formalism allows us

to use the elegant concepts of solutions and stability developed in [34]. In this way, the system
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is modeled as follows


 ẋ

ė


 =


 f(x, e)

g(x, e)


 (x, e) ∈ C


 x+

e+


 =


 x

0


 (x, e) ∈ D, (1.5)

where x := (xp, xc) ∈ R
nx . The functions f, g in (1.5) are given by

f(x, e) :=



fp

(
xp, gc(xc, y + ey) + eu

)

fc(xc, y + ey)




g(x, e) :=




− ∂
∂xp

gp(xp)fp

(
xp, gc(xc, y + ey) + eu

)

− ∂
∂xc

gc(xc, y + ey)fc(xc, y + ey)


 .

(1.6)

The flow and jump sets, respectively denoted C and D, are defined according to the triggering

condition that we will design later. As long as the triggering condition is not violated, the

system flows on C where no transmission occurs. Jumps occur only if the triggering condition

is verified, i.e. (x, e) ∈ D. When (x, e) ∈ C ∩D, the system flows only if flowing keeps (x, e)

in C , otherwise the system experiences a jump. The functions f, g in (1.5) are assumed to be

continuous and the sets C and D are closed. This will be the case in this thesis to ensure that

system (1.5) is well-posed, see Chapter 6 in [34].

1.2.3 Event-triggering mechanisms

The main objective of the ETC problem is to design the flow and the jump sets of system (1.5),

i.e. the triggering condition, to guarantee the closed-loop stability, to reduce the number of

transmissions, and to ensure the existence of a uniform strictly positive lower bound on the

inter-transmission times. In what follows, we present some common techniques in the literature

to design the flow and the jump sets.
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1.2.3.1 Static threshold

The evolution of the norm of the network-induced error is restricted to be upper bounded by a

positive constant threshold. In this case, the flow and the jump sets for system (1.5) are

C = {(x, e) : |e| ≤ ∆}

D = {(x, e) : |e| ≥ ∆},
(1.7)

where ∆ > 0 is a designed constant. In that way, the minimum inter-transmission time is

strictly positive and corresponds to the minimum time it takes for |e| to evolve from zero to

∆. However, the achieved stability property with this triggering mechanism is generally not

asymptotic, i.e. the system state typically converges to some neighbourhood of the origin. This

triggering technique is referred to as deadband control [81], send-on-delta [73], non-uniform

mechanism [44].

1.2.3.2 State-dependent threshold

In many control system applications, asymptotic stability properties are required for the closed-

loop system. To achieve this goal, the triggering condition threshold should be a function of

the system state and not a fixed constant as in the previous technique. Most of the existing

results on this triggering mechanism assume that the full state measurement can be accessed by

the controller, e.g. [43, 44, 57, 61, 70, 89, 119] and the references therein. Consequently, the

feedback law is designed based on the full state information and we have that, in view of (1.3),

ŷ = x̂p, u = gc(x̂p) and the sampling induced error becomes

ex = x̂p − xp. (1.8)

In this context, many strategies have been proposed in the literature to construct the flow and

jump sets for the hybrid system (1.5). We present here the result in [103] which is one of the

common techniques in the literature. Furthermore, we will start from this result to establish

our triggering mechanism later. The idea in [103] is to first assume that the state feedback law

u = k(x̂p) renders the closed-loop system

ẋp = fp(xp, k(xp + ex)) (1.9)
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input-to-state stable (ISS) (see Definition B.2) with respect to the network-induced error ex, see

e.g. [103], [1]. This property is usually ensured by the existence of a smooth, positive definite

and radially unbounded function V : Rn → R≥0 such that, for all x ∈ R
nx and all e ∈ R

ne

∂V

∂x
f(x, k(x+ e)) ≤ −α(|x|) + γ(|e|), (1.10)

where α, γ ∈ K∞. Hence, if the triggering condition is constructed as

γ(|e|) ≤ σα(|x|) (1.11)

for some σ ∈ (0, 1), then (1.10) becomes

∂V

∂x
f(x, k(x+ e)) ≤ −(1− σ)α(|x|) (1.12)

which ensures that V strictly decreases along the solution to system (1.9). Hence, the obtained

stability property of system (1.9) in the absence of network is preserved. As a consequence, the

flow and the jump sets in (1.5) are defined as follows

C = {(x, e) : γ(|e|) ≤ σα(|x|)}

D = {(x, e) : γ(|e|) ≥ σα(|x|)}.
(1.13)

It is important to highlight here that the construction of (1.13) by itself does not a priori ensure

that the minimum inter-transmission time is strictly positive to avoid the Zeno phenomenon.

Additional conditions are required to generate this property. In [103] for instance, the functions

fp, k, α
−1, γ in (1.10) are required to be locally Lipschitz.

Remark 1.1. Condition (1.11) is only a sufficient condition to guarantee that (1.12) holds. It

is also possible to directly define the flow and the jump sets as

C = {(x, e) : ∂V
∂x
f(x, k(x+ e)) ≤ −(1− σ)α(|x|)}

D = {(x, e) : ∂V
∂x
f(x, k(x+ e)) ≥ −(1− σ)α(|x|)},

(1.14)

without using (1.10), to potentially further reduce transmissions (see e.g. [96], [1]). �
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1.2.3.3 Using additional variables

In some cases, additional variables η ∈ R
nη can be introduced to design the triggering condition.

It is shown in [1], [89], [32] that such variables can be used to further reduce transmissions.

Moreover, [1], [89] also explain that the technique in [121] can be reinterpreted within the

formalism of [34] by adding an appropriate variable η.

1.2.4 Other state-dependent sampling paradigms

Other state-dependent sampling implementations have also been proposed in the literature. Self-

triggered control is an implementation approach in which the next transmission instant is deter-

mined by the controller itself based on the latest measurements of the state and knowledge on

the plant dynamical model, see e.g. [110], [67], [89], [5], [117], [68], [3]. The potential advan-

tage of this approach is that we do not need to continuously monitor the plant measurements

as in ETC. However, a main challenge in self-triggered control is how to precisely estimate the

next transmission instant. Periodic event-triggered control is another alternative in which the

plant measurements are sampled periodically and, at each sampling instant, the event-triggering

condition is evaluated to decide whether or not to transmit new measurements and control sig-

nals, see e.g. [7], [44], [27], [40], [42], [87]. The main benefit of this strategy is that the Zeno

phenomenon is ensured to be avoided since the periodic sampling interval serves as a guaran-

teed lower bound on the inter-transmission times. On the other hand, a thorough analysis of this

approach is not trivial to design an appropriate sampling period of the triggering mechanism

such that the closed-loop stability is preserved and the performance is not degraded. An alter-

native state-dependent strategy has been proposed in [29] based on a mapping of the state space

which is designed offline to reduce the amount of transmissions during the real-time control of

the system. In this thesis, we focus on the event-triggering approach.

1.2.5 Output feedback control

The methods presented so far assume that the full state can be measured. In this case, both the

feedback law and the event-triggering condition are functions of the full state vector. In practice,

we often have access to an output of the plant and not to the full state. It has to be noted that the

existing results on state feedback ETC cannot be directly extended to output feedback controllers
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since the existence of a strictly positive lower bound on the inter-transmission times is no longer

guaranteed in this case which induces more technical difficulties in the stability analysis. We

clarify this point by recalling Example 2 in [22].

1.2.5.1 Motivating example

Consider the LTI system

ẋp =


 0 1

−2 3


xp +


0

1


u

y = [−1 4] xp,

(1.15)

where x ∈ R
2 is the plant state, u ∈ R is the control input and y ∈ R is the output of the plant.

The system can be stabilized by the following dynamic output feedback controller

ẋc =


0 1

0 −5


xc +


0

1


 y

u = [1 − 4] xc,

(1.16)

where xc ∈ R
2 is the state of the dynamic controller. Let the network-induced error defined as,

for t ∈ [ti, ti+1]

ey(t) = y(ti)− y(t). (1.17)

The straightforward extension of the triggering condition (1.11) gives

|ey| ≤ σ|y| (1.18)

for some sufficiently small σ > 0. Unfortunately, this triggering rule is not suitable since the

existence of a uniform strictly positive lower bound is not ensured like with state feedback

controllers and hence, Zeno phenomenon may occur. Indeed, when y = 0, an infinite number

of jumps occurs for any value of x such that gp(xp) = 0. This situation is shown in Figure

1.3 where we note that the transmission instants accumulate at t = 1.7674 which reveals the

occurrence of Zeno phenomenon2 .

2All the simulations in this thesis have been carried out by using HyEQ toolbox [92].
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FIGURE 1.3: Inter-transmission times with a zoom-in of the last transmissions.

To overcome this issue, event-triggered controllers have to be developed in order to maintain the

closed-loop stability while ensuring that the minimum inter-transmission time is strictly positive.

In [22] for instance, this issue was overcome by adding a constant to the triggering condition

which leads to

C =
{
(x, e) :

(
|ey|2 ≤ σy|y|2 + εy

)
and

(
|eu|2 ≤ σu|u|2 + εu

)}

D =
{
(x, e) :

(
|ey|2 = σy|y|2 + εy

)
or

(
|eu|2 = σu|u|2 + εu

)} (1.19)

for σy, σu, εy, εu ≥ 0, from which a practical stability property is derived, i.e. the state trajectory

converges to a neighbourhood to the origin whose size depends on the parameters εy, εu.

1.2.5.2 Existing results

To the best of our knowledge, the problem of output feedback ETC has been first investigated

in [53] and then in [8, 22, 30, 41, 55, 58, 72, 84, 100, 105, 126] for LTI systems and only in

[123] for nonlinear systems. We have seen above that the event-triggered controller proposed

for LTI systems in [22] guarantees a practical stability property. These controllers are such that

the smaller the size of the neighbourhood to the origin, the shorter the guaranteed minimum

inter-transmission time. The results in [126], [72] focus on PETC for linear systems. In [8],

[100], [104],[58], [41], [30], event-triggered observer-based controllers have been developed.

The triggering mechanisms in these architectures are assumed to have access to both the out-

put measurement and the estimated state by the observer. For nonlinear systems, we are only

aware of the result in [123] where passivity tools were used to derive triggering conditions to

achieve an L2 stability property. To ensure the existence of a strictly positive lower bound on
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the inter-transmission times, the authors in [123] require that the output of the plant y belongs

to a bounded sector of the state. This requirement seems to be conservative and we show that

this condition dos not hold for all the illustrative examples that we have considered in the next

two chapters.

1.3 Objectives and contributions

Motivated by the previous discussions, in this thesis, we address the following problems in the

context of output feedback ETC.

Chapter 2: Emulation design for nonlinear systems

We design output feedback ETC for nonlinear systems by emulation, see Section 1.1.1.1. The

design objectives are to guarantee a (global) asymptotic stability property and to ensure the ex-

istence of a uniform strictly positive lower bound on the inter-transmission times. The proposed

strategy combines the event-triggering condition of [103] adapted to output measurements and

the results on time-driven sampled-data systems in [79]. Indeed, the event-triggering condition

is only (continuously) evaluated after T units of times have elapsed since the last transmission,

where T corresponds to the MATI given by [79]. This two-step procedure is justified by the fact

that the adaption of the event-triggering condition of [103] to output feedback on its own can

lead to Zeno phenomenon as we have seen in Section 1.2.5.

Our results rely on similar assumptions as in [79] which allow us to derive both local and global

results. Contrary to [30], the approach is applicable to nonlinear systems and the output feedback

law is not necessarily based on an observer. Compared to [123], we rely on a different set of

assumptions and we conclude a different stability property. In addition, we show that our results

are applicable to any LTI systems that are stabilizable and detectable, which is a priori not

the case of [123]. Furthermore, we apply our results to the controlled Lorenz model of fluid

convection and to a single-link robot arm model, which are nonlinear and which do not satisfy

the conditions of [123]. It has to be noted that the event-triggering mechanism that we propose is

different from the periodic event-triggered control (PETC) paradigm, see e.g. [42], [87], where

the triggering condition is verified only at some periodic sampling instants. In our case, the

triggering mechanism is continuously evaluated, once T units of time have elapsed since the last

transmission.



1.3 Objectives and contributions 27

For LTI systems, the required conditions are reformulated as a linear matrix inequality (LMI).

The triggering condition parameters are then obtained by solving this LMI condition which

is shown to be always feasible for LTI systems that are stabilizable and detectable. We also

compare the effectiveness of our proposed triggering mechanism with the existing results on

a numerical example. Furthermore, we show how the proposed technique can be fruitfully

employed in the context of state feedback control as a special case, to directly tune the lower

bound on the inter-transmission times. Although such a lower bound is guaranteed in [103], the

obtained value may be subject to some conservatism. More interestingly, the internal structure

of our triggering mechanism ensures that the generated amount of transmissions are less than

or, at least, equal to those produced by conventional periodic setups using [79].

Chapter 3: Co-design for linear systems

The vast majority of existing event-triggered controllers are designed by emulation, see [1, 43,

120] and the references therein. The potential disadvantage of this technique is that it is difficult

to obtain an optimal design since we are restricted by the initial choice of the feedback law. To

avoid the design constraints imposed by the emulation approach, three directions of research are

proposed in the literature: co-design of feedback laws and event-triggering conditions, e.g. see

[49, 83, 85, 98, 99, 106, 124], joint design of control inputs and self-triggering conditions, e.g.

[4, 15, 23, 28, 36, 118], and optimal event-triggered control, e.g. [6, 74, 75, 90, 97].

We are interested in the first direction where start form the emulation analysis for linear sys-

tems in the previous part to develop a co-design procedure, see Section 1.1.1.2, of the output

feedback law and the event-triggering condition. To the best of our knowledge, this problem

has been only addressed in [126], [72]. The proposed co-design methods in [126], [72] are

concerned with periodic event-triggered controllers in which the output measurements are sam-

pled periodically and then it is the task of the triggering condition to decide whether the control

input needs to be updated. However, an open question regarding these techniques is how to

calculate the appropriate sampling period of the triggering mechanism. This is a key aspect in

the construction of PETC since the sampling of the triggering mechanism may deteriorate the

closed-loop performance or may require a higher network bandwidth than the available one, see

[87].

Unlike [126], [72], we provide a co-design algorithm where the triggering condition is con-

tinuously evaluated. The required conditions have been formulated in terms of LMIs and the
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event-triggered controller is then obtained by solving these LMIs. It is important to note that

the results obtained by emulation approach do not allow for co-design because the resulted LMI

condition is nonlinear in this case. Furthermore, the encountered nonlinearity cannot be directly

handled by congruence transformations like in standard output feedback design problems, which

induces non-trivial technical difficulties. We thus needed to introduce an additional LMI con-

straint to linearize the LMI condition of the emulation case using the tools of [94]. We then

take advantage of the flexibility of co-design to enhance the efficiency of the event-triggered

controllers in two senses. We first maximize the minimum inter-transmission time which is es-

sential in practice. Indeed, while the existence of dwell-time is typically ensured in emulation

results, its value may be very small and may thus violate the hardware constraints. It is therefore

important to propose designs which are able to ensure larger minimum times between two trans-

missions. We then propose a heuristic to reduce the amount of transmissions, whose efficiency

is confirmed by simulations.

Chapter 4: Singularly perturbed systems

Singularly perturbed systems are systems whose dynamics involve physical phenomena occur-

ring in two-time scales. The dynamical model of such systems is generally given by, see [52, 54]

ẋ = f(x, z, u)

ǫż = g(x, z, u)

u = k(x, z),

(1.20)

where x ∈ R
nx and z ∈ R

nz are the states, u ∈ R
nu is the control input, and ǫ > 0 is a small

parameter which determines the degree of separation between the slow and fast modes of the

system. Hence, the two-time scale feature comes from the fact that dynamics of z evolves faster

than x when ǫ is small (since ż = g(x, z, u)/ǫ).

The analysis of this class of systems requires careful handling of the two-time scale nature since

this property may lead to ill conditioning controllers or/and instability of the closed-loop if

ignored. Singular perturbation theory provides powerful tools to design and analyse these two-

time scale control systems, see e.g. [54], [52]. The cornerstone result of the singular perturbation

theory is that the original system (1.20) can be decomposed into two separate approximate slow
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and fast models of the form

ẋ = fs(x, us)

ǫẏ = gf (y, uf ),
(1.21)

where fs, gf are the approximate functions of f, g and y is obtained after changing the variables.

Next, reduced order controllers us, uf are designed independently to stabilize each subsystem.

Then, under certain conditions, the composite control law u = us + uf guarantees the overall

stability of the original system (1.20) in virtue of the singular perturbation theory. In this way,

the control design problem is greatly simplified since we only need to stabilize each approximate

model separately.

We are interested to design stabilizing event-triggered controllers based only on an approximate

model of the slow dynamics. This problem is motivated by the fact that engineers often neglect

the fast stable dynamics in practice and design the feedback law based only on the slow model.

To the best of our knowledge, this is the first result in that direction. We highlight specific

challenges which arise with the ETC of singularly perturbed systems:

• The state of the fast model experiences a jump at each transmission due to the change

of variables that is introduced to separate the slow and the fast dynamics using singular

perturbation theory. These jumps induce non-trivial difficulties in the stability analysis.

That is a feature of the problem which is not present in available results on event-triggered

control where only the sampling-induced error is reset to zero at each transmission, see

e.g. [1, 22, 43, 103, 120];

• The existence of a strictly positive lower bound on the inter-transmission times is no

longer ensured due to the fact that we neglect the fast dynamics.

The stability of this type of systems is analysed in [93], [115], [116]. In this chapter, we address

a design problem as we construct the flow and jump sets (i.e. the triggering condition) and we

propose different stability analyses under a different set of assumptions. We propose two classes

of event-triggered controllers. The first policy relies on the event-triggering conditions [22, 69],

see Section 1.2.5, but it requires to fully modify the stability analysis to handle the features

of the problem due to the two-time scale nature of the system. We show that a semiglobal

practical stability property holds where the adjustable parameter appears in the event-triggering

condition. The second technique combines the event-triggered implementation of [103] with

the time-triggered results in [79] like in Chapter 2. We show that a global asymptotic stability
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property is satisfied in this case, under an additional assumption. The results are shown to be

applicable to a class of globally Lipschitz systems, which encompasses stabilizable LTI systems

as a particular case. The approach is illustrated on the autopilot control of an F-8 aircraft model.

1.4 Conclusion

In this chapter, we have presented a brief overview on NCS and ETC and we have then explained

the objectives and contributions of this thesis.

For NCS, we have started by introducing NCS and we have mentioned the benefits and the

phenomena occurring due to the insertion of a shared communication channel in the feedback

loop. Then, we have emphasized the main challenge that motivates most existing results on

NCS. Afterwards, we have discussed the control design techniques for NCS.

In the second part of this chapter, the event-triggered control has been presented as a suitable

implementation strategy of feedback laws for NCS, we refer the reader to [57] for more ex-

planation on ETC. The approach has been first motivated by highlighting the drawbacks of the

traditional time-triggered setups then, we have demonstrated the underlying idea of event-based

triggering and its advantages compared to the periodic paradigm. The hybrid dynamical model

of of the closed-loop system has been then derived, see [63], [34] for more details on hybrid dy-

namical systems. Next, we have provided some insights on the ETC by exploring the common

techniques in the literature where we have drawn the attention to the Zeno phenomenon which

has to be avoided in order to make the triggering mechanism implementable in practice. Then,

it has been shown that the exclusion of Zeno behaviour becomes more challenging task when

the full state measurement is not available.

Our objectives and contributions have been briefly explained in the last part of this chapter. We

have first motivated ourselves by the lack of results on output feedback ETC in the literature to

develop an appropriate event-triggered mechanism for nonlinear systems by emulation. Then,

to allow more flexibility in the design of the event-triggered controller, we will propose a co-

design procedure to simultaneously design the output feedback law and the flow and jump sets

for LTI systems, interested readers on dynamic output feedback controllers and LMI controller

synthesis are referred to Chapter 10 in [20] and Chapters 1,4 in [95]. Finally, event-triggered

controllers will be developed to stabilize nonlinear singularly perturbed systems based only on

the slow dynamics, see [54] and Chapter 11 in [52].



Chapter 2

Emulation design for nonlinear systems

This chapter addresses the synthesis of output feedback event-triggered controllers for nonlin-

ear systems. We design the controller using the emulation approach (see Section 1.1.1.1). The

proposed technique is illustrated on two physical nonlinear systems for which the required con-

ditions are verified. We show that the proposed strategy can be applied to any detectable and

stabilizable LTI system. We also explain the interest of the triggering condition in the context of

state feedback control.

2.1 Hybrid model

As in Section 1.1.1.1, we first ignore the communication constraints and we consider the non-

linear plant model

ẋp = fp(xp, u), y = gp(xp), (2.1)

where xp ∈ R
np is the plant state, u ∈ R

nu is the control input, y ∈ R
ny is the measured output

of the plant. We focus on general dynamic controllers of the form

ẋc = fc(xc, y), u = gc(xc, y), (2.2)

where xc ∈ R
nc is the controller state. We emphasize that the xc-system is not necessarily

an observer. We assume that the controller (2.2) has been designed to stabilize the closed-loop

system (2.1)-(2.2). Next, we consider the case where the feedback law (2.2) is implemented over

a network. We define the sampling induced error as in (1.4) and we introduce an additional clock
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variable τ ∈ R≥0 to describe the time elapsed since the last transmission, with the dynamics

τ̇ = 1 τ ∈ C, τ+ = 0 τ ∈ D. (2.3)

Then, the hybrid model (1.5) is




ẋ

ė

τ̇


 =




f(x, e)

g(x, e)

1


 (x, e, τ) ∈ C




x+

e+

τ+


 =




x

0

0


 (x, e, τ) ∈ D,

(2.4)

where f, g are defined in (1.6).

Our objective is to design the flow and the jump sets of system (2.4) such that a (global) asymp-

totic stability property is guaranteed and the number of transmissions is reduced, while ensuring

the existence of a strictly positive lower bound on the inter-transmission times.

2.2 Main results

We first present the conditions that we impose on system (2.4), then we present the triggering

technique and we state the main stability result. Finally, we illustrate the technique on two

physical nonlinear examples.

2.2.1 Assumptions

We make the following assumption on system (2.4), which is inspired by [79].

Assumption 2.1. There exist ∆x,∆e > 0, locally Lipschitz positive definite functions V :

R
nx → R≥0 and W : Rne → R≥0, a continuous function H : Rnx → R≥0, real numbers

L ≥ 0, γ > 0, α,α ∈ K∞ and continuous, positive definite functions δ : Rny → R≥0 and

α : R≥0 → R≥0 such that, for all x ∈ R
nx

α(|x|) ≤ V (x) ≤ α(|x|), (2.5)
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for all |e| ≤ ∆e and almost all |x| ≤ ∆x

〈∇V (x), f(x, e)〉 ≤ −α(|x|) −H2(x)− δ(y) + γ2W 2(e) (2.6)

and for all |x| ≤ ∆x and almost all |e| ≤ ∆e

〈∇W (e), g(x, e)〉 ≤ LW (e) +H(x). (2.7)

We say that Assumption 2.1 holds globally if (2.6) and (2.7) hold for almost all x ∈ R
nx and

e ∈ R
ne . �

Conditions (2.5)-(2.6) imply that the system ẋ = f(x, e) is L2-gain stable from W to (H,
√
δ).

This property can be analysed by investigating the robustness property of the closed-loop system

(2.1)-(2.2) with respect to input and/or output measurement errors in the absence of sampling.

Note that, since W is positive definite and continuous (since it is locally Lipschitz), there exists

χ ∈ K∞ such that W (e) ≤ χ(|e|) (according to Lemma 4.3 in [52]) and hence (2.5), (2.6)

imply that the system ẋ = f(x, e) is input-to-state stable (ISS). We also assume an exponential

growth condition of the e-system on flows in (2.7) which is similarly used in [79].

2.2.2 Event-triggering condition

Under Assumption 2.1, the adaptation of the idea of [103] leads to a triggering condition of the

form

γ2W 2(e) ≤ δ(y). (2.8)

The problem is that Zeno phenomenon may occur with this type of triggering conditions as

explained in Section 1.2.5. We propose instead to evaluate the event-triggering condition only

after T units have elapsed since the last transmission, where T corresponds to the MATI given

by [79]. In that way, we ensure the existence of a strictly positive lower bound on the inter-

transmission times. Although the rationale is intuitive, the analysis is not trivial as we will

show. Similar approaches have been followed in [30, 71, 122] to enforce a lower bound on the

inter-transmission times in different contexts, mainly for linear systems. Note that the idea of

enforcing a given time between two jumps is linked to time regularization techniques, see [50].
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We thus redesign the triggering condition as follows

γ2W 2(e) ≤ δ(y) or τ ∈ [0, T ], (2.9)

where we recall that τ ∈ R≥0 is the clock variable introduced in (2.4). Consequently, the flow

and jump sets of system (2.4) are

C =
{
(x, e, τ) : γ2W 2(e) ≤ δ(y) or τ ∈ [0, T ]

}

D =
{
(x, e, τ) :

(
γ2W 2(e) = δ(y) and τ ≥ T

)
or

(
γ2W 2(e) ≥ δ(y) and τ = T

)}
.

(2.10)

Hence, the inter-jump times are uniformly lower bounded by T . This constant is selected such

that T < T (γ, L), where

T (γ, L) :=





1
Lr

arctan(r) γ > L

1
L

γ = L

1
Lr

arctanh(r) γ < L

(2.11)

with r :=
√∣∣( γ

L
)2 − 1

∣∣ and L, γ come from Assumption 2.1 as in [79].

2.2.3 Stability results

We are ready to state the main result.

Theorem 2.1. Suppose that Assumption 2.1 holds and consider system (2.4) with the flow and

jump sets (2.10), where the constant T is such that T ∈ (0,T (γ, L)). There exist ∆ > 0 and

β ∈ KL such that any solution φ = (φx, φe, φτ ) with |(φx(0, 0), φe(0, 0))| ≤ ∆ satisfies

|φx(t, j)| ≤ β(|(φx(0, 0), φe(0, 0))|, t + j) ∀(t, j) ∈ dom φ, (2.12)

furthermore, if φ is maximal, then it is complete. If Assumption 2.1 holds globally, then (2.12)

holds globally. �

Proof of Theorem 2.1. First, we prove the result when Assumption 2.1 holds globally. Let

ζ : R≥0 → R be the solution to the following differential system, like in [17], [79]

ζ̇ = −2Lζ − λ(ζ2 + 1) ζ(0) = θ−1, (2.13)
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where θ ∈ (0, 1), λ :=
√
γ2 + η for some η > 0 and γ comes from Assumption 2.1. We denote

T̃ (θ, η, γ, L) the time it takes for ζ to decrease from θ−1 to θ. By following the same lines as in

the proof of Claim 1 in [17], the time T̃ (θ, η, γ, L) is given by

T̃ (θ, η, γ, L) :=





1
Lr

arctan r(1−θ)
2 θ
1+θ

(

√
γ2+η

L
−1)+1+θ

√
γ2 + η > L

1
L

1−θ
1+θ

√
γ2 + η = L

1
Lr

arctanh r(1−θ)
2 θ
1+θ

(

√
γ2+η

L
−1)+1+θ

√
γ2 + η < L,

(2.14)

where r =

√√√√
∣∣∣∣∣

(√
γ2+η
L

)2

− 1

∣∣∣∣∣. We note that the time T̃ (θ, η, γ, L) is a continuous function

of (θ, η) which is decreasing in θ and η (by invoking the comparison principle). On the other

hand, we note that T̃ (θ, η, γ, L) → T (γ, L) as (θ, η) tends to (0, 0) (where T (γ, L) is defined

in (2.11)). As a consequence, since T < T , there exists (θ, η) such that T < T̃ (θ, η, γ, L). We

fix the couple (θ, η).

Let q := (x, e, τ). We define for all q ∈ C ∪D

R(q) := V (x) + max{0, λζ(τ)W 2(e)}. (2.15)

Let q ∈ D, we obtain, in view of (2.4) and the fact that W is positive definite,

R(G(q)) = V (x) + max{0, λζ(0)W 2(0)}

= V (x) ≤ R(q), (2.16)

where G(q) := (x, 0, 0).

Let q ∈ C and suppose that ζ(τ) < 0. As a consequence,

R(q) = V (x) (2.17)

and it holds that τ > T . Indeed, ζ(τ) is strictly decreasing in τ , in view of (2.13), and ζ(T ) >

ζ(T̃ ) = θ > 0 as T < T̃ . Then ζ(τ) < 0 implies that τ > T . Hence, γ2W 2(e) ≤ δ(y) in view

of (2.10) since q ∈ C . Consequently, in view of page 100 in [107], Lemma 1, Assumption 2.1

and (2.15)

R◦(q;F (q)) = 〈∇V (x), f(x, e)〉
≤ −α(|x|),

(2.18)
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where F (q) := (f(x, e), g(x, e), 1). Hence, by following similar arguments as in the proof of

Theorem 1 in [79] since α is continuous and positive definite and V is positive definite and

radially unbounded, there exists a continuous positive definite function ρ1 such that

R◦(q;F (q)) ≤ −ρ1(V (x))

=: −ρ1(R(q)). (2.19)

When q ∈ C and ζ(τ) > 0, we have

R(q) = V (x) + λζ(τ)W 2(e). (2.20)

As above, in view of Lemma 1, Assumption 2.1 and (2.13), we obtain

R◦(q;F (q)) = 〈∇V (x), f(x, e)〉 + λζ̇(τ)W 2(e) + 2λζ(τ)W (e)〈∇W (e), g(x, e)〉

≤ −α(|x|)−H2(x)− δ(y) + γ2W 2(e) + 2λζ(τ)W (e)(LW (e) +H(x))

+λW 2(e)
(
− 2Lζ − λ(ζ2 + 1)

)

≤ −α(|x|)−H2(x)− δ(y) + γ2W 2(e) + 2λζ(τ)W (e)H(x)

−λ2ζ2(τ)W 2(e)− λ2W 2(e).

(2.21)

Using the fact that 2λζ(τ)W (e)H(x) ≤ λ2ζ2(τ)W 2(e) +H2(x), we have that

R◦(q;F (q)) ≤ −α(|x|) − δ(y) + γ2W 2(e)− λ2W 2(e)

≤ −α(|x|) + γ2W 2(e) − λ2W 2(e). (2.22)

Recall that λ2 = γ2 + η, it holds that

R◦(q;F (q)) ≤ −α(|x|) − ηW 2(e). (2.23)

By using the same argument as in (2.19), we derive that

R◦(q;F (q)) ≤ −ρ1(V (x))− ηW 2(e)

= −ρ1(V (x))− ηθ

λ
λθ−1W 2(e)

= −ρ1(V (x))− ρ2(λθ
−1W 2(e)), (2.24)
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where ρ2 : s 7→ ηθ
λ
s ∈ K∞. Since ζ(τ) ≤ θ−1 for all τ ≥ 0 in view of (2.13), it holds that

R◦(q;F (q)) ≤ −ρ1(V (x))− ρ2(λζ(τ)W
2(e)). (2.25)

We deduce that there exists a continuous positive definite function ρ3 such that

R◦(q;F (q)) ≤ −ρ3(V (x) + λζ(τ)W 2(e))

=: −ρ3(R(q)). (2.26)

When ζ(τ) = 0, we obtain, in view of (2.19), (2.26) and Lemma 1

R◦(q;F (q)) ≤ max{−ρ1(R(q)),−ρ3(R(q))}. (2.27)

Consequently, it holds that, for all q ∈ C

R◦(q;F (q)) ≤ −ρ(R(q)), (2.28)

where ρ := min{ρ1, ρ3} is continuous and positive definite. Let φ be a solution to (2.4), (2.10).

In view of (2.28) and by definition of the Clarke’s derivative (see for instance page 99 in [107]),

it holds that, for all j and for almost all t ∈ Ij (where Ij = {t : (t, j) ∈ dom φ})

Ṙ(φ(t, j)) ≤ R◦(φ(t, j);F (φ(t, j))) ≤ −ρ(R(φ(t, j))). (2.29)

Thus, in view of (2.16), (2.29) and since inter-jump times are lower bounded by T in view of

(2.10), we conclude that, by following the same lines as in the end of the proof of Theorem 1 in

[79], there exists β̄ ∈ KL such that for any solution φ to (2.4), (2.10) and any (t, j) ∈ dom φ,

R(φ(t, j)) ≤ β̄(R(φ(0, 0)), 0.5t + 0.5Tj). (2.30)

In view of Assumption 2.1 and since W is continuous (since it is locally Lipschitz) and positive

definite, there exists αW ∈ K∞ such that W (e) ≤ αW (|e|) for all e ∈ R
ne according to Lemma

4.3 in [52]. As a result, in view of Assumption 2.1, (2.13) and (2.15), it holds that, for all



38 Chapter 2. Emulation design for nonlinear systems

q ∈ C ∪D,

V (x) ≤ R(q) ≤ V (x) +
λ

θ
W 2(e)

α(|x|) ≤ R(q) ≤ α(|x|) + λ

θ
αW (|e|)

α(|x|) ≤ R(q) ≤ αR(|(x, e)|), (2.31)

where αR : s 7→ α(s) + λ
θ
αW (s) ∈ K∞. Hence, in view of (2.30) and (2.31), we deduce that

for any solution φ to (2.4), (2.10) and for all (t, j) ∈ dom φ

α(|φx(t, j)|) ≤ R(φ(t, j)) ≤ β̄
(
αR(|(φx(0, 0), φe(0, 0))|), 0.5t+0.5Tj

)
. (2.32)

Consequently,

|φx(t, j)|≤α−1
(
β̄
(
αR(|(φx(0, 0), φe(0, 0))|), 0.5t+0.5Tj

))

= β(|(φx(0, 0), φe(0, 0))|), t + j), (2.33)

where β : (s1, s2) 7→ α−1(β̄(αR(s1), s2)) ∈ KL. Thus, (2.12) holds.

We now investigate the completeness of the maximal solutions to system (2.4), (2.10). Let φ be

a maximal solution to (2.4), (2.10). We first show that φ is nontrivial, i.e. its domain contains

at least two points (see Definition 2.5 in [34]). According to Proposition 6.10 in [34], it suffices

for that purpose to prove that {F (q)} ∩ TC(q) 6= ∅ for any q := (x, e, τ) ∈ C\D, where TC(q)

is the tangent cone to C at q. Let q ∈ C\D. If q is in the interior of C , TC(q) = R
nx+ne+1 and

the required condition holds. If q is not in the interior of C , necessarily τ = 0 as q ∈ C\D, in

this case TC(q) = R
nx+ne × R≥0 and we see that F (q) ∈ TC(q), in view of (2.4). Hence, φ

is nontrivial according to Proposition 6.10 in [34]. In view of (2.4), (2.10) and (2.33), φx and

φτ cannot explode in finite time. Recall that the network-induced error is φe = (φey , φeu) with

φey = φy(tj , j) − φy(t, j), φeu = φu(tj , j) − φu(t, j) for j > 0 and (t, j) ∈ domφ where we

write dom φ = ∪j∈{0,...,J}([tj , tj+1], j) with some abuse of notation. Hence, in view of (2.1),

(2.2), (2.33) and since gp, gc are continuous, it holds that, for all j > 0 and (t, j) ∈ dom φ

|φey(t, j)| = |gp(φxp(tj , j)) − gp(φxp(t, j))|

≤ |gp(φxp(tj , j))| + |gp(φxp(t, j))|

≤ 2 max |gp(z)|.
|z|≤β(|(φx(0,0),φe(0,0))|,0)

(2.34)
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Similarly, we obtain, for all j > 0 and (t, j) ∈ domφ

|φeu(t, j)| ≤ |gc(φxc(tj , j), φy(tj , j))| + |gc(φxc(t, j), φy(tj , j))|

= |gc(φxc(tj , j), gp(φxp(tj , j))| + |gc(φxc(t, j), gp(φxp(tj , j))|

≤ 2 max |gc(z1, z2)|.
|z1| ≤β(|(φx(0,0),φe(0,0))|,0)
|z2| ≤max |gp(z1)|

(2.35)

When j = 0, we have that |φey(t, 0)| ≤ |φey(0, 0)| + |gp(φxp(0, 0)) − gp(φxp(t, 0))| and

|φeu(t, 0)| ≤ |φeu(0, 0)| + |gc(φxc(0, 0), φy(0, 0)) − gc(φxc(t, 0), φy(0, 0))| and we can de-

rive similar bounds on the interval [0, t1]. Thus, in view of (2.34) and (2.35) and since φe is

reset to 0 at each jump, φe cannot blow up in finite time. As a consequence, φ cannot explode

in finite time. Let G(x, e, τ) := (x, 0, 0) denotes the jump map in (2.10). The solutions to (2.4),

(2.10) cannot leave the set C ∪D after a jump since G(D) ⊂ C in view of (2.4), (2.10). Thus,

we conclude that maximal solutions to (2.4), (2.10) are complete according to Proposition 6.10

in [34]. Finally, we note that if Assumption 2.1 holds locally, then there exists ∆ > 0 such that

(2.16) and (2.29) hold on the invariant set |(x, e)| ≤ ∆ and consequently (2.12) holds locally.

�

Remark 2.1. We can redesign the triggering condition in (2.10) if the event-triggering mech-

anism has the access to both the plant output y and the state of the dynamic controller xc, as

considered in [105] for instance, see Figure 2.1. Then, condition (2.6) is modified to be

〈∇V (x), f(x, e)〉 ≤ −α(|x|)−H2(x)− δ(y)− ξ(|xc|) + γ2W 2(e), (2.36)

where ξ : R≥0 → R≥0 is a continuous positive definite function. As a consequence, the flow

and jump sets are

C =
{
(x, e, τ) : γ2W 2(e) ≤ δ(y) + ξ(|xc|) or τ ∈ [0, T ]

}

D =
{
(x, e, τ) :

(
γ2W 2(e) = δ(y) + ξ(|xc|) and τ ≥ T

)
or

(
γ2W 2(e) ≥ δ(y) + ξ(|xc|) and τ = T

)}
.

(2.37)

which may yields larger inter-transmission times compared to (2.10). �
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Plant

Event-triggering

mechanism

Controller
y(t)ŷ(t)

xc(t)

û(t)

FIGURE 2.1: Event-triggered control schematic [105]

2.2.4 Illustrative examples

2.2.4.1 Controlled Lorenz model of fluid convection

Consider the controlled Lorenz equations which model fluid convection [114]

ẋ1 = −ax1 + ax2

ẋ2 = bx1 − x2 − x1x3 + u

ẋ3 = x1x2 − cx3

y = x1,

(2.38)

where x1 is proportional to the intensity of the convective motion, x2 is proportional to the

temperature difference between the ascending and descending currents, x3 is proportional to

the distortion of the vertical temperature profile from being linear, and u corresponds to the tilt

angle of a closed-loop of natural convection from the vertical. The three parameters a, b, and c

are related to some physical constants and all three are positive, see [111] for more detail.

The static output feedback law u = −(p1
p2
a+ b)x1, where p1, p2 > 0, globally stabilizes system

(2.38), which can be verified as follows. Let x := (x1, x2, x3) and

f(x) :=




−ax1 + ax2

bx1 − x2 − x1x3 − (p1
p2
a+ b)x1

x1x2 − cx3


 . (2.39)
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Consider the quadratic function V (x) = p1x
2
1 + p2x

2
2 + p2x

2
3. It holds that, for all x ∈ R

3

〈∇V (x), f(x)〉 = 2p1x1(−ax1 + ax2) + 2p2x2(bx1 − x2 − x1x3 + u)

+2p2x3(x1x2 − cx3)

= −2p1ax
2
1 − 2p2x

2
2 − 2p2cx

2
3 + 2(p1a+ p2b)x1x2

+2p2x2u+ (−2p2 + 2p2)x1x2x3

= −2p1ax
2
1 − 2p2x

2
2 − 2p2cx

2
3 + 2(p1a+ p2b)x1x2 + 2p2x2u.

(2.40)

Hence, by substituting by u = −(p1
p2
a+ b)x1, we have that

〈∇V (x), f(x)〉 = −2p1ax
2
1 − 2p2x

2
2 − 2p2cx

2
3. (2.41)

Therefore, the output feedback law u = −(p1
p2
a + b)x1 globally stabilizes the origin of (2.38).

We take into account the network-induced error

e = ŷ − y = x̂1 − x1.

Note that it is not necessary to consider the error in u as the controller is static (see Section

1.2.2). As a consequence, the functions f(x, e) and g(x, e) in (2.4) are

f(x, e) =




−ax1 + ax2

bx1 − x2 − x1x3 − (p1
p2
a+ b)(x1 + e)

x1x2 − cx3




g(x, e) = ax1 − ax2.

(2.42)

Let W (e) = |e|. Consequently, for all x ∈ R
3 and almost all e ∈ R

〈∇W (e), g(x, e)〉 ≤ a(|x1|+ |x2|). (2.43)

Hence, condition (2.7) holds with L = 0 and H(x) = a(|x1| + |x2|). By following the same
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lines as in (2.41), we have that

〈∇V (x), f(x, e)〉 = −2p1ax
2
1 − 2p2x

2
2 − 2p2cx

2
3 + 2(p1a+ p2b)x1x2 + 2p2x2û

= −2p1ax
2
1 − 2p2x

2
2 − 2p2cx

2
3 + 2(p1a+ p2b)x1x2

−2p2(
p1
p2
a+ b)x2(x1 + e)

≤ −2p1ax
2
1 − 2p2x

2
2 − 2p2cx

2
3 + 2p2(

p1
p2
a+ b)x2e.

(2.44)

Using the fact that 2(p1
p2
a+ b)x2e ≤ x22 + (p1

p2
a+ b)2e2, it holds that

〈∇V (x), f(x, e)〉 ≤ −2p1ax
2
1 − 2p2x

2
2 − 2p2cx

2
3 + p2x

2
2 + p2(

p1
p2
a+ b)2e2

= −2p1ax
2
1 − p2x

2
2 − 2p2cx

2
3 + p2(

p1
p2
a+ b)2e2.

(2.45)

Adding and subtracting the term H2(x) = ax21 + ax22 + 2a|x1||x2| ≤ 2ax21 + 2ax22, we obtain

〈∇V (x), f(x, e)〉 ≤ −2p1ax
2
1 − p2x

2
2 − 2p2cx

2
3 + p2(

p1
p2
a+ b)2e2 −H2(x) + ax21

+ax22 + 2a|x1||x2|

≤ −2p1ax
2
1 − p2x

2
2 − 2p2cx

2
3 + p2(

p1
p2
a+ b)2e2 −H2(x) + 2ax21

+2ax22

(2.46)

〈∇V (x), f(x, e)〉 ≤ −2a(p1 − 1)x21 − (p2 − 2a)x22 − 2p2cx
2
3 −H2(x) + p2(

p1
p2
a+ b)2e2

≤ −min{a(p1 − 1), (p2 − 2a), 2p2c}|x|2 − a(p1 − 1)y2 −H2(x)

+p2(
p1
p2
a+ b)2e2.

(2.47)

By taking p1 > 1 and p2 > 2a, condition (2.6) holds with α(|x|) = min{a(p1 − 1), (p2 −
2a), 2p2c}|x|2, δ(y) = a(p1 − 1)y2 and γ2 = p2(

p1
p2
a+ c)2.

We have shown that Assumption 2.1 holds, we can then apply the results of Section 2.2.3. For

the parameter values a = 10, b = 28, c = 8/3 used in [114], we set p1 = 2, p2 = 3a and we

obtain T = 0.01. Table 2.1 provides the minimum and the average inter-sampling times for the

proposed triggering mechanism (2.10) for 200 randomly distributed initial conditions such that

|(x(0, 0), e(0, 0))| ≤ 100 and τ(0, 0) = 0. The constant τavg serves as a measure of the amount
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of transmissions (the bigger τavg , the less transmissions). We present simulations for one initial

condition (x(0, 0), e(0, 0), τ(0, 0)) = (−20,−20, 30, 0, 0). Figure 2.2 shows that plant states

converge asymptotically to the origin as expected. Figure 2.3 provides an insight of how the

proposed triggering mechanism works, in particular the interaction between the event-triggered

rule and the time-triggered part. We note that Zeno phenomenon occurs when we remove the

latter. It can be noted that the results in [123] are not applicable to this system because condition

(3) of Proposition 1 in [123] does not hold.

T τmin τavg

0.01 0.01 0.0109

TABLE 2.1: Minimum and average inter-transmission times for 100 randomly distributed ini-

tial conditions such that |(x(0, 0), e(0, 0))| ≤ 100 and τ(0, 0) = 0 for a simulation time of

10s.
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FIGURE 2.4: Inter-transmission times with [103].

2.2.4.2 Single-link robot arm model

Consider the dynamics of a single-link robot arm

ẋp1 = xp2

ẋp2 = − sin(xp1) + u

y = xp1,

(2.48)

where xp1 denotes the angle, xp2 the rotational velocity and u the input torque. The system can

be written as

ẋp = Axp +Bu− φ(y), y = Cxp, (2.49)

where xp := (xp1, xp2) and A =
[
0 1

0 0

]
, B =

[
0

1

]
, C = [ 1 0 ] , φ(y) =

[
0

sin(y)

]
.

In order to stabilize system (2.50), we first construct a state feedback controller of the form

u = Kxp +BTφ(y). Hence, system (2.48) reduces to

ẋp = (A+BK)xp, y = Cxp. (2.50)

We design the gain K such that the eigenvalues of the closed loop system (2.50) are (−1,−2)

(which is possible since the pair (A,B) is controllable). Hence, the gain K is selected to be

K = [−2 − 3]. Next, since only the measurement of y is available, we construct a state-

observer of the following form

ẋc = Axc +Bu− φ(y) +M(y − Cxc)

= (A−MC)xc +Bu− φ(y) +My,
(2.51)
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where xc ∈ R
2 is the estimated state and M is the observer gain matrix. We design the gain

matrix M such that the eigenvalues of (A−MC) are (−5,−6) (which is possible since the pair

(A,C) is observable). Thus, the observer gain is selected to be M = [11 30]T . As a result, the

closed-loop system in the absence of sampling is given by

ẋp = Axp +Bu− φ(y), y = Cxp

ẋc = (A−MC)xc +Bu− φ(y) +My, u = Kxc +BTφ(y).
(2.52)

We now take into account the effect of the network. We consider the scenario where the con-

troller receives the output measurements only at transmission instants ti, i ∈ Z≥0 while the

controller is directly connected to the plant actuators. We design a triggering condition of the

form (2.9). As a consequence, the network-induced error is e = ey = ŷ − y and we obtain, for

almost all t ∈ [ti, ti+1]

ẋp = Axp +B
(
Kxc +BTφ(ŷ)

)
− φ(y)

ẋc = (A−MC +BK)xc +MCxp +Mey. (2.53)

Let x := (xp, xc). Then, system (2.53) has the following dynamics on flows

ẋ =




A BK

MC A−MC +BK






xp

xc


+




0

M


 e+



φ(y + e)− φ(y)

0




=: Ax+ Be+ ψ(y, e).

(2.54)

Since e = ŷ − y and in view of (2.48), we have ė = −ẏ = −xp2. Hence, the functions f, g in

(2.4) are f(x, e) = Ax+ Be+ ψ(y, e) and g(x, e) = −xp2.

Verification of Assumption 2.1

We now verify Assumption 2.1. Let W (e) := |e| for all e ∈ R. Consequently, for almost all e

and all x

〈∇W (e), g(x, e)〉 ≤ |xp2|. (2.55)

Hence, condition (2.7) holds with H(x) = |xp2| and L = 0. Let V (x) = xTPx, where

P is a real positive definite symmetric matrix such that ATP + PA = −Q (such a matrix

P always exist since A is Hurwitz) and Q is real positive definite and symmetric such that

λmin(Q) > 4. We select Q as a block diagonal matrix with the diagonal elements equal to 4.2,
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thus λmin(Q) = 4.2. Then, we have, for all e ∈ R and all x ∈ R
4

〈∇V (x), f(x, e)〉 = xT (ATP + PA)x+ 2xTP (Be+ ψ(y, e))

≤ −λmin(Q)|x|2 + 2|PB||x||e| + 2|P ||x||ψ(y, e)|.
(2.56)

In view of (2.54), by applying the mean value theorem and since the sin function is globally

Lipschitz, it holds that, for some c ∈ [y, y + e]

|ψ(y, e)| = |φ(y + e)− φ(y)| = | sin(y + e)− sin(y)| = |y + e− y|| cos(c)| ≤ |e|. (2.57)

As a consequence,

〈∇V (x), f(x, e)〉 ≤ −λmin(Q)|x|2 + 2(|PB|+ |P |)|x||e|. (2.58)

Using the fact that 2(|PB| + |P |)|x||e| ≤ λmin(Q)
2 |x|2 + 2(|PB|+|P |)2

λmin(Q) |e|2 and recalling that

λmin(Q)
4 > 1, it holds that

〈∇V (x), f(x, e)〉 ≤ −λmin(Q)
2 |x|2 + 2(|PB|+|P |)2

λmin(Q) |e|2

= −λmin(Q)
4 |x|2 − λmin(Q)

4 (x2p1 + x2p2 + x2c) +
2(|PB|+|P |)2
λmin(Q) |e|2

≤ −λmin(Q)
4 |x|2 − |xp2|2 − λmin(Q)

4 y2 + 2(|PB|+|P |)2
λmin(Q) |e|2.

(2.59)

Thus, condition (2.6) is verified with α(|x|) = λmin(Q)
4 |x|2, δ(y) = λmin(Q)

4 y2 and γ2 =

2(|PB|+|P |)2
λmin(Q) .

Simulation results

We obtain the numerical value γ = 26.5333, which gives, in view of (2.11), T = 0.0592. We

take T = 0.059. Figure 2.5 shows that the plant and the estimated state asymptotically converge

to the origin as expected. The generated inter-transmission times by the proposed mechanism

(2.9) are shown in Figure 2.6 where we can observe the interaction between the time-triggered

[79] and the event-triggered [103] techniques. Table 2.2 gives the minimum and the average

inter-sampling times for the proposed triggering mechanism (2.10) for 200 randomly distributed

initial conditions such that |(x(0, 0), e(0, 0))| ≤ 100 and τ(0, 0) = 0. Figure 2.7 presents

the inter-transmission times with the triggering condition γ2W 2(e) ≤ δ(y) without enforcing
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a constant time T between transmissions (i.e. T = 0 in (2.9), (2.10)). We note that Zeno

phenomenon occurs in this case, like in Section 2.2.4.1.
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FIGURE 2.5: Actual and estimated states of the plant.
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T τmin τavg

0.059 0.059 0.0625

TABLE 2.2: Minimum and average inter-transmission times for 100 randomly distributed ini-

tial conditions such that |(x(0, 0), e(0, 0))| ≤ 100 and τ(0, 0) = 0 for a simulation time of

10s.
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2.3 Case studies

In this section, we show how the results can be applied for two important special cases. We first

apply our results to LTI systems and we show that the required conditions are always satisfied

by LTI systems that are stabilizable and detectable. Then, we illustrate the effectiveness of the

proposed strategy on a numerical example. Next, we show how the proposed technique can

be exploited in the context of state feedback control. We illustrate the idea on two numerical

examples.

2.3.1 LTI systems

We now focus on the particular case of linear systems. We formulate the required conditions in

Assumption 2.1 as an LMI constraint. Then, we design the triggering condition by solving this

LMI. We finally compare the results with [22] on a numerical example.

2.3.1.1 Analytical results

Consider the LTI plant model

ẋp = Apxp +Bpu, y = Cpxp, (2.60)
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where xp ∈ R
np , u ∈ R

nu , y ∈ R
ny and Ap, Bp, Cp are matrices of appropriate dimensions.

We design the following dynamic controller to stabilize (2.60) in the absence of sampling

ẋc = Acxc +Bcy, u = Ccxc +Dcy, (2.61)

where xc ∈ R
nc and Ac, Bc, Cc,Dc are matrices of appropriate dimensions. We introduce the

network-induced error as in (1.4), i.e.

ey := ŷ − y

eu := û− u.
(2.62)

Then, we obtain, for almost all t ∈ [ti, ti+1]

ẋp = (Ap +BpDcCp)xp +BpCcxc +BpDcey +Bpeu

ẋc = Acxc +BcCpxp +Bcey.
(2.63)

The dynamics of the network-induced error between two successive transmission instants is

given by, for almost all t ∈ [ti, ti+1]

ėy = −ẏ = −Cpẋp
= −Cp(Ap +BpDcCp)xp − CpBpCcxc − CpBpDcey − CpBpeu

(2.64)

and

ėu = −u̇ = −Ccẋc −Dc
˙̂y

= −CcAcxc − CcBcCpxp − CcBcey.
(2.65)

Let x = (xp, xc) ∈ R
nx and e = (ey, eu) ∈ R

ne . In view of (2.63)-(2.65), it holds that, between

two successive transmission instants

ẋ =



Ap +BpDcCp BpCc

BcCp Ac






xp

xc


+



BpDc Bp

Bc 0






ey

eu




=: A1x+ B1e

(2.66)
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and

ė =




−Cp(Ap +BpDcCp) −CpBpCc

−CcBcCp −CcAc






xp

xc


+




−CpBpDc −CpBp

−CcBc 0






ey

eu




=: A2x+ B2e.

(2.67)

Hence, the hybrid system (2.4) becomes




ẋ

ė

τ̇


 =




A1x+ B1e

A2x+ B2e

1


 (x, e, τ) ∈ C




x+

e+

τ+


 =




x

0

0


 (x, e, τ) ∈ D.

(2.68)

We obtain the following result.

Proposition 1. Consider system (2.68). Suppose that there exist ε1, ε2, µ > 0 and a positive

definite symmetric real matrix P such that




AT
1 P + PA1 + ε1Inx +AT

2 A2 + ε2C
T
p Cp PB1

BT1 P −µIne


 ≤ 0, (2.69)

where Cp = [Cp 0] and 0 represents the matrix of zeros of size ny × nc. Then Assumption 2.1

globally holds with V (x) = xTPx, α(|x|) = λmin(P )|x|2, α(|x|) = λmax(P )|x|2, W (e) =

|e|, H(x) = |A2x|, L = |B2|, γ =
√
µ, α(|x|) = ε2|x|2 and δ(y) = ε1|y|2. �

Proof of Proposition 1. Let W (e) = |e|. Then we have, for all x ∈ R
nx and almost all e ∈ R

ne

〈∇W (e),A2x+ B2e〉 ≤ |A2x|+ |B2||e|. (2.70)

Hence, condition (2.7) holds with L = |B2| and H(x) = |A2x|. Let V (x) = xTPx. Conse-

quently, condition (2.5) is satisfied with α(|x|) = λmin(P )|x|2 and α(|x|) = λmax(P )|x|2. It
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holds that, for all e ∈ R
ne and almost all x ∈ R

nx

〈∇V (x),A1x+ B1e〉 = xT (AT
1 P + PA1)x+ xTPB1e+ eTBT1 Px. (2.71)

By post- and pre-multiplying LMI (2.69) respectively by the state vector (x, e) and its transpose,

we obtain

xT (AT
1 P + PA1)x+ xTPB1e+ eTBT1 Px ≤ −ε2xTx− xTAT

2A2x− ε1x
TC

T
p Cpx

+µeT e

(2.72)

which implies

xT (AT
1 P + PA1)x+ xTPB1e+ eTBT1 Px ≤ −ε2|x|2 − |A2x|2 − ε1|Cpx|2 + µ|e|2

= −ε2|x|2 − |A2x|2 − ε1|y|2 + µ|e|2.
(2.73)

As a result, in view of (2.71), (2.73), condition (2.6) is verified with α(|x|) = ε2|x|2, δ(y) =

ε1|y|2 and γ =
√
µ. �

We note that the flow and jump sets (2.10) in the linear case are

C =
{
(x, e, τ) : µ|e|2 ≤ ε1|y|2 or τ ∈ [0, T ]

}

D =
{
(x, e, τ) :

(
µ|e|2 = ε1|y|2 and τ ≥ T

)
or

(
µ|e|2 ≥ ε1|y|2 and τ = T

)}
,

(2.74)

with T defined in (2.11).

Proposition 1 provides a sufficient condition, namely (2.69), for the verification of Assumption

2.1, which thus allows us to use the results in Section 2.2 for LTI systems. It has to be noted

that the LMI (2.69) can always be satisfied when system (2.60) is stabilizable and detectable.

Indeed, in this case, we can select the controller (2.61) such that A1 is Hurwitz. Noting that

(2.69) is equivalent to the following inequalities (by using the Schur complement of (2.69), see

Section A.5.5 in [16]),

−µIne ≤ 0

AT
1 P + PA1 +AT

2A2 + ε1C
T
p Cp + ε2Inx +

1
µ
PB1BT1 P ≤ 0.

(2.75)

We see that we can select the matrix P such that AT
1 P + PA1 + ε1Inx +AT

2A2 + ε2C
T
p Cp is

negative definite. It then suffices to select µ sufficiently large to ensure the last inequality.
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In view of Proposition 1, Assumption 2.1 holds with γ2 = µ. On the other hand, the smaller γ,

the larger the upper-bound on T in (2.11). Hence, we can minimize µ under the linear constraint

(2.69) to enlarge the constant T . Note that L = |B2| is fixed, since B2 depends on the plant and

the controller matrices and the controller is assumed to be known a priori, and hence, we can

only play with γ to enlarge T .

2.3.1.2 Illustrative example

We consider the same example in Section 1.2.5.1, i.e. the plant model is

ẋp =


 0 1

−2 3


xp +


0

1


u

y =
[
−1 4

]
xp

(2.76)

and the dynamic controller is

ẋc =


0 1

0 −5


xc +


0

1


 y

u =
[
1 −4

]
xc.

(2.77)

In view of (2.66), (2.67), we obtain

A1 =




0 1 0 0

−2 3 1 −4

0 0 0 1

−1 4 0 −5



, B1 =




0 0

0 1

0 0

1 0




A2 =


 8 −11 −4 16

−4 16 0 −21


 , B2 =


0 −4

4 0


 .

(2.78)

Hence, L = |B2| = 4. Then, we obtain the values ε1 = 1.5839, ε2 = 13.9969, γ = 89.9666

by solving the LMI (2.69) using the SEDUMI solver [101] with the YALMIP interface [62].

Consequently, the guaranteed minimum inter-transmission time is T = 0.017, by using (2.11).

Table 2.3 provides the minimum and the average inter-transmission times, respectively denoted

as τmin and τavg , for 100 randomly distributed initial conditions such that |(x(0, 0), e(0, 0))| ≤
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25 and τ(0, 0) = 0. The values of τavg in Table 2.3 indicates that the generated amount of

transmissions by the proposed triggering mechanism is approximately 100 times less than the

amount given by [22]. Moreover, the stability property achieved in [22] is a practical stability

property, while we ensure a global asymptotic stability property. Figures 2.8, 2.9 present the

simulations for one initial condition (x(0, 0), e(0, 0), τ(0, 0)) = (10,−10, 0, 0, 0, 0, 0). We

observe that the system state asymptotically converges to the origin as expected and the inter-

transmission times in Figure 2.9 clarify the idea of the combined event-triggered and time-

triggered techniques. We note that the results in [123] are not applicable to this system because

condition (3) of Proposition 1 in [123] is not again satisfied. We do not compare our results with

[105] because the triggering mechanism is different and the dynamic controller in [105] is an

observer based controller. �

Guaranteed dwell-time τmin τavg

Donkers & Heemels [22]
6.5×10−9 2.103 × 10−6 1.68 × 10−4

σ1 = σ2 = 10−3, ε1 = ε1 = 10−3

The proposed triggering mechanism 0.017 0.017 0.0202

TABLE 2.3: Minimum and average inter-transmission times for 100 randomly distributed ini-

tial conditions such that |(x(0, 0), e(0, 0))| ≤ 25 and τ(0, 0) = 0 for a simulation time of 20

seconds.

0 5 10 15 20 25 30

−30

−20

−10

0

10

20

Time[s]

M
a

g
n

it
u

d
e

 

 

xp1 xp2 xc1 xc2

FIGURE 2.8: State trajectories of the plant and the dynamic controller.
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FIGURE 2.9: Inter-transmission times for the first five seconds.

2.3.2 State feedback controllers

The technique proposed in Section 2.2 is also relevant in the context of state feedback control,

i.e. when y = x, as the constant T in (2.10) can be used to directly tune the lower bound on

the inter-transmission time (up to T in (2.11)). Although the existence of a lower bound on

the inter-transmission times is guaranteed in [103], the obtained value may be subject to some

conservatism and it is not explicitly predetermined as in our triggering mechanism. Further-

more, the generated amount of transmissions by our triggering mechanism are ensured to be

less than or, at least, equal to those generated by conventional periodic setups in the sense of

[79]. These properties of our proposed triggering mechanism extend its interest to the context

of state feedback control.

2.3.2.1 Analytical results

Since the full state measurement is available, we can replace γ2W 2(e) ≤ δ(y) in (2.9) by

γ2W 2(e) ≤ σ(α(|x|) + H2(x) + δ(x)) when Assumption 2.1 holds. Consequently, the flow

and jump sets can be taken as

C =
{
(x, e, τ) : γ2W 2(e) ≤ σ

(
α(|x|) +H2(x) + δ(x)

)
or τ ∈ [0, T ]

}

D =
{
(x, e, τ) :

(
γ2W 2(e) = σ

(
α(|x|) +H2(x) + δ(x)

)
and τ ≥ T

)
or

(
γ2W 2(e) ≥ σ

(
α(|x|) +H2(x) + δ(x)

)
and τ = T

)}
,

(2.79)



2.3 Case studies 55

where σ ∈ (0, 1) and T is such that T ∈ (0,T (γ, L)). Note that, unlike (2.10), we have to

introduce σ here to guarantee that 〈∇V (x), f(x, e)〉 in (2.6) is strictly negative. The following

result is a direct consequence of Theorem 2.1.

Corollary 2.1. Suppose that Assumption 2.1 holds and consider system (2.4), (2.79). Then,

the conclusions of Theorem 2.1 hold. �

The proof of Corollary 2.1 follows the same lines as in the proof of Theorem 2.1. We illustrate

the benefits of the proposed triggering condition on the following examples.

2.3.2.2 Illustrative examples

Example 1 in [79]. Consider the following family of nonlinear systems

ẋ = −2x+ dx2 − x3 − 2e = f(x, e, d)

ė = 2e+ 2x− dx2 + x3 = g(x, e, d),
(2.80)

where x ∈ R, e ∈ R and |d| ≤ 1 is unknown and possibly time-varying. By following [79], we

consider the function W (e) = |e| which satisfies

〈∇W (e), g(x, e, d)〉 ≤ 2|e|+ |2x− dx2 + x3| (2.81)

= 2W (e) +H(x, d), (2.82)

where H(x, d) = |2x− dx2 + x3|. Hence, condition (2.7) is verified with L = 2. We consider

also the same Lyapunov function as in [79]

V (x) = µ2(ν
x2

2
+ β

x4

4
), (2.83)

where µ, ν, β > 0. By following similar lines as in [79], we obtain

〈∇V (x), f(x, e, d)〉 ≤ −µ2ε|x|2 −H2(x, d) + µ2(2ν2 + 2β2)|e|2, (2.84)

where µ = 2, ν = 0.77, β = 0.77, ε = 0.01. Thus, condition (2.6) holds with α(|x|) := µ2ε|x|2

and γ = µ
√

2ν2 + 2β2 = 3.08. By substituting by L, γ in (2.11) we obtain T = 0.3689.

Hence, we take T = 0.36 and we run simulations with σ = 0.9 and d = 0.1 and by using HyEQ

toolbox [92].
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The state trajectories and inter-sampling intervals under the event-triggered controller of [103]

and our proposed event-triggered controller (with T = 0.36) are plotted in Figure 2.10. Table 2.4

shows the obtained values of the minimum and the average inter-jump intervals with two differ-

ent values of T and for 200 randomly distributed initial conditions such that |(x(0, 0), e(0, 0))| ≤
100 and τ(0, 0) = 0. We note that when T = 0.36, τmin = τavg implies that the transmission in-

stants are typically generated by the time-triggered condition which is not the case for T = 0.1.

[103]
Our proposed mechanism (2.79)

T = 0.1 T = 0.36

τmin 0.115 0.1599 0.36

τavg 0.1887 0.1902 0.36

TABLE 2.4: Minimum and average inter-execution times for 100 randomly distributed initial

conditions such that |(x(0, 0), e(0, 0))| ≤ 100 and τ(0, 0) = 0 for simulation time of 10 s.
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FIGURE 2.10: Closed-loop state trajectories with the triggering mechanisms (2.79) and [103]
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2.3 Case studies 57

0 1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

Transmission instants

In
te

r−
tr

a
n

s
m

is
s
io

n
 t
im

e
s

FIGURE 2.12: Inter-transmission times with [103]

Numerical example in [103]. Consider the LTI system

ẋ = Ax+Bu, (2.85)

where x ∈ R
2, u ∈ R, A =


 0 1

−2 3


 and B =


0

1


. Since the pair (A,B) is stabilizable, we

take the control input u = Kx with K = [1 − 4] as in [103]. By following similar lines as

in Section 2.3.1, we derive the LMI (2.69) with A1 = A2 = A + BK , B1 = B2 = BK and

ε1 = 0. Hence, by solving the resulted LMI, we obtain the numerical values L = 4.1231, ε2 =

0.68, γ = 17.3495 which lead to T = 0.079. We set T = 0.075 and we compare the generated

minimum and average inter-transmission times by both the proposed triggering strategy and the

triggering condition in [103], i.e. with T = 0, as shown in Table 2.5. We note that the proposed

mechanism produces larger values of τmin, τavg . To spotlight the effect of the time-triggered

part in the proposed triggering mechanism, the enforced lower bound T is plotted in Figures 2,

3 versus the generated inter-transmission times by both the proposed triggering mechanism and

the triggering condition in [103] respectively, for one initial condition. The state trajectories for

both cases are plotted in Figure 2.13.

[103] Our proposed mechanism (2.79)

τmin 0.0543 0.075

τavg 0.0659 0.0772

TABLE 2.5: Minimum and average inter-execution times for 100 randomly distributed initial

conditions such that |(x(0, 0), e(0, 0))| ≤ 100 and τ(0, 0) = 0 for a simulation time of 10 s.
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FIGURE 2.13: Closed-loop state trajectories
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FIGURE 2.14: Inter-transmission times.
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2.4 Conclusion

In this chapter, we have developed output-based event-triggered controllers for the stabilization

of nonlinear systems. The proposed technique ensures an asymptotic stability property and en-

forces a minimum amount of time between two consecutive transmission instants. The required

conditions have been shown to hold for two physical nonlinear systems. Moreover, we have

explained that the advantage of the proposed technique can be employed in the context of state

feedback control to directly tune the minimum inter-transmission time. For LTI systems, the

conditions have been formulated in terms of an LMI which is feasible for any stabilizable and

detectable LTI systems. Then, the triggering condition in this case is designed by solving the

derived LMI. In the next chapter, we will start from this LMI to develop a co-design procedure

to construct the output feedback law and the event-triggering condition.





Chapter 3

Co-design for LTI systems

In the previous chapter, we have assumed that the feedback control law was known in the ab-

sence of network, then we synthesized the triggering condition. This sequential order of design

may prevent an efficient usage of the computation and communication resources as we are re-

stricted by the initial choice of feedback law. To overcome this issue, in this chapter, we use the

triggering condition designed in Chapter 2 for linear systems as a starting point to simultane-

ously design the event-triggering condition and the feedback law.

3.1 Hybrid model

Consider the LTI system

ẋp = Apxp +Bpu, y = Cpxp, (3.1)

where xp ∈ R
np , u ∈ R

nu , y ∈ R
ny and Ap, Bp, Cp are matrices of appropriate dimensions.

We will design dynamic output feedback laws of the form (we take Dc = 0 for simplicity)

ẋc = Acxc +Bcy, u = Ccxc, (3.2)

where xc ∈ R
nc and Ac, Bc, Cc are matrices of appropriate dimensions. We focus on the case

where the controller has the same dimension as the plant, i.e. nc = np. By following the same
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lines as in Section 2.3.1, we obtain the hybrid model below




ẋ

ė

τ̇


 =




A1x+ B1e

A2x+ B2e

1


 (x, e, τ) ∈ C




x+

e+

τ+


 =




x

0

0


 (x, e, τ) ∈ D,

(3.3)

where

A1 =




Ap BpCc

BcCp Ac


 , B1 =




0 Bp

Bc 0




A2 =




−CpAp −CpBpCc

−CcBcCp −CcAc


 , B2 =




0 −CpBp

−CcBc 0


 .

(3.4)

and flow and jump sets are as defined in (2.74)

C =
{
(x, e, τ) : µ|e|2 ≤ ε1|y|2 or τ ∈ [0, T ]

}

D =
{
(x, e, τ) :

(
µ|e|2 = ε1|y|2 and τ ≥ T

)
or

(
µ|e|2 ≥ ε1|y|2 and τ = T

)}
,

(3.5)

where

T (γ, L) :=





1
Lr

arctan(r) γ > L

1
L

γ = L

1
Lr

arctanh(r) γ < L

(3.6)

and r =
√∣∣( γ

L
)2 − 1

∣∣.

Our objective is to design the dynamic controller (3.2) and the flow and the jump sets (3.5) of

the hybrid system (3.3) such that the conclusions of Theorem 2.1 hold.

The idea is to start from the LMI (2.69), i.e.




AT
1 P + PA1 + ε1Inx +AT

2A2 + ε2C
T
p Cp PB1

BT1 P −µIne


 ≤ 0 (3.7)
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to establish an LMI-based co-design procedure of both the flow and jump sets (3.5) and the dy-

namic controller (3.2). It is important to note that the derivation of LMI for co-design from (3.7)

is not trivial as the nonlinear term AT
2 A2 depends on the controller matrices. This term does

not appeared in the classical output feedback design problems and cannot be directly handled

by congruence transformations like in standard output feedback design problems [94].

3.2 Global asymptotic stabilization

The following theorem formulates the co-design problem of the output feedback law (3.2) and

the parameters of the flow and jump sets (3.5) in terms of LMI. We use boldface symbols to

emphasize the LMI decision variables.

Theorem 3.1. Consider system (3.3) with the flow and jump sets (3.5). Suppose that there exist

symmetric positive definite real matrices X,Y ∈ R
np×np , real matrices M ∈ R

np×np ,Z ∈
R
np×ny ,N ∈ R

nu×np and ε,µ > 0 such that




Σ(Y Ap +ZCp) ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

Ap +MT Σ(ApX +BpN ) ⋆ ⋆ ⋆ ⋆ ⋆

ZT 0 −µIny ⋆ ⋆ ⋆ ⋆

BT
p Y BT

p 0 −µInu ⋆ ⋆ ⋆

Y Ap +ZCp M 0 0 −Y ⋆ ⋆

Ap ApX +BpN 0 0 −Inp −X ⋆

Cp CpX 0 0 0 0 −εIny




< 0

(3.8)


−Iny ⋆ ⋆ ⋆

0 −Inu ⋆ ⋆

−CTp 0 −Y ⋆

−XCTp −NT −Inp −X



< 0. (3.9)

Take γ =
√
µ, L = |B2|, ε1 = ε−1 and

Ac = V −1(M − Y ApX − Y BpN −ZCpX)U−T

Bc = V −1Z, Cc = NU−T ,

(3.10)
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where U, V ∈ R
np×np are any square and invertible matrices such that1 UV T = Inp −XY .

Then, there exists χ ∈ KL such that any solution φ = (φx, φe, φτ ) satisfies

|φx(t, j)| ≤ χ(|(φx(0, 0), φe(0, 0))|, t + j) ∀(t, j) ∈ dom φ (3.11)

and, if φ is maximal, it is also complete. �

Proof of Theorem 3.1. We define the following matrices

S =



X U

UT X̂


 , S−1 =




Y V

V T Ŷ


 ,Γ =




Y Inp

V T 0


 , G =




−Cp 0

0 −Cc


 , (3.12)

where X̂, Ŷ ∈ R
np×np are symmetric positive definite real matrices of appropriate dimension.

Since SS−1 = I2np , it holds that XY + UV T = Inp , XV + UŶ = 0, UTY + X̂V T = 0 and

UTV + X̂Ŷ = Inp . After some direct calculations, recall that Cp = [Cp 0], we obtain

SΓ =




Inp X

0 UT


 ,ΓTSΓ =



Y Inp

Inp X


 ,BT1 Γ =




ZT 0

BT
p Y BT

p




GSΓ =




−Cp −CpX

0 −N


 ,ΓTA1SΓ =



Y Ap + ZCp M

Ap ApX +BpN




CpSΓ = (Cp CpX).

(3.13)

1In view of the Schur complement of LMI (3.9), we deduce that
(

Y Inp

Inp
X

)

> 0 which implies that X−Y
−1 > 0

and thus, Inp
−XY is nonsingular. Hence, the existence of nonsingular matrices U, V is always ensured.
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Consequently, inequalities (3.8), (3.9) can be written as




−ΓT (SAT
1 +A1S)Γ ⋆ ⋆ ⋆

BT1 Γ −µIne ⋆ ⋆

ΓTA1SΓ 0 −ΓTSΓ ⋆

CpSΓ 0 0 −εIny




< 0




−Ine GSΓ

ΓTSGT −ΓTSΓ


 < 0.

(3.14)

By pre and post multiplying the first LMI respectively by diag (Inx , Ine , GΓ
−T , Iny) and its

transpose and by using the Schur complement of the second LMI, we obtain




−ΓT (SAT
1 +A1S)Γ ⋆ ⋆ ⋆

BT1 Γ −µIne ⋆ ⋆

GA1SΓ 0 −GSGT ⋆

CpSΓ 0 0 −εIny




< 0 (3.15)

and

− Ine < −GSGT . (3.16)

As a consequence, it holds that




−ΓT (SAT
1 +A1S)Γ ⋆ ⋆ ⋆

BT1 Γ −µIne ⋆ ⋆

GA1SΓ 0 −Ine ⋆

CpSΓ 0 0 −εIny




< 0. (3.17)

Let P = S−1 and pre and post multiply (3.17) respectively by diag (PΓ−T , Ine , Ine , Iny) and
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its transpose. Then, we have (note that A2 = GA1)




AT1 P + PA1 ⋆ ⋆ ⋆

BT1 P −µIne ⋆ ⋆

A2 0 −Ine ⋆

Cp 0 0 −εIny




=:


 T1 T T2

T2 T3


 < 0. (3.18)

By using the Schur complement of (3.18), we obtain




AT
1 P + PA1 +AT

2 A2 + ε1C
T
p Cp PB1

BT1 P −µIne


 < 0, (3.19)

where ε1 := ε−1. Hence, it holds that there exists ε2 > 0 sufficiently small such that




AT
1 P + PA1 +AT

2 A2 + ε1C
T
p Cp + ε2Inx PB1

BT1 P −µIne


 ≤ 0. (3.20)

Thus, Theorem 3.1 holds in virtue of Proposition 1. �

We note that LMI (3.8), (3.9) are computationally tractable and can be solved using the SEDUMI

solver [101] with the YALMIP interface [62]. Hence, by solving (3.8) and (3.9), we obtain the

feedback law, see (3.10), and the parameters of the flow and jump sets (3.5) µ and ε1. Note that

T is also obtained by substituting in (3.6) with γ =
√
µ and L = |B2|.

We note also that the nonstandard term AT
2 A2 in (3.7) is the reason why the constructed LMI

(3.8) differs from the classical one and why the additional convex constraint (3.9) is needed in

Theorem 3.1.

3.3 Optimization problems

The flexibility of the co-design procedure proposed in Section 2.2 can be exploited in many

ways. In this section, we explain how to use the LMI conditions (3.8) and (3.9) to enlarge

the guaranteed minimum amount of time between any two transmissions. We then propose a
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heuristic method to reduce the amount of transmissions. The efficiency of these methods is

illustrated by simulations in Section 3.4.

3.3.1 Enlarging the guaranteed minimum inter-transmission time

A key challenge in the design of output feedback event-triggered controllers is to ensure the

existence of a uniform strictly positive lower bound on the inter-transmission times. Although

the existence of that lower bound is guaranteed by different techniques in the literature, the

available expressions are often subject to some conservatism. It is therefore unclear whether the

event-triggered controller has a dwell-time which is compatible with the hardware limitations.

We investigate in this section how to employ the LMI conditions (3.8), (3.9) to maximize the

guaranteed minimum inter-transmission time. We first state the following lemma to motivate

our approach.

Lemma 3.1. Let S be the set of solutions to system (3.3), (3.5). It holds that

T = inf
φ∈S

{t′ − t : ∃j ∈ Z>0, (t, j), (t, j + 1), (t′, j + 1), (t′, j + 2) ∈ dom φ}. (3.21)

�

Proof of Lemma 3.1. Let T ∗ := inf
φ∈S

{t′−t : ∃j ∈ Z>0, (t, j), (t, j+1), (t′ , j+1), (t′, j+2) ∈
dom φ}. The definitions of the flow and jump sets in (3.5) guarantee that T ∗ ≥ T . We now show

that T ∗ ≤ T . Let φ̃ = (φ̃x, φ̃e, φ̃τ ) ∈ S be such that φ̃x(0, 0) = 0, φ̃e(0, 0) = 0, φ̃τ (0, 0) = 0.

Then, φ̃x(t, j) = 0, φ̃e(t, j) = 0 for all (t, j) ∈ dom φ̃, in view of (3.3). As a consequence,

γ2|φ̃e(t, j)|2 = σε1|φ̃y(t, j)|2 where φ̃y(t, j) = Cpφ̃x(t, j) for all (t, j) ∈ dom φ̃ and two

successive jumps are separated by T units of time. We have that T = inf{t′ − t : ∃j ∈
Z>0, (t, j), (t, j + 1), (t′, j + 1), (t′, j + 2) ∈ dom φ̃} ≥ T ∗. Consequently T = T ∗. �

Lemma 3.1 implies that the lower bound T on the inter-transmission times guaranteed by (3.5)

corresponds to the actual minimum inter-transmission time as defined by the right-hand side of

(3.21). Hence, by maximizing T , we enlarge the minimum inter-transmission time.

To maximize T , we will maximize T (γ, L) in (3.6). We see that T increases as γ and L de-

crease. Hence, our objective is to minimize γ and L. Since γ corresponds to
√
µ and µ enters
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linearly in the LMI (3.8), we can directly minimize γ under the LMI (3.8), (3.9). The minimiza-

tion of L, on the other hand, requires more attention. We recall that L = |B2| =
√
λmax(BT2 B2),

where

BT2 B2 =



BT
c C

T
c CcBc 0

0 BT
p C

T
p CpBp


 (3.22)

hence,

L = max

(√
λmax(BT

c C
T
c CcBc),

√
λmax(BT

p C
T
p CpBp)

)
. (3.23)

Therefore, L can be minimized up to
√
λmax(BT

p C
T
p CpBp) which is fixed as it only depends

on the plant matrices. In view of (3.10), we have that

BT
c C

T
c CcBc = ZTV −TU−1NTNU−TV −1Z. (3.24)

Thus, L depends nonlinearly on the LMI variables N and Z and it can a priori not be directly

minimized. To overcome this issue, we impose the following upper bound

BT
c C

T
c CcBc < αβIny (3.25)

for some α, β > 0. As a result, minimizing α and β may help to minimize L as we will show on

an example in Section 3.4. We translate inequality (3.25) into an LMI and we state the following

claim.

Claim 3.1. Assume that LMI (3.8), (3.9) are verified. Then, there exist α,β > 0 such that




αIny ⋆ ⋆ ⋆

0 βInu ⋆ ⋆

0 NT X ⋆

Z 0 Inp Y



> 0 (3.26)

which implies that inequality (3.25) holds. �

Proof of Claim 3.1. By using Schur complement of (3.26), we deduce that




αIny − ZTY −1Z ⋆ ⋆

0 βInu ⋆

−Y −1Z NT X − Y −1


 > 0. (3.27)
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Re-applying the Schur complement of the last inequality yields

X − Y −1 > 0


αIny − ZTY −1Z − ZTY −1(X − Y −1)−1Y −1Z ⋆

N(X − Y −1)−1Y −1Z βInu −N(X − Y −1)−1NT


 > 0.

(3.28)

Using the fact that

(Y −X−1)−1 = Y −1 + Y −1(X − Y −1)−1Y −1 (3.29)

and since (Y −X−1)−1 > 0 and (X −Y −1)−1 > 0, in view of the Schur complement of (3.9),

inequality (3.28) implies that




αIny ⋆

N(X − Y −1)−1Y −1Z βInu


 > 0. (3.30)

It holds that

(X − Y −1)−1Y −1 = (Y (X − Y −1))−1 = (Y X − Inp)
−1

= −(Inp − Y X)−1.
(3.31)

As a consequence 


αIny ⋆

−N(Inp − Y X)−1Z βInu ,


 > 0 (3.32)

which implies that

ZT (I− Y X)−TNTN(I− Y X)−1Z < αβIny . (3.33)

On the other hand, in view (3.10), we have

CcBc = NU−TV −1Z = N(UV T )−TZ

= N(Inp −XY )−TZ = N(Inp − Y X)−1Z.

(3.34)

As a result, in view of (3.33), (3.34), it holds that

BT
c C

T
c CcBc < αβIny . (3.35)
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Thus, Claim 3.1 is verified. �

We note that (3.26) does not introduce additional constraints on system (3.3) compared to (3.8),

(3.9). This comes from the fact that there always exist α, β > 0 (eventually large) such that

(3.26) holds, in view of Schur complement of (3.26).

In conclusion, we formulate the problem as a multiobjective optimization problem as we want

to minimize µ, α, β under the constraint (3.8), (3.9) and (3.26). Several approaches have been

proposed in the literature to handle such problems, see e.g. [26]. We choose the weighted sum

strategy among others and we formulate the LMI optimization problem as follows

minλ1µ+ λ2α+ λ3β
subject to (3.8), (3.9), (3.26)

(3.36)

for some weights λ1, λ2, λ3 ≥ 0.

3.3.2 Reducing the amount of transmissions

We present a heuristic to reduce the amount of transmissions generated by the triggering mech-

anism. This goal can be achieved by optimizing the parameters of the event-triggered rule such

that the triggering condition is violated after the longest possible time since the last transmis-

sion. In view of (3.5) and Theorem 3.1, since γ =
√
µ, ε1 = ε−1, the event-triggering condition

is given by

µ|e|2 ≤ ε−1|y|2 or τ ∈ [0, T ]. (3.37)

As a consequence, in order to reduce the number of instants at which the rule (3.37) is not

satisfied, we need to minimize the parameters µ and ε. More precisely, we need to minimize

the product εµ. Since the product εµ is nonlinear, we simply minimize the weighted sum of

the two parameters to maintain the convexity property. Moreover, we need to take into account

the evolution of the e-variable. Indeed, it is not because εµ is minimized that less transmissions

will occur because the variable e may more rapidly reach the threshold in (3.37) in this case.

To address this point, we notice that, in view of Assumption 1 and Proposition 1, the variable e

satisfies, for all x ∈ R
nx and almost all e ∈ R

ne

〈∇|e|,A2x+ B2e〉 ≤ L|e|+ |A2x|. (3.38)
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Thus, minimizing L may lead to the reduction of the rate of growth of the norm of the error.

Indeed, the rate of growth of |e| is also affected by the matrix A2. However, the handling of A2

does not seem tractable since it depends nonlinearly on all parameters of the controller, see(3.4),

and we may investigate in a future work.

To summarize, the optimization problem below may be used to reduce the amount of transmis-

sions

minλ1µ+ λ2α+ λ3β + λ4ε
subject to (3.8), (3.9), (3.26)

(3.39)

for some weights λ1, λ2, λ3, λ4 ≥ 0.

3.4 Illustrative example

We revisit Example 2 in [22] studied in Section 2.3.1.2 where the plant model is given by

ẋp =


 0 1

−2 3


xp +


0

1


u

y =
[
−1 4

]
xp.

(3.40)

First, we solve the optimization problem (3.36) to seek for the largest possible lower bound on

the inter-transmission times. We set λ1 = λ2 = λ3 = 1 and we obtain

T = 0.0114, µ = 18433, ε = 2.7709 × 106

L = 4.0586, α = 4681.5, β = 4.6599
(3.41)

and

Ac =


1.0919 −1.1422

4.9734 −6.1425


 , Bc =


16.7501

64.6472


 ,

Cc =
[
0.1157 −0.0928

]
.

(3.42)

We note that, in view of (3.23), (3.40), (3.42), L = max{4.0855, 4} = 4.0855. Table 3.1 gives

the minimum and the average inter-sampling times for 100 randomly distributed initial condi-

tions such that |(x(0, 0), e(0, 0))| ≤ 25 and τ(0, 0) = 0. We observe from the corresponding

entries in Table 3.1 that τmin = τavg which implies that generated transmission instants are pe-

riodic. This may be explained by the fact that the product εµ = 5.1075 × 1010 is very big and

thus the output-dependent part in (3.37) is ‘quickly’ violated. To avoid that phenomenon, we
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optimize the parameters of the event-triggering condition such that the rule is violated after the

longest possible time since the last transmission instant, as discussed in Section 3.3.2. Thus, we

minimize the weighted sum λ1µ + λ2α + λ3β + λ4ε subject to (3.8), (3.9), (3.26). We take

λ1 = λ2 = λ3 = λ4 = 1 and we obtain

T = 0.0113, µ = 18455, ε = 28.6475

L = 4.0624, α = 4687.7, β = 4.6669
(3.43)

and the dynamic controller matrices are

Ac =


1.0927 −1.1423

4.9809 −6.1477


 , Bc =


16.7530

64.7121


 ,

Cc =
[
0.1158 −0.0927

]
.

(3.44)

Guaranteed
τmin τavg

dwell-time

[22]
6.5×10−9 4.8055 × 10−6 2.2905 × 10−4

σ1 = σ2 = 10−3, ε1 = ε1 = 10−3

Optimization problem (3.36)
0.0114 0.0114 0.0114

λ1 = λ2 = λ3 = 1

Optimization problem (3.39)
0.0113 0.0113 0.0116

λ1 = 1, λ2 = 1, λ3 = 1, λ4 = 1

Optimization problem (3.39)
0.0109 0.0109 0.0261

λ1 = 1, λ2 = 0, λ3 = 0, λ4 = 104

TABLE 3.1: Minimum and average inter-transmission times for 100 randomly distributed ini-

tial conditions such that |(x(0, 0), e(0, 0))| ≤ 25 and τ(0, 0) = 0 for a simulation time of

20s.

We note from the corresponding entries in Table 3.1 that the guaranteed dwell-time T is slightly

smaller than the previous one but the average inter-transmission time τavg is larger than the

previous value (in this case εµ = 5.2869 × 105). Furthermore, we can play with the weight

coefficients λ1, λ2, λ3, λ4 to further reduce transmissions. Since we know that L cannot become

less than 4 and that the value obtained above is already close to this lower bound, we will give

ε the most relative importance by increasing the weight λ4 to further decrease the magnitude of
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εµ. We found that the minimum value of εµ = 8049 is obtained with λ1 = 1, λ2 = 0, λ3 =

0, λ4 = 104 which yield

T = 0.0109, µ = 19856, ε = 0.4054

L = 4.3801, α = 8757, β = 4418.3
(3.45)

and the dynamic controller matrices are

Ac =


1.1684 −1.1627

5.6744 −6.6241


 , Bc =


16.9843

70.3309


 ,

Cc =
[
0.1182 −0.0908

]
.

(3.46)

We note that τavg is twice bigger than with the controller (3.43), (3.44) in this case and the

guaranteed minimum inter-transmission time T is of the same order of magnitude compared to

the previous values, as shown in Table 3.1. It can be noticed in Table 3.1 that, for all cases, the

guaranteed lower bound T corresponds to the minimum inter-transmission time τmin generated

by the triggering mechanism.

In comparison, the guaranteed lower bound on the inter-transmission times in [22] is 6.5×10−9

while the observed lower bound and the average inter-transmission time during the simulations

respectively are 4.8055×10−6 and 2.2905×10−4, as shown in Table 3.1. Moreover, the stability

property achieved in [22] is a practical stability property, while we ensure a global asymptotic

stability property. These observations justify the potential of the proposed co-design technique

to reduce transmissions. In [72], the guaranteed and the the simulated lower bounds on the inter-

transmission times are found to be the sampling period h = 10−4, which is 100 times smaller

than those we ensure.

We provide in Figures 3.1, 3.2 the state trajectories and the inter-transmission times for the initial

condition (x(0, 0), e(0, 0), τ(0, 0)) = (10,−10, 0, 0, 0, 0, 0). The impact of the time-triggered

rule on the triggering instants is clearly shown in Figure 3.2 where a lower bound T is enforced

on the inter-transmission times.
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FIGURE 3.1: State trajectories of the plant and the controller.
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FIGURE 3.2: Inter-transmission times.

3.5 Conclusion

A co-design procedure of output feedback laws and event-triggering conditions for LTI systems

has been presented. The proposed scheme guarantees a global asymptotic stability property for

the closed-loop and enforces a strictly positive lower bound on the inter-transmission times. The

required conditions have been formulated in terms of LMI. Then, the event-triggered controller

and the flow and jump sets are synthesized by solving these LMI. Next, we took advantage of

the flexibility of co-design to enhance the efficiency of the event-triggered controllers in two

senses. We first demonstrated how the guaranteed lower bound on the inter-transmission times

can be enlarged which can be useful in practice to help satisfying the hardware constraints. We

then presented a heuristic to reduce the amount of transmissions, whose efficiency is confirmed

by simulations.



Chapter 4

Singularly perturbed systems

4.1 Introduction

Many industrial control systems involve dynamical phenomena occurring in two separate time

scales, known as slow and fast dynamics. These systems are usually referred to as singularly per-

turbed systems or two-time scale systems. Examples include motor control systems, convection-

diffusion systems, power systems, magnetic-ball suspension systems, economic models, and

many others. In this chapter, we design event-triggered controllers for nonlinear singularly

perturbed systems. In particular, we focus on the scenario where the triggering condition is syn-

thesized based only on the slow dynamics while we ignore the fast model, which is assumed to

be stable.

It is well established in the literature that standard control methods cannot be directly applied

to singularly perturbed systems since the two-time scale dynamical behaviour may lead to ill-

conditioned controllers and/or closed-loop instability. To handle these issues, the control design

and the stability analysis problems are usually addressed within the framework of singular per-

turbation, see [54], [52]. The basic idea in this framework is to reduce the complexity of the

system through suitable approximations of the slow and fast dynamics by means of Tikhonov’s

theorem. In particular, if the approximate fast model is asymptotically stable, it is possible to

design the controller based only on the approximate slow dynamics and to guarantee the stabil-

ity of the overall system under certain conditions. This approach is often followed by engineers

and the purpose of this chapter is to investigate whether it still applies in the context of ETC.
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We design the event-triggered controllers by emulation like in Chapter 2 and we first develop

a triggering mechanism to achieve a practical stability property. Then, we adapt the triggering

mechanism synthesized in Chapter 2 to this context. Note that the results in Chapter 2 are no

longer valid for this class of systems for the reasons mentioned above. We need to greatly revisit

the stability analysis in order to ensure the desired asymptotic stability property. The results are

shown to be applicable to a class of globally Lipschitz systems, which encompasses stabilizable

LTI systems as a particular case.

4.2 Approximate models

We first recall the results of Chapter 11 in [52] for continuous-time systems to derive the ap-

proximate models. Consider the following nonlinear time-invariant singularly perturbed system

ẋ = f(x, z, u) (4.1)

ǫż = g(x, z, u) (4.2)

u = k(x, z), (4.3)

where x ∈ R
nx and z ∈ R

nz are the states, u ∈ R
nu is the control input and ǫ > 0 is a small

parameter. We use singular perturbation theory to approximate the slow and the fast dynamics.

We rely on the following standard assumption (see (11.3)-(11.4) in [52]).

Assumption 4.1. The equation g(x, z, u) = 0 has n ≥ 1 isolated real roots

z = hi(x, u), i = 1, 2, ..., n (4.4)

where hi is continuously differentiable. �

In that way, the substitution of the ith-root z = h(x, u) into (4.1) yields the corresponding

approximate slow model

ẋ = f(x, h(x, u), u). (4.5)

To investigate stability, it is more convenient to write system (4.1)-(4.2) with the coordinates

(x, y) where

y := z − h(x, u) (4.6)
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is introduced to shift the quasi-steady-state of z to the origin. In the new coordinates (x, y),

system (4.1) becomes

ẋ = f(x, y + h(x, u), u). (4.7)

In view of (4.2), (4.6), we have that

ǫẏ = ǫż − ǫ
d

dt
h(x, u)

= g(x, z, u) − ǫ
(∂h
∂x
f(x, z, u) +

∂h

∂u

∂u

∂x
f(x, z, u) +

1

ǫ

∂h

∂u

∂u

∂z
g(x, z, u)

)

= (1− ∂h

∂u

∂u

∂z
)g(x, z, u) − ǫ

(∂h
∂x

+
∂h

∂u

∂u

∂x

)
f(x, z, u). (4.8)

We introduce a new time variable τ = (t− t0)/ǫ, then

ǫ
dy

dt
=
dy

dτ
.

In the new time scale τ , (4.8) is represented by

dy

dτ
= (1− ∂h

∂u

∂u

∂z
)g(x, z, u) − ǫ

(∂h
∂x

+
∂h

∂u

∂u

∂x

)
f(x, z, u).

Then the fast dynamic is obtained by setting ǫ = 0, see Chapter 11 in [52],

dy

dτ
= (1− ∂h

∂u

∂u

∂z
)g(x, z, u). (4.9)

The origin of system (4.7)-(4.8) is usually stabilized thanks to a controller of the form us + uf ,

where us = ks(x) and uf = kf (y) are respectively designed to stabilize the approximate models

(4.5), (4.9). In that way, it is possible to ensure stability properties for system (4.7)-(4.8) under

some conditions on the interconnection of system (4.7)-(4.8). In particular, when the origin is

globally asymptotically stable for the fast dynamics (4.9), it is possible to take the controller to

be u = us in some cases, like for LTI systems (see Chapter 3 in [54]), some classes of nonlinear

systems (in view of Chapter 11 in [52]), and LTI sampled-data systems (see [82]).

In this study, we want to know whether a similar approach is applicable in the context of ETC.

Hence, we concentrate on the case where the approximate fast dynamics (4.9) is stable and we

aim at designing the feedback law based only on the slow model (4.5).
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4.3 Hybrid model

We follow an emulation-like approach as we first assume that the slow model (4.5) can be stabi-

lized by a controller of the form u = k(x). Afterwards, we take into account the communication

constraints and we synthesize appropriate triggering conditions.

The controller receives the state measurements only at the transmission instants ti, i ∈ Z≥0 and

we consider zero-order-hold devices. In that way, we have that, for almost all t ∈ [ti, ti+1],

u(t) = k(x(ti)). (4.10)

The sequence of transmission instants ti, i ∈ Z≥0 is defined by the event-triggering condition

we will design. We introduce the sampling-induced error e ∈ R
nx , for almost all t ∈ [ti, ti+1]

e(t) = x(ti)− x(t), (4.11)

which is reset to zero at each transmission instant. The state feedback controller (4.10) is there-

fore given by

u = k(x+ e). (4.12)

Hence, the slow model (4.5) becomes

ẋ = f
(
x, h(x, k(x + e)), k(x + e)

)
=: fs(x, e) (4.13)

and, in view of (4.6), the variable y is

y = z − h(x, k(x+ e)). (4.14)

We note that the variable y experiences a jump after each transmission as e is reset to zero at

each ti, i ∈ Z≥0. Consequently, system (4.7) is, for almost all t ∈ [ti, ti+1]

ẋ = f
(
x, y + h(x, k(x+ e)), k(x + e)

)

=: fx(x, y, e)
(4.15)

and we have

x(t+i+1) = x(ti+1). (4.16)
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On the other hand, we obtain from (4.14), for almost all t ∈ [ti, ti+1]

ǫẏ = ǫż − ǫ
d

dt
h(x, u)

= g(x, z, u) − ǫ
(∂h
∂x
fx(x, y, e) +

∂h

∂u

∂u

∂x
fx(x, y, e) −

∂h

∂u

∂u

∂e
fx(x, y, e)

)
, (4.17)

where ėx = −ẋ = −fx(x, y, e) by (4.11), then

ǫẏ = g
(
x, y + h(x, k(x + e)), k(x + e)

)
− ǫ

∂h

∂x
fx(x, y, e) (4.18)

=: fy(x, y, e), (4.19)

then we obtain the fast model by setting ǫ = 0

dy

dτ
= g

(
x, y + h(x, k(x + e)), k(x + e)

)

=: gf (x, y, e). (4.20)

and we have

y(t+i+1) = z(t+i+1)− h
(
x(t+i+1), k(x(t

+
i+1) + e(t+i+1))

)

= z(ti+1)− h
(
x(ti+1), k(x(ti+1) + 0)

)

= y(ti+1) + h
(
x(ti+1), k(x(ti+1) + e(ti+1))

)
− h

(
x(ti+1), k(x(ti+1))

)

=: hy(x(ti+1), y(ti+1), e(ti+1)). (4.21)

We note that the state variable y experiences a jump at each transmission which is an important

difference with the model presented in Section 2.1.

Let q = (x, y, e, τ) ∈ R
nq , where nq = 2nx + ny + 1 and τ ∈ R≥0 is a clock variable which

describes the time elapsed since the last jump as in (2.3). In view of (4.15)-(4.21), the system is

modeled as follows

q̇ = F (q) q ∈ C
q+ = G(q) q ∈ D,

(4.22)
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where

F (q) :=




fx(x, y, e)

1
ǫ
fy(x, y, e)

−fx(x, y, e)
1



, G(q) :=




x

hy(x, y, e)

0

0



. (4.23)

The flow and the jump maps are assumed to be continuous and the sets C and D will be closed.

Our objective is to design the flow and jump sets (4.23) based only on the approximate model

of the slow dynamics and such that the overall stability of system (4.22) is guaranteed and the

existence of a strictly positive amount of time between two jumps is ensured.

4.4 Assumptions

We present the assumptions made on system (4.22). First, we assume that the slow system (4.13)

is input-to-state stable (ISS) with respect to e.

Assumption 4.2. There exist a continuously differentiable function Vx : Rnx → R≥0, class

K∞ functions αx, αx, γ1 with γ1 continuously differentiable and α1 > 0 such that for all

(x, e) ∈ R
2nx the following is satisfied

αx(|x|) ≤ Vx(x) ≤ αx(|x|)
∂Vx
∂x
fs(x, e) ≤ −α1Vx(x) + γ1(|e|).

(4.24)

�

To guarantee the overall stability of the closed-loop system, we need to make some assumptions

on the stability of the fast model (4.20) in the presence of the communication constraints of the

slow system. In particular, we assume that the following stability property holds for the fast

dynamics like in [52].

Assumption 4.3. There exist a continuously differentiable function Vy : Rny → R≥0, class

K∞ functions αy, αy and α2 > 0 such that for all (x, y, e) ∈ R
2nx+ny

αy(|y|) ≤ Vy(x, y) ≤ αy(|y|)
∂Vy
∂y
gf (x, y, e) ≤ −α2Vy(x, y).

(4.25)

�
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Assumption 4.3 implies that the origin of the fast dynamics (4.20) is globally asymptotically

stable. Note that Assumption 4.3 does not imply that the origin of the fast dynamics (4.20) is

globally exponentially stable as the functions αy, αy can be nonlinear. We impose the following

conditions on the interconnections between the slow and fast dynamics (4.13), (4.20).

Assumption 4.4. There exist a class K∞ function γ2 and β1, β2, β3 > 0 such that for all

(x, y, e) ∈ R
2nx+ny the following hold

∂Vx
∂x

[fx(x, y, e) − fs(x, e)] ≤ β1
√
Vx(x)Vy(x, y)[

∂Vy
∂x

− ∂Vy
∂y

∂h
∂x

]
fx(x, y, e) ≤ β2

√
Vx(x)Vy(x, y) + β3Vy(x, y) + γ2(|e|),

(4.26)

where Vx and Vy come from Assumptions 4.2 and 4.3 respectively. In addition, there exists

L > 0 such that, for all s ≥ 0

γ2 ◦ γ−1
1 (s) ≤ Ls, (4.27)

where γ1 comes from Assumption 4.2. �

Conditions (4.26) represent the effect of the deviation of the original system (4.22) from the

slow and fast models (4.13), (4.20) respectively and are related to (11.43) and (11.44) in [52].

Finally, we assume that the dynamics of Vy along jumps of system (4.22) satisfies the following

condition.

Assumption 4.5. There exist λ1, λ2 > 0 such that for all (x, y, e) ∈ R
2nx+ny

Vy(x, hy(x, y, e)) ≤ Vy(x, y) + λ1γ1(|e|) + λ2

√
γ1(|e|)Vy(x, y), (4.28)

where Vx, γ1 and Vy come from Assumptions 4.2 and 4.3 respectively. �

Assumption 4.5 is an algebraic condition which only requires the knowledge of hy (which is

defined in (4.21)) and γ1 and Vy from Assumptions 4.2 and 4.3 respectively: we do not need to

know the triggering condition to check it.

Remark 4.1. Assumptions 4.3, 4.4 require (4.25), (4.26) to hold regardless the magnitude of

the sampling-induced error e. We show in Section 4.6 that all these conditions are satisfied by a

class of globally Lipschitz systems which encompasses LTI systems as a particular case. �
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4.5 Main results

Before presenting the main results, we show that the design of triggering conditions of the same

form as in [103] for the slow model may not ensure the existence of a strictly positive minimum

amount of time between two jumps for the overall system.

4.5.1 A first observation

We have seen in Section 1.2.5 that the triggering mechanism in [103] cannot be directly ex-

tended to the output feedback case since the Zeno phenomenon will occur. A similar situation is

encountered here since we aim to ignore the fast state and to synthesize the triggering condition

based only on the approximate slow model. To be more precise, in view of Assumption 4.2, a

first attempt would be to define a triggering condition of the form γ1(|e|) ≥ σα1Vx(x) where

σ ∈ (0, 1) like in [103]. The flow and jump sets are in this case

C = {q : γ1(|e|) ≤ σα1Vx(x)}

D = {q : γ1(|e|) = σα1Vx(x)}.
(4.29)

The results in [103] guarantee a global asymptotic stability property for the origin of the slow

model (4.13) and the existence of a uniform (semiglobal) amount of time between two jumps

(under some conditions). However, this triggering rule no longer ensures a minimum time of

flow between two jumps for system (4.22). Indeed G(D) ∩D = {q : x = e = 0} 6= ∅. Thus,

any solution inG(D)∩D may jump an infinite number of times, which makes the controller not

implementable in practice. In the sequel, we first apply existing strategies in order to overcome

this issue and we investigate how to modify the stability analysis and what kind of stability

property one may expect. We also propose another strategy that allows to guarantee a global

asymptotic stability property.

4.5.2 Semiglobal practical stabilization

The most straightforward approach to enforce a lower bound on the inter-jumps for system

(4.22) is to add a dead-zone to the triggering condition (4.29), i.e.

γ1(|e|) ≥ max{σα1Vx(x), ρ}, (4.30)
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where ρ > 0 is a design parameter. The flow and jump sets in (4.22) are then

C = {q : γ1(|e|) ≤ max{σα1Vx(x), ρ}}

D = {q : γ1(|e|) = max{σα1Vx(x), ρ}}
(4.31)

with q = (x, y, e). Although this type of triggering conditions has already been used in [22], [69]

for example, the fact that the state y experiences jumps and that we rely on different assumptions

require to fully modify the stability analysis and leads to the following result.

Theorem 4.1. Consider system (4.22) with the flow and jump sets defined in (4.31). Suppose

that Assumptions 4.1-4.5 hold. Then, for any ∆, ρ > 0, there exist β ∈ KL, κ ∈ K∞ and ǫ∗ > 0

such that for any ǫ ∈ (0, ǫ∗) and any solution φ = (φx, φy, φe) with |φ(0, 0)| ≤ ∆,

|φ(t, j)| ≤ β(|φ(0, 0)|, t + j) + κ(ρ) ∀(t, j) ∈ domφ, (4.32)

and all inter-transmission times are lower-bounded by a strictly positive constant
ρ

ξ(∆) , where

ξ : R≥0 → R>0 is a continuous increasing function, i.e. for all j ∈ Z≥0 sup I
j− inf Ij ≥ ρ

ξ(∆) ,

where Ij = {t : (t, j) ∈ dom φ}. Furthermore, all maximal solutions to (4.22) are complete.

�

The proof of Theorem 4.1 is provided in Appendix A. Theorem 4.1 ensures a semiglobal prac-

tical stability property for system (4.22). Indeed, given an arbitrary (large) ball of initial condi-

tions centered at the origin and of radius ∆ and any constant ρ, there exists ǫ sufficiently small

such that solutions to (4.22), (4.31) converge towards a neighbourhood of the origin whose

‘size’ can be rendered arbitrarily small by reducing ρ (at the price of shorter inter-transmission

intervals, typically).

4.5.3 Global asymptotic stabilization

We propose another strategy to design the event-triggering condition to ensure a global asymp-

totic stability property under an extra assumption. We borrow the idea presented in Chapter 2 to

combine the event-triggered technique of [103] with the time-triggered results of [79] such that

we allow transmissions only after a fixed amount of time T ∗ has elapsed since the last one.

We suppose that Assumptions 4.1-4.5 are satisfied with γ1(s) = γ̄1s
2 and γ2(s) = γ̄2s

2 for
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some γ̄1, γ̄2 ≥ 0 and for s ≥ 0. We define the flow and jump sets as follows

C := {q : γ̄1|e|2 ≤ σα1Vx(x) or τ ∈ [0, T ∗]}

D :=
{
q :

(
γ̄1|e|2 = σα1Vx(x) and τ ≥ T ∗

)
or

(
γ̄1|e|2 ≥ σα1Vx(x) and τ = T ∗

)}
.

(4.33)

Inspired by [79], we make the following additional assumption on system (4.22).

Assumption 4.6. There exist M,N ≥ 0 such that, for all (x, y) ∈ R
nx+ny and for almost all

e ∈ R
nx

〈∇|e|,−fx(x, y, e)〉 ≤M |e| +N(
√
Vx(x) +

√
Vy(x, y)),

where Vx and Vy come from Assumptions 4.2 and 4.3 respectively. �

The constant T ∗ in (4.33) is selected such that T ∗ < T (α1, γ̄1,M,N), like in [79], where

T (α1, γ̄1,M,N) :=





1
Mr

arctan(r) M2 < γ̄1N
2

α1

1
M

M2 = γ̄1N
2

α1

1
Mr

arctanh(r) M2 > γ̄1N
2

α1

(4.34)

with

r :=

√∣∣∣∣
γ̄1N2

α1M2
− 1

∣∣∣∣, (4.35)

where M,N come from Assumption 4.6 and α1, γ̄1 come from Assumption 4.2. We obtain the

following result.

Theorem 4.2. Consider system (4.22) with the flow and jump sets defined in (4.33) and sup-

pose the following hold.

1. Assumptions 4.1-4.6 hold with γ1(s) = γ̄1s
2 and γ2(s) = γ̄2s

2 with γ̄1, γ̄2 ≥ 0, for s ≥ 0.

2. The constant T ∗ in (4.33) is such that T ∗ ∈ (0,T ).

Then there exist β ∈ KL and ǭ > 0 such that for any ǫ ∈ (0, ǭ) and any solution φ =

(φx, φy, φe, φτ )

|(φx(t, j), φy(t, j))| ≤ β(|φ(0, 0)|, t + j) ∀(t, j) ∈ domφ. (4.36)

Moreover, all maximal solutions to (4.22) are complete. �
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The proof of Theorem 4.2 is given in Appendix A. We see that Theorem 4.2 ensures a global

asymptotic stability property and that it requires an additional condition to hold, namely As-

sumption 4.6, compared to Section 4.5.2.

4.6 Case studies

4.6.1 A class of globally Lipschitz systems

In this section, we show that all the conditions of Section 4.2 are verified by a class of globally

Lipschitz systems, which includes LTI systems as a particular case. We assume that the vector

fields f, g and k are globally Lipschitz and that the stability of the slow and the fast model can

be verified using quadratic functions Vx and Vy. Under these conditions, the proposition below

states that Assumptions 4.1-4.6 hold. Hence, the triggering rules presented in Sections 4.5.2 and

4.5.3 can be applied.

Proposition 2. Consider system (4.1)-(4.2), (4.12). Suppose the following hold.

1. Assumption 4.1 is satisfied and there exists Lh > 0 such that

|h(x1, e1)− h(x2, e2)| ≤ Lh(|x1 − x2|+ |e1 − e2|). (4.37)

2. There exist Lf , Ls > 0 such that the functions f(x, y, e) in (4.15), (4.13) verifies that

|f(x1, y1, e1)− f(x2, y2, e2)| ≤ Lf (|x1 − x2|+ |y1 − y2|+ |e1 − e2|)
|fs(x, e) − fs(x, 0)| ≤ Ls|e|.

(4.38)

3. There exist positive definite and symmetric real matrices P1, P2 such that the functions

Vx : x 7→ xTP1x and Vy : y 7→ yTP2y satisfy, for all (x, y, e) ∈ R
2nx+ny

∂Vx
∂x

fs(x, 0) ≤ −ᾱ1Vx(x) (4.39)

∂Vy
∂y

gf (x, y, e) ≤ −ᾱ2Vy(x, y), (4.40)
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where ᾱ1, ᾱ2 > 0. Then, Assumptions 4.2-4.6 are satisfied with

α1 = ᾱ1
2 , γ1(|e|) = 2L2

s |P1|2
ᾱ1λmin(P1)

|e|2

α2 = ᾱ2, β1 =
2Lf |P1|√

λmin(P1)λmin(P2)

β2 =
2LhLf |P2|√

λmin(P1)λmin(P2)
, β3 =

3LhLf |P2|
λmin(P2)

γ2(|e|) = LhLf |P2||e|2, L =
ᾱ1LhLfλmin(P1)|P2|

2L2
s |P1|2

λ1 =
ᾱ1L

2
h
λmin(P1)|P2|
2L2

s |P1|2 , λ2 =

√
ᾱ1L

2
h
λmin(P1)|P2|2

L2
sλmin(P2)|P1|2

M = Lf , N =
Lf

min{
√
λmin(P1),

√
λmin(P2)}

.

(4.41)

�

Proof of Proposition 2.

• Assumption 4.2: In view of (4.13) and item (3) of Proposition 2, we have, for all (x, e) ∈
R
2nx ,

∂Vx
∂x
fs(x, e) = ∂Vx

∂x
fs(x, 0) +

∂Vx
∂x

(fs(x, e) − fs(x, 0))

≤ −ᾱ1Vx(x) + 2xTP1(fs(x, e) − fs(x, 0))

≤ −ᾱ1Vx(x) + 2|x||P1||fs(x, e) − fs(x, 0)|.

(4.42)

As a consequence, in view of item (1) in Proposition 2,

∂Vx
∂x

fs(x, e) ≤ −ᾱ1Vx(x) + 2Ls|P1||x||e|. (4.43)

Using the fact that

2Ls|P1||x||e| ≤
ᾱ1λmin(P1)

2
|x|2 + 2

ᾱ1λmin(P1)
L2
s|P1|2|e|2 (4.44)

and the fact that λmin(P1)|x|2 ≤ Vx(x), since P1 is positive definite and symmetric, it
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holds that

∂Vx
∂x
fs(x, e) ≤ −ᾱ1Vx(x) +

ᾱ1λmin(P1)
2 |x|2 + 2L2

s |P1|2
ᾱ1λmin(P1)

|e|2

≤ −ᾱ1Vx(x) +
ᾱ1
2 Vx(x) +

2L2
s|P1|2

ᾱ1λmin(P1)
|e|2

≤ − ᾱ1
2 Vx(x) +

2L2
s |P1|2

ᾱ1λmin(P1)
|e|2.

Hence Assumption 4.2 holds with α1 =
ᾱ1
2 and γ1(|e|) = 2L2

s |P1|2
ᾱ1λmin(P1)

|e|2.

• Assumption 4.3 follows directly from item (3) of Proposition 2 with α2 = ᾱ2.

• Assumption 4.4: In view of items (1), (3) of Proposition 2 and since λmin(P1)|x|2 ≤
Vx(x) and λmin(P2)|y|2 ≤ Vy(x, y), it holds that, for all (x, y, e) ∈ R

2nx+ny

∂Vx
∂x

[fx(x, y, e) − fs(x, e)] = 2xTP1(fx(x, y, e) − fs(x, e))

≤ 2|P1||x||fx(x, y, e)− fs(x, e)|

≤ 2Lf |P1||x||y|

=
2Lf |P1|√

λmin(P1)λmin(P2)

√
λmin(P1)|x|2

√
λmin(P2)|y|2

≤ 2Lf |P1|√
λmin(P1)λmin(P2)

√
Vx(x)Vy(x, y).

(4.45)

Thus, the first condition in Assumption 4.4 is verified with β1 =
2Lf |P1|√

λmin(P1)λmin(P2)
.

On the other hand, in view of items (1), (3) of Proposition 2 and using the fact that

2|e||y| ≤ |y|2 + |e|2 and using that fx(0, 0, 0) = 0 since the origin of system (4.13)

is asymptotically stable in view of (4.39), it holds that, for all (x, y, e) ∈ R
2nx+ny

[
∂Vy
∂x

− ∂Vy
∂y

∂h
∂x

]
fx(x, y, e) ≤ 2|P2||y||∂h∂x ||fx(x, y, e)|

≤ 2|P2||y|LhLf (|x|+ |y|+ |e|)

= 2|P2|LhLf |x||y|+ 2|P2|LhLf |y|2 + 2|P2|LhLf |y||e|

≤ 2|P2|LhLf |x||y|+ 2|P2|LhLf |y|2 + |P2|LhLf (|y|2 + |e|2)
(4.46)
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[
∂Vy
∂x

− ∂Vy
∂y

∂h
∂x

]
fx(x, y, e) ≤ 2|P2|LhLf√

λmin(P1)λmin(P2)

√
Vx(x)Vy(x, y)

+
3|P2|LhLf

λmin(P2)
Vy(x, y) + |P2|LhLf |e|2.

(4.47)

Hence, the second condition in Assumption 4.4 holds with β2 =
2|P2|LhLf√

λmin(P1)λmin(P2)
, β3 =

3|P2|LhLf

λmin(P2)
and γ2(|e|) = |P2|LhLf |e|2. Since γ1(|e|) = 2L2

s |P1|2
ᾱ1λmin(P1)

|e|2, it holds that

γ−1
1 (|e|) =

√
ᾱ1λmin(P1)|e|√

2L2
s|P1|2

. (4.48)

As a consequence,

γ2 ◦ γ−1
1 (|e|) = |P2|LhLf ᾱ1λmin(P1)|e|

2L2
s |P1|2

=
ᾱ1λmin(P1)LhLf |P2|

2L2
s |P1|2 |e|

(4.49)

Then, the third condition in Assumption 4.4 is satisfied with L =
ᾱ1λmin(P1)LhLf |P2|

2L2
s|P1|2 .

• Assumption 4.5: In view of (4.21) and the definition of Vy,

Vy(x, hy(x, y, e)) = hTy (x, y, e)P2hy(x, y, e)

=
(
y + h(x, k(x + e))− h(x, k(x))

)T
P2

(
y + h(x, k(x + e))− h(x, k(x))

)

= yTP2y + (h(x, k(x + e))− h(x, k(x)))TP2(h(x, k(x + e)) − h(x, k(x)))

+yTP2(h(x, k(x + e))− h(x, k(x))) + (h(x, k(x + e))− h(x, k(x)))TP2y

≤ Vy(x, y) + |P2||h(x, k(x + e))− h(x, k(x))|2

+2|P2||y||h(x, k(x + e))− h(x, k(x))|.
(4.50)

Since h is globally Lipschitz, it holds that

Vy(x, hy(x, y, e)) ≤ Vy(x, y) + |P2|L2
h|e|2 + 2|P2||y|Lh|e|

≤ Vy(x, y) + |P2|L2
h
ᾱ1λmin(P1)
2L2

s |P1|2 γ1(|e|)

+2|P2|Lh
√
ᾱ1λmin(P1)√
2L2

s |P1|2
1√

λmin(P2)

√
γ1(|e|)Vy(x, y)

(4.51)
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Vy(x, hy(x, y, e)) ≤ Vy(x, y) +
ᾱ1L

2
h
λmin(P1)|P2|
2L2

s |P1|2 γ1(|e|)

+

√
2L2

h
ᾱ1λmin(P1)|P2|2√

λmin(P2)L2
s |P1|2

√
γ1(|e|)Vy(x, y).

(4.52)

Consequently, Assumption 4.5 is satisfied with λ1 =
ᾱ1L

2
h
λmin(P1)|P2|
2L2

s|P1|2 and

λ2 =

√
2L2

h
ᾱ1λmin(P1)|P2|2√

λmin(P2)L2
s |P1|2

√
γ1(|e|)Vy(x, y).

• Assumption 4.6: In view of (4.22)-(4.23) and item (1) of Proposition 2 and using that

fx(0, 0, 0) = 0, it holds that, for all (x, y) ∈ R
nx+ny and for almost all e ∈ R

nx

〈∇|e|,−fx(x, y, e)〉 ≤ Lf (|x|+ |y|+ |e|)

= Lf |e|+ Lf (
1√

λmin(P1)

√
Vx(x) +

1√
λmin(P2)

√
Vy(x, y)).

(4.53)

Hence, Assumption 4.6 is verified with M = Lf and N =
Lf

min{
√
λmin(P1),

√
λmin(P2)}

. �

4.6.2 Application to LTI systems

The results in Section 4.6.1 can be directly applied to LTI systems. However, we can obtain for

this class of systems less conservative values for the parameters in Assumptions 4.2-4.6 than

those derived in Section 4.6.1. We first derive the approximate models as in Section 4.3 then we

state the result.

Consider the LTI singularly perturbed systems

ẋ = A11x+A12z +B1u = f(x, z, u) (4.54)

ǫż = A21x+A22z +B2u = g(x, z, u) (4.55)

u = Kx (4.56)

where x ∈ R
n, z ∈ R

m, u ∈ R
u and ǫ > 0. We assume that A22 is invertible and Hurwitz.

Hence, Assumption 4.1 holds with

h(x, u) = −A−1
22 (A21x+B2u). (4.57)

By introducing the sampling error e and applying the change of variables y = z − h(x, u), the
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x-system (4.54) becomes

ẋ = A11x+A12(y −A−1
22 A21x−A−1

22 B2u) +B1u

= (A11 −A12A
−1
22 A11)x+A12y + (B1 −A12A

−1
22 B2)K(x+ e)

= (A0 +B0K)x+A12y +B0Ke

= fx(x, y, e),

(4.58)

where

A0 := A11 −A12A
−1
22 A21

B0 := B1 −A12A
−1
22 B2.

(4.59)

Let Λ := A0 +B0K and by setting y = 0, we obtain the approximate slow model

ẋ = Λx+B0Ke

= fs(x, e).
(4.60)

Assuming that the pair (A0, B0) is stabilizable, we take K such that Λ is Hurwitz. By following

similar lines as in (4.18), the y-system becomes

ǫẏ = ǫż − ǫ∂h
∂x
ẋ

= A21x+A22(y −A−1
22 A21x−A−1

22 B2u) +B2u+ ǫA−1
22 A21(Λx+A12y +B0Ke)

= A22y + ǫA−1
22 A21(Λx+A12y +B0Ke)

= fy(x, y, e)

(4.61)

By introducing the time variable τ = t
ǫ

and yb setting ǫ = 0, We derive the approximate fast

model

dy

dτ
= A22y = gf (x, y, e). (4.62)

Hence, the hybrid model of (4.22) is, recall that q = (x, y, e, τ) ∈ R
nq ,

q̇ = F (q) q ∈ C
q+ = G(q) q ∈ D,

(4.63)
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and the flow and jump maps are given by

F (q) =




Λx+A12y +B0Ke

ΓΛx+ (ΓA12 +
1
ǫ
A22)y + ΓB0Ke

−Λx−A12y −B0Ke

1



, G(q) =




x

y − Γ1

0

0



, (4.64)

where Γ := A−1
22 A21 and Γ1 := A−1

22 B2K .

Proposition 3. Consider system (4.54)-(4.56). Suppose that A22 is invertible and Hurwitz and

the pair (A0, B0) is stabilizable. Let P1, P2 be real positive definite and symmetric matrices

such that ΛTP1 + P1Λ = −In and AT22P2 + P2A22 = −Im. Then, Assumptions 4.2-4.6 are

satisfied with

α1 = 1
2λmax(P1)

, γ1(|e|) = 2|P1B0K|2|e|2

α2 = 1
λmax(P2)

, β1 = 2|P1A12|√
λmin(P1)λmin(P2)

β2 = 2|P2ΓΛ|√
λmin(P1)λmin(P2)

, β3 = 2|P2ΓA12|+|P2ΓB0K|2
λmin(P2)

γ2(|e|) = |e|2, L = 1
2|P1B0K|2

λ1 =
|ΓT

1 P2Γ1|
2|P1B0K|2 , λ2 =

2|ΓT
1 P2|

|P1B0K|
√

2λmin(P2)

M = |B0K|, N = max{ |Λ|√
λmin(P1)

, |A12|√
λmin(P2)

}.

(4.65)

�

Proof of Proposition 3.

• Assumption 4.2: let Vx(x) = xTP1x. Hence, the first condition of Assumption 4.2 is

verified with αx(|x|) = λmin(P1)|x|2, αx(|x|) = λmax(P1)|x|2. It holds that, for all

x ∈ R
nx

〈∇Vx(x), fs(x, e)〉 = xT (ΛTP1 + P1Λ)x+ 2xTP1B0Ke

= −xT Inx+ 2xTP1B0Ke

≤ −|x|2 + 2|P1B0K||x||e|. (4.66)
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Using the fact that 2|P1B0K||x||e| ≤ 1
2 |x|2 + 2|P1B0K|2|e|2, we obtain

〈∇Vx(x), fs(x, e)〉 ≤ −1

2
|x|2 + 2|P1B0K|2|e|2

≤ − 1

2λmax(P1)
Vx(x) + 2|P1B0K|2|e|2. (4.67)

Hence, Assumption 4.2 is verified with α1 =
1

2λmax(P1)
and γ1(|e|) = 2|P1B0K|2|e|2.

• Assumption 4.3: let Vy(x, y) = yTP2y. It holds that, for all y ∈ R
ny

〈∇Vy(x, y), gf (x, y, e)〉 = AT22P2 + P2A22 = −yT Imy ≤ −|y|2

≤ − 1

λmax(P2)
Vy(x, y). (4.68)

Thus, Assumption 4.3 holds with αy(|y|) = λmin(P2)|y|2, αy(|y|) = λmax(P2)|y|2 and

α2 =
1

λmax(P2)
.

• Assumption 4.4: In view of (4.58), (4.60), it holds that

∂Vx
∂x

[fx(x, y, e) − fs(x, e)] = 2xTP1A12y

≤ 2|P1A12||x||y|

≤ 2|P1A12|√
λmin(P1)λmin(P2)

√
Vx(x)Vy(x, y) (4.69)

and

[
∂Vy
∂x

− ∂Vy
∂y

∂h

∂x

]
fx(x, y, e) = −2yTP2(−Γ)(Λx+A12y +B0Ke)

≤ 2|P2ΓΛ||x||y|+ 2|P2ΓA12||y|2

+ 2|P2ΓB0K||e||y|. (4.70)



4.6 Case studies 93

Using the fact that 2|P2ΓB0K||e||y| ≤ |e|2 + |P2ΓB0K|2|y|2, it holds

[
∂Vy
∂x

− ∂Vy
∂y

∂h

∂x

]
fx(x, y, e) ≤ 2|P2ΓΛ||x||y|+ (2|P2ΓA12|+ |P2ΓB0K|2)|y|2

+ |e|2

≤ 2|P2ΓΛ|√
λmin(P1)λmin(P2)

√
Vx(x)Vy(x, y) + |e|2

+ (2|P2ΓA12|+ |P2ΓB0K|2) 1

λmin(P2)
Vy(x, y).

(4.71)

Hence, in view of (4.69), (4.71), conditions (4.26) in Assumption 4.4 are satisfied with

β1 =
2|P1A12|√

λmin(P1)λmin(P2)
, γ2(|e|) = |e|2, β2 =

2|P2ΓΛ|√
λmin(P1)λmin(P2)

, and

β3 = 2|P2ΓA12|+|P2ΓB0K|2
λmin(P2)

. Since γ1(|e|) = 2|P1B0K|2|e|2, we have that γ−1
1 (|e|) =√

|e|
2|P1B0K|2 . consequently,

γ2 ◦ γ−1
1 (|e|) = 1

2|P1B0K|2 |e|. (4.72)

As a result, condition (4.27) in Assumption 4.4 is verified with L = 1
2|P1B0K|2 .

• Assumption 4.5: the dynamics of Vy along jumps of the trajectories of system (4.63) is

given by

Vy(x, hy(x, y, e)) = Vy(x, y − Γ1ex)

= (y − Γ1e)
TP2(y − Γ1e)

= yTP2y + eTΓT1 P2Γ1e− yTP2Γ1e− eTΓT1 P2y

≤ Vy(x, y) + |ΓT1 P2Γ1||e|2 + 2|ΓT1 P2||e||y|

≤ Vy(x, y) +
|ΓT1 P2Γ1|
2|P1B0K|2 γ1(|e|)

+
2|ΓT1 P2|√

2|P1B0K|2λmin(P2)

√
γ1(|e|)Vy(x, y) (4.73)
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Vy(x, hy(x, y, e)) ≤ Vy(x, y) +
|ΓT1 P2Γ1|
2|P1B0K|2γ1(|e|)

+
2|ΓT1 P2|

|P1B0K|
√

2λmin(P2)

√
γ1(|e|)Vy(x, y). (4.74)

Thus, Assumption 4.5 holds with λ1 =
|ΓT

1 P2Γ1|
2|P1B0K|2 and λ2 =

2|ΓT
1 P2|

|P1B0K|
√

2λmin(P2)
.

• Assumption 4.6: in view of (4.63), it holds that

〈∇|e|,−fx(x, y, e)〉 ≤ |Λ||x|+ |A12||y|+ |B0K||e|

≤ |B0K||e|+ |Λ|√
λmin(P1)

√
Vx(x) +

|A12|√
λmin(P2)

√
Vy(x, y)

≤M |e|+N(
√
Vx(x) +

√
Vy(x, y)) (4.75)

where M = |B0K| and N = max{ |Λ|√
λmin(P1)

, |A12|√
λmin(P2)

}. Hence, Assumption 4.6 is

verified. �

4.7 Autopilot control of an F-8 aircraft

We apply the results developed to the autopilot control of the longitudinal motion of an F-8

aircraft. We borrow the model from Chapter 4 in [54]

ẋ = A11x+A12z +B1u (4.76)

ǫż = A21x+A22z +B2u (4.77)

where x ∈ R
2 represents the slow ’phugoid mode’ and z ∈ R

2 represents the fast ’short period

mode’ of the longitudinal motion of an airplane. The parameter ǫ is equal to 0.0336 and the
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coefficient matrices are given by

A11 =


−0.195378 −0.676469

1.478265 0


 , A12 =


−0.917160 0.109033

0 0




A21 =


−0.051601 0

0.013579 0


 , A22 =


−0.367954 0.438041

−2.102596 −0.214640




B1 =


 −0.023109

−16.945030


 , B2 =


−0.048184

−3.810954




We notice that A22 is invertible and Hurwitz with the eigenvalues −8.6696 ± 28.4712i and

the pair (A0, B0) is controllable where A0, B0 are defined in (4.59). Thus, the conditions of

Section 4.6.2 are satisfied. The origin of the open-loop system is globally exponentially stable.

Nevertheless, the eigenvalues of the slow system are such that the overall system solutions ex-

hibit large oscillations and a slow convergence, see Figure 4.1. Hence, we design the controller

u = Kx to improve the closed-loop response. The gain K is selected to place the eigenvalues

of the slow system at (−2,−3).
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FIGURE 4.1: Open-loop state trajectories of the slow dynamics

We obtain γ1(|e|) = 1.7795|e|2, α1 = 0.3104, P1 =


1.6063 0.0826

0.0826 0.1112


 and we set σ =

0.05 small in order not to deteriorate the continuous-time closed-loop performance. We run

simulations for the initial condition (x(0, 0), z(0, 0), e(0, 0), τ(0, 0)) = (10,−10, 5, 5, 0, 0, 0).

For the triggering condition in (4.31), we take ρ = 0.0001 and for the triggering condition in

(4.33), we obtain T ∗ = 0.021 by using (4.34).



96 Chapter 4. Singularly perturbed systems

Simulation results with the triggering mechanism in [103] To justify the discussion in Sec-

tion 4.5.1, we first apply the triggering condition (4.29). Simulations have shown that any initial

condition satisfying x(0, 0) = 0 and z(0, 0) 6= 0 leads to infinite jumps at t = 0 which supports

the conclusion in Section 4.5.1 and motivates our proposed triggering conditions.

Simulation results of the triggering mechanism (4.31) Figure 4.2 shows the norm of the

state vector and Figure 4.3 shows that it converges to a neighbourhood of the origin. The two-

time scale dynamics can be observed in Figures 4.4, Figure 4.5, where the state y converges to

the origin faster than the state x. The evolution of the sampling induced error is provided in

Figure 4.6 where it can be noted that e is reset when γ̄1|e|2 hits the maximum of σα1Vx(x) and

ρ. The generated inter-transmission times are given in Figure 4.7.
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FIGURE 4.2: Norm of the state vector during the first 5 seconds.
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FIGURE 4.3: Norm of the state vector after 200 seconds.
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FIGURE 4.4: State trajectories of the slow model.
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FIGURE 4.5: State trajectories of the fast model.
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FIGURE 4.6: Evolution of the sampling error.
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FIGURE 4.7: Inter-transmission times.

Simulation results with the triggering mechanism (4.33) Figure 4.8 shows the norm of the

state vector and Figure 4.9 shows its asymptotic convergence to the origin. The state trajectories

of the slow and fast states are given in Figures 4.10, Figure 4.11. The internal structure of

the triggering mechanism (4.33) is revealed in Figures 4.12, 4.13. We observe that the time-

triggered part enforces the lower bound T while the event-triggered part allows for larger inter-

transmission times than T .
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FIGURE 4.8: Norm of the state vector at the first 5 seconds.
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FIGURE 4.9: Norm of the state vector after 30 seconds.
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FIGURE 4.10: State trajectories of the slow model.
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FIGURE 4.11: State trajectories of the fast model.
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FIGURE 4.12: Evolution of the sampling error.
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FIGURE 4.13: Inter-transmission times.

We compare the average inter-transmission interval of the proposed event-triggered solutions.

Table 4.1 shows the average inter-execution times with a simulation time of 5 seconds for 200

randomly distributed initial conditions such that |(x(0, 0), y(0, 0), e(0, 0))| ≤ 100 and τ(0, 0) =

0. We note in this example that the triggering mechanism (4.33) ensures larger minimum inter-

transmission time while the triggering mechanism (4.31) generates less amount of transmissions.

Triggering mechanism (4.31) Triggering mechanism (4.33)

τmin 0.0017 0.021

τavg 0.0306 0.028

TABLE 4.1: Minimum and average inter-execution times for 100 randomly distributed initial

conditions such that |(x(0, 0), y(0, 0), e(0, 0))| ≤ 100 and τ(0, 0) = 0 for a simulation time of

5 s.
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4.8 Conclusion

We have investigated the event-triggered stabilization of nonlinear singularly perturbed systems

based only on the slow dynamics. Two classes of controllers have been developed which en-

sure different asymptotic stability properties. The first triggering strategy consists of adding

some positive constant to the triggering condition based on [103] to ensure that the minimum

inter-transmission time is strictly positive. We have shown that a practical stability property is

achieved in this case. In the second triggering policy, we have developed an event-triggering

condition by combining results from event-triggered and time-triggered techniques. The idea

is to turn on the event-triggered part only after a fixed amount of time has been elapsed since

the last transmission instant, like in Chapter 2. The proposed mechanism allows to guarantee

asymptotic stability property under an additional assumption. The results are applicable to a

class of globally Lipschitz systems which encompasses LTI systems as a particular case.





Chapter 5

Conclusions

5.1 Conclusions

We have investigated the synthesis of stabilizing output feedback event-triggered controllers for

both nonlinear and linear systems. In particular, we have addressed the following problems:

• In Chapter 2, we have developed output feedback event-triggered controllers to stabilize a

general class of nonlinear systems by following the emulation design approach. The pro-

posed triggering mechanism combines the event-triggered [103] and the time-triggered

[79] results to enforce a strictly positive amount of time between two transmissions. This

minimum time is designed as the MATI given in [79]. Our results rely on similar assump-

tions as in [79] which allow us to derive both local and global results. The obtained results

have been applied to two physical nonlinear systems for which the required conditions

have been proved to hold. We have also shown that the required conditions are always

verified by LTI systems that are stabilizable and detectable, in which case these were

reformulated as an LMI. Moreover, we have explained that the benefit of our proposed

triggering mechanism can be nicely transferred to the context of state feedback control to

allow the user to directly tune the guaranteed lower bound on the inter-transmission times.

• In Chapter 3, to overcome the design constraints induced by the emulation approach,

we have proposed an LMI-based co-design algorithm for LTI systems to simultaneously

construct the feedback law and the event-triggering condition. We have then discussed

how the resulted LMI can be exploited to optimize the event-triggered condition in two
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senses. The first optimization procedure aims to enlarge the guaranteed lower bound on

the inter-transmission times. The second optimization problem allows to heuristically

reduce the amount of transmissions generated by the event-triggering mechanism. The

effectiveness of the approach has been demonstrated on a numerical example.

• In Chapter 4, we have studied the event-triggered stabilization of nonlinear singularly

perturbed systems based only on the slow dynamics. The event-triggered controllers have

been designed by emulation within the framework of singular perturbation to capture the

two-time scale phenomena exhibited by such systems. We have first decomposed the orig-

inal system into two approximate slow and fast models. Then, we have synthesised two

appropriate triggering mechanisms based only on the approximate slow dynamics. The

first triggering mechanism relies on existing techniques on event-triggered control and

achieves a practical stability property for the closed-loop. The second proposed mech-

anism adapts the presented technique in Chapter 2 to singularly perturbed systems and

leads to an asymptotic stability property, under additional assumptions.

5.2 Contributions

The contributions of this thesis are summarized as follows.

• Few results in the literature address the output feedback event-triggered stabilization prob-

lem and most of them are dedicated to linear systems. This problem has been only studied

in [123] for nonlinear systems, to the best for our knowledge. We have proposed an alter-

native design as well as an alternative analysis, which seems to rely on different conditions

compared to [123]. We have notably seen in Chapter 2 that all the considered examples

violate the conditions imposed in [123].

• An interesting question in practice is whether the event-triggered implementation will

achieve less amount of transmissions than those produced by traditional periodic setups.

The idea of the proposed triggering mechanism in Chapter 2 provides a qualitative answer

to this question.

• Very few results are available in the literature for the co-design of the feedback law and

the event-triggering condition and only for specific types of implementations using state-

feedbacks. No available results exist for the case where only an output of the plant is
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continuously monitored. In Chapter 3, we have presented a co-design procedure based on

output measurements which is easy to use and may further reduce the amount of trans-

missions as demonstrated on examples.

• To the best of our knowledge, the results in Chapter 4 on the event-triggered stabilization

of singularly perturbed systems are the first ones in this direction. These results are useful

in practice since many control systems exhibit two-time scale dynamics and engineers

usually design the controller based only on the slow model.

5.3 Recommendations for future research

We think that the obtained results in this thesis can be further extended in several directions.

• An interesting future research direction is to investigate the robustness of our proposed

triggering mechanism in Chapter 2 with respect to the measurement errors (and model

uncertainties). These phenomena are usually encountered in practice and may have a

significant impact on the closed-loop stability and performance and may lead to the Zeno

phenomenon. We believe that the fact that transmissions cannot occur before T units of

time have elapsed can be useful in this context to avoid the occurrence of Zeno.

• In [95], it has been developed a set of useful LMI tools to synthesize stabilizing output

feedback controllers while achieving a desired level of performance in terms of distur-

bance rejection, peak output amplitude, H2, H∞, and other properties. In the same spirit,

it would be interesting to improve our proposed co-design procedure to satisfy some per-

formance requirements on the closed-loop system, in virtue of [95].

• A possible extension of the results on singularly perturbed systems is to investigate the

general case where the fast dynamics is not necessarily stable. As a consequence, the fast

model cannot be ignored and two triggering conditions should be synthesized to stabilize

both the approximate slow and fast subsystems a priori.

• It would be interesting to investigate whether the design approach in Chapter 4 can be

transferred to other classes of nonlinear systems to simplify the control design problem.

In other words, it would be useful in practice if we can synthesize event-triggered con-

trollers for nonlinear systems, that are not necessarily singularly perturbed, based on an

approximate model obtained by other means like model reduction or averaging.
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• It is also of interest to develop the triggering condition to consider other communication

constraints like signal quantization, as in [123]. This is an interesting direction in practice

since the asymptotic convergence of solutions can be lost near the equilibrium in the pres-

ence of quantization errors as the difference between the current and the desired values of

the state becomes small.



Appendix A

Proofs of Chapter 4

We present here the proofs of Theorems 4.1, 4.2 in Chapter 4.

A.1 Proof of Theorem 4.1

We define the function (like in the proof of Theorem 1 in [93])

V (q) := Vx(x) +
√
ǫVy(x, y) ∀q ∈ R

nq (A.1)

with ǫ ∈ (0, ǫ∗) where ǫ∗ > 0 will be defined in the following. Let q ∈ C , it holds that, in view

of (4.15) and (4.18)

〈∇V (q), F (q)〉 = ∂Vx
∂x
fx(x, y, e) +

√
ǫ
∂Vy
∂x
fx(x, y, e) +

√
ǫ
ǫ

∂Vy
∂y
fy(x, y, e)

= ∂Vx
∂x
fs(x, e) +

∂Vx
∂x

[fx(x, y, e) − fxs(x, e)] +
1√
ǫ

∂Vy
∂y
gf (x, y, e)

+
√
ǫ
[
∂Vy
∂x

− ∂Vy
∂y

∂h
∂x

]
fx(x, y, e).

(A.2)

In view of the definition of the set C , we have that

γ1(|e|) ≤ max{σα1Vx(x), ρ} (A.3)

and, since γ2(.) is increasing, it holds that

γ2(|e|) ≤ γ2 ◦ γ−1
1

(
max{σα1Vx(x), ρ}

)
. (A.4)
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The condition (4.27) ensures that

γ2(|e|) ≤ Lmax{σα1Vx(x), ρ}. (A.5)

Using Assumptions 4.2-4.5, we derive that

〈∇V (q), F (q)〉 ≤ −α1Vx(x) + γ1(|e|) + β1
√
Vx(x)Vy(x, y)− α2√

ǫ
Vy(x, y)

+
√
ǫ(β2

√
Vx(x)Vy(x, y) + β3Vy(x, y) + γ2(|e|))

≤ −α1Vx(x) + max{σα1Vx(x), ρ} − ( α2√
ǫ
−√

ǫβ3)Vy(x, y)

+(β1 +
√
ǫβ2)

√
Vx(x)Vy(x, y) +

√
ǫLmax{σα1Vx(x), ρ}

= −α1(1− σ(1 +
√
ǫL))Vx(x)− ( α2√

ǫ
−√

ǫβ3)Vy(x, y)

+(β1 +
√
ǫβ2)

√
Vx(x)Vy(x, y) + (1 +

√
ǫL)ρ

= −χTAχ+ (1 +
√
ǫL)ρ,

(A.6)

where χ := (
√
Vx(x),

√
Vy(x, y)) and

A :=



α1(1− σ(1 +

√
ǫL)) −(β1 +

√
ǫβ2)/2

−(β1 +
√
ǫβ2)/2

α2√
ǫ
−√

ǫβ3


 . (A.7)

Let µ > 0 defined as follows

µ ∈ (0, α1(1− σ)) (A.8)

The following conditions ensure that A ≥ µdiag(1,
√
ǫ), i.e. A − µdiag(1,

√
ǫ) is positive

definite, where diag(1,
√
ǫ) is the diagonal matrix with elements (1,

√
ǫ) on the diagonal,





α1(1− σ(1 +
√
ǫL)) ≥ µ

(
α1(1− σ(1 +

√
ǫL))− µ

)(
α2√
ǫ
−√

ǫβ3 −
√
ǫµ

)
≥ (β1 +

√
ǫβ2)

2/4

(A.9)
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The inequalities in (A.9) are always satisfied for ǫ ∈ (0, ǫ∗), where ǫ∗ > 0 is sufficiently small.

Consequently

〈∇V (q), F (q)〉 ≤ −µχTdiag(1,
√
ǫ)χ+ (1 +

√
ǫL)ρ

= −µV (q) + (1 +
√
ǫL)ρ

= −µ
2V (q)− µ

2V (q) + (1 +
√
ǫL)ρ

(A.10)

Hence, if µ2V (q) ≥ (1 +
√
ǫL)ρ, it holds that

〈∇V (q), F (q)〉 ≤ −µ
2V (q) (A.11)

implying that, by invoking standard comparison principle,

V (q) ≤ e−
µ
2
(t−t0)V (q(0, 0)). (A.12)

On the other hand, if µ
2V (q) ≤ (1 +

√
ǫL)ρ, then V (q) ≤ 2(1+

√
ǫL)ρ

µ
. Thus, the Lyapunov

function V (q) satisfies on flows

V (q) ≤ max{e−µ
2
(t−t0)V (q(0, 0)), 2(1+

√
ǫL)ρ

µ
}

≤ max{e−µ
2
(t−t0)V (q(0, 0)), 2(1+L)ρ

µ
},

(A.13)

where we have used the fact ǫ∗ is sufficiently small such that ǫ∗ ≤ 1.

Let q ∈ D,

V (G(q)) = Vx(x) +
√
ǫVy(x, hy(x, y, e)). (A.14)

In view of Assumption 4.5 and the definition of the set D,

Vy(x, hy(x, y, e)) ≤ Vy(x, y) + λ1γ1(|e|) + λ2
√
γ1(|e|)Vy(x, y)

≤ Vy(x, y) + λ1 max{σα1Vx(x), ρ}

+λ2
√

max{σα1Vx(x), ρ}Vy(x, y).

(A.15)
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Using that

√
max{σα1Vx(x), ρ}Vy(x, y) ≤ ǫ−

1
4 max{σα1Vx(x), ρ}+ ǫ

1
4Vy(x, y)

≤ ǫ−
1
4σα1Vx(x) + ǫ−

1
4 ρ+ ǫ

1
4Vy(x, y),

(A.16)

we deduce that

Vy(x, hy(x, y, e)) ≤ Vy(x, y) + λ1σα1Vx(x) + λ1ρ+ ǫ−
1
4λ2σα1Vx(x)

+ǫ−
1
4λ2ρ+ ǫ

1
4λ2Vy(x, y).

(A.17)

In view of (A.14), (A.17) and using the fact that ǫ
1
2 ≤ ǫ

1
4 , since ǫ is sufficiently small, we obtain

V (G(q)) = Vx(x) +
√
ǫ
(
Vy(x, y) + λ1σα1Vx(x) + λ1ρ+ ǫ−

1
4λ2σα1Vx(x) + ǫ−

1
4λ2ρ

+λ2ǫ
1
4Vy(x, y)

)

= (Vx(x) +
√
ǫVy(x, y)) +

√
ǫλ1σα1Vx(x) +

√
ǫλ1ρ+ ǫ

1
4λ2σα1Vx(x)

+ǫ
1
4λ2ρ+ ǫ

1
4
√
ǫλ2Vy(x, y)

≤ V (q) + ǫ
1
4σα1(λ1 + λ2)Vx(x) + ǫ

1
4 (λ1 + λ2)

√
ǫVy(x, y) + ǫ

1
4 (λ1 + λ2)ρ

≤ V (q) + ǫ
1
4 (λ1 + λ2)max{σα1, 1}(Vx(x) +

√
ǫVy(x, y)) + ǫ

1
4 (λ1 + λ2)ρ

≤ V (q) + ǫ
1
4λV (q) + ǫ

1
4λρ,

(A.18)

where

λ := (λ1 + λ2)max{σα1, 1}. (A.19)

As a consequence

V (G(q)) ≤ (1 + 2ǫ
1
4λ)max{V (q), ρ}. (A.20)

We note that properties (A.13), (A.20) are not sufficient to conclude about the asymptotic sta-

bility of the origin for the system (4.22) as V (q) may increase at jumps in view of (A.20).

Nevertheless, Proposition 3.29 in [34] allows to show that (4.32) is satisfied provided that solu-

tions to (4.22) have a sufficiently long dwell-time. The claim below formalizes this result. It has

to be noted that β in (4.32) depends on the ball size of initial conditions ∆ which is not the case

in [60] and thus, the proof requires a particular careful to handle this point.

Claim A.1. Let φ = (φx, φy, φe) be a solution to (4.22), (4.31) with |φ(0, 0)| ≤ ∆. If the
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parameter ǫ is sufficiently small such that ǫ ∈ (0, ǫ∗) with

ǫ∗ := min

{(
1

2
(e

4ρ
µξ(∆) − 1)

)− 1
4

, 1

}
, (A.21)

where ρ, µ come from (4.31), (A.8) respectively and ξ : R≥0 → R>0 is a continuous increasing

function. Then, all inter-transmission times are lower bounded by τ(∆), where

τ(∆) := 4
µ
ln(1 + 2ǫ

1
4λ) (A.22)

and λ is defined in (A.19). Furthermore, any solution φ to (4.22) satisfies, for some ψ > 0

V (φ(t, j)) ≤ max
{
e−ψ(t+j)V (φ(0, 0)), θρ} ∀(t, j) ∈ dom φ, (A.23)

where θ := (1 + 2λ)max{2 (1+L)
µ

, 1}. �

The proof of Claim A.1 is given after the proof of Theorem 4.1.

We now show that the stability property (4.32) holds. In view of (4.24) and (4.25), for any

(t, j) ∈ domφ,

αx(|φx(t, j)|) ≤ max
{
e−γ(t+j)α(φ(0, 0)), θρ}

|φx(t, j)| ≤ α−1
x

(
max

{
e−γ(t+j)α(|φ(0, 0)|), θρ}

)
.

(A.24)

Using that γ1(|e|) ≤ max{σα1V (x), ρ} for any q ∈ C ∪ D ∪ G(D), we deduce that for any

(t, j) ∈ domφ

|φe(t, j)| ≤ max
{
βe(|φ(0, 0)|, t + j), ϑe(ρ)} (A.25)

for some βe ∈ KL and θe ∈ K∞. We are left with the y-component of φ. In view of Assump-

tions 4.3-4.4, it holds that

〈∇Vy(x, y), (fx, fy)〉 = 1
ǫ
∂Vy
∂y
g +

[
∂Vy
∂x

− ∂Vy
∂y

∂h
∂x

]
fx

≤ −α2
ǫ
Vy(x, y) + β2

√
Vx(x)Vy(x, y) + β3Vy(x, y) + γ2(|e|)

≤ −(α2
ǫ
− β2 − β3)Vy(x, y) + β2Vx(x) + γ2(|e|)

(A.26)
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and, as shown before,

Vy(x, hy(x, y, e)) ≤ Vy(x, y) + λ1γ1(|e|) + λ2
√
γ1(|e|)Vy(x, y)

≤ (1 + ǫ
1
4λ2)Vy(x, y) + (λ1 + ǫ−

1
4λ2)γ1(|e|)

(A.27)

By following similar lines as above, we deduce that, by taking ǫ∗ sufficiently small, the y-system

is ISS with respect to x and e. As a consequence, in view of (A.24), (A.26) and (A.27) we derive

that

|φy(t, j)| ≤ max
{
βy(|φ(0, 0)|, t + j), ϑy(ρ)} (A.28)

for some βy ∈ KL and θy ∈ K∞. The property (4.32) then follows from (A.24), (A.25) and

(A.28). Equations (A.24), (A.25) and (A.28) ensure that φ cannot explode in finite time, neither

it can flow out of C ∪ D since G(D) ⊂ C . Noting that system (4.22), (4.31) does not admit

trivial solution1, we conclude that maximal solutions to (4.22), (4.31) are complete according to

Proposition 6.10 in [34]. �

Proof of Claim A.1. First, we assume that (A.22) holds and we derive (A.23) by induction.

Then, we show that (A.22) is always satisfied for all solutions φ. We start by studying the

dynamics of V (q) in the first transmission time, i.e. j = 0, t ∈ [0, t1], where t1 denotes the first

transmission instant.

∀(t, 0) ∈ dom φ

Assume without loss of generality2 that φe(0, 0) = 0. In view of (A.13), we have

V (φ(t, 0)) ≤ max
{
e−

µ
2
tV (φ(0, 0)), 2 (1+L)

µ
ρ}. (A.29)

At t = t1, we obtain

V (φ(t1, 0)) ≤ max{e−µ
2
t1V (φ(0, 0)), 2 (1+L)

µ
ρ}. (A.30)

1This comes from the fact that C\D is the interior of C. Hence, the tangent cone (see Section B.3 in Appendix

B) is Rn and (VC) in Proposition 6.10 in [34] holds for any point in C\D

2If that is not the case, the inequality obtained later in (A.23) will hold for any (t, j) ∈ dom φ with j ≥ 1. A

bound on V (φ) on the interval [0, t1] can then be derived using (A.13) and (A.20) to upper-bound on V (φ) on the

whole domain domφ. Note that if φ never jumps, the bound on the inter-jump times used in (A.22) trivially holds

and (A.23) will be verified.
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Next, we study the dynamics of V (q) in the second transmission time, i.e. j = 1, t ∈ [t1, t2].

∀(t, 1) ∈ dom φ

In view of (A.20), (A.30), we have

V (φ(t1, 1)) ≤ (1 + 2ǫ
1
4λ)max{V (φ(t1, 0)), ρ}

≤ (1 + 2ǫ
1
4λ)max{e−µ

2
t1V (φ(0, 0)), 2 (1+L)

µ
ρ, ρ}

= max{(1 + 2ǫ
1
4λ)e−

µ
2
t1V (φ(0, 0)), (1 + 2ǫ

1
4λ)2(1+L)

µ
ρ, (1 + 2ǫ

1
4λ)ρ}.

(A.31)

In view of (A.13), we obtain

V (φ(t, 1)) ≤ max
{
e−

µ
2
(t−t1)V (φ(t1, 1)),

2(1+L)
µ

ρ}

≤ max
{
(1 + 2ǫ

1
4λ)e−

µ
2
(t−t1)e−

µ
2
t1V (φ(0, 0)), (1 + 2ǫ

1
4λ)2(1+L)

µ
ρe−

µ
2
(t−t1),

(1 + 2ǫ
1
4λ)ρe−

µ
2
(t−t1), 2(1+L)

µ
ρ}

= max
{
(1 + 2ǫ

1
4λ)e−

µ
2
tV (φ(0, 0)), (1 + 2ǫ

1
4λ)2(1+L)

µ
ρe−

µ
2
(t−t1),

(1 + 2ǫ
1
4λ)ρe−

µ
2
(t−t1), 2(1+L)

µ
ρ}.

(A.32)

At t = t2, we have

V (φ(t2, 1)) ≤ max
{
(1 + 2ǫ

1
4λ)e−

µ
2
t2V (φ(0, 0)), (1 + 2ǫ

1
4λ)2(1+L)

µ
ρe−

µ
2
(t2−t1),

(1 + 2ǫ
1
4λ)ρe−

µ
2
(t2−t1), 2 (1+L)

µ
ρ}.

(A.33)

similarly, we study the third inter-transmission time, i.e. j = 2, t ∈ [t2, t3].

∀(t, 2) ∈ dom φ

In view of (A.20), (A.33), we obtain

V (φ(t2, 2)) ≤ (1 + 2ǫ
1
4λ)max{V (φ(t2, 1)), ρ}

≤ max
{
(1 + 2ǫ

1
4λ)2e−

µ
2
t2V (φ(0, 0)), (1 + 2ǫ

1
4λ)2 2(1+L)

µ
ρe−

µ
2
(t2−t1),

(1 + 2ǫ
1
4λ)2ρe−

µ
2
(t2−t1), (1 + 2ǫ

1
4λ)2(1+L)

µ
ρ, (1 + 2ǫ

1
4λ)ρ}.

(A.34)
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In view of (A.13), we have

V (φ(t, 2)) ≤ max
{
e−

µ
2
(t−t2)V (φ(t2, 2)),

2(1+L)
µ

ρ}

≤ max
{
(1 + 2ǫ

1
4λ)2e−

µ
2
t2e−

µ
2
(t−t2)V (φ(0, 0)),

(1 + 2ǫ
1
4λ)2 2(1+L)

µ
ρe−

µ
2
(t2−t1)e−

µ
2
(t−t2),

(1 + 2ǫ
1
4λ)2ρe−

µ
2
(t2−t1)e−

µ
2
(t−t2),

(1 + 2ǫ
1
4λ)2(1+L)

µ
ρe−

µ
2
(t−t2),

(1 + 2ǫ
1
4λ)ρe−

µ
2
(t−t2), 2(1+L)

µ
ρ}

(A.35)

V (φ(t, 2)) ≤ max
{
(1 + 2ǫ

1
4λ)2e−

µ
2
tV (φ(0, 0)),

(1 + 2ǫ
1
4λ)2 2(1+L)

µ
ρe−

µ
2
(t2−t1)e−

µ
2
(t−t2),

(1 + 2ǫ
1
4λ)2ρe−

µ
2
(t2−t1)e−

µ
2
(t−t2),

(1 + 2ǫ
1
4λ)2(1+L)

µ
ρe−

µ
2
(t−t2),

(1 + 2ǫ
1
4λ)ρe−

µ
2
(t−t2), 2(1+L)

µ
ρ}.

(A.36)

At t = t3, we have

V (φ(t3, 2)) ≤ max
{
(1 + 2ǫ

1
4λ)2e−

µ
2
t3V (φ(0, 0)),

(1 + 2ǫ
1
4λ)2 2(1+L)

µ
ρe−

µ
2
(t2−t1)e−

µ
2
(t3−t2),

(1 + 2ǫ
1
4λ)2ρe−

µ
2
(t2−t1)e−

µ
2
(t3−t2),

(1 + 2ǫ
1
4λ)2(1+L)

µ
ρe−

µ
2
(t3−t2),

(1 + 2ǫ
1
4λ)ρe−

µ
2
(t3−t2), 2(1+L)

µ
ρ}

(A.37)
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In view of (A.20), (A.37), we obtain

V (φ(t3, 3)) ≤ (1 + 2ǫ
1
4λ)max{V (φ(t3, 2)), ρ}

≤ max
{
(1 + 2ǫ

1
4λ)3e−

µ
2
t3V (φ(0, 0)),

(1 + 2ǫ
1
4λ)3 2(1+L)

µ
ρe−

µ
2
(t2−t1)e−

µ
2
(t3−t2),

(1 + 2ǫ
1
4λ)3ρe−

µ
2
(t2−t1)e−

µ
2
(t3−t2),

(1 + 2ǫ
1
4λ)2 2(1+L)

µ
ρe−

µ
2
(t3−t2),

(1 + 2ǫ
1
4λ)2ρe−

µ
2
(t3−t2), (1 + 2ǫ

1
4λ)2(1+L)

µ
ρ, ρ}.

(A.38)

Since τ(∆) is a dwell-time, then tj+1 − tj ≥ τ(∆) and tj ≥ jτ(∆). Hence, it holds that

V (φ(t3, 3)) ≤ max
{
(1 + 2ǫ

1
4λ)3e−

µ
2
3τ(∆)V (φ(0, 0)),

(1 + 2ǫ
1
4λ)3 2(1+L)

µ
ρe−2τ(∆), (1 + 2ǫ

1
4λ)3ρe−2τ(∆),

(1 + 2ǫ
1
4λ)2 2(1+L)

µ
ρe−τ(∆), (1 + 2ǫ

1
4λ)2ρe−τ(∆),

(1 + 2ǫ
1
4λ)2(1+L)

µ
ρ, ρ}.

(A.39)

The inequality (A.22) ensures that

τ(∆) ≥ 2
µ
ln(1 + 2ǫ

1
4λ) (A.40)

implying that

(1 + 2ǫ
1
4λ)e−

µ
2
τ(∆) ≤ 1. (A.41)

Consequently, (1 + 2ǫ
1
4λ)ne−

µ
2
nτ(∆) ≤ 1 for any n > 1. As a result, (A.39) verifies

V (φ(t3, 3)) ≤ max
{
V (φ(0, 0)), (1 + 2ǫ

1
4λ)2(1+L)

µ
ρ, (1 + 2ǫ

1
4λ)ρ,

(1 + 2ǫ
1
4λ)2(1+L)

µ
ρ, (1 + 2ǫ

1
4λ)ρ, (1 + 2ǫ

1
4λ)2(1+L)

µ
ρ, ρ}

= max
{
V (φ(0, 0)), (1 + 2ǫ

1
4λ)2(1+L)

µ
ρ, (1 + 2ǫ

1
4λ)ρ}.

(A.42)

Thus, by induction, we deduce that, for any (tj , j)dom φ

V (φ(tj , j)) ≤ max
{
V (φ(0, 0)), θρ}, (A.43)
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where θ = (1 + 2λ)max{2 (1+L)
µ

, 1} and by using the fact that ǫ
1
4 < 1 since ǫ ∈ (0, ǫ∗) is

sufficiently small. In view of (A.36), (A.41), it holds that

V (φ(t, 2)) ≤ max
{
(1 + 2ǫ

1
4λ)2e−

µ
2
tV (φ(0, 0)),

(1 + 2ǫ
1
4λ)2 2(1+L)

µ
ρe−

µ
2
τ(∆),

(1 + 2ǫ
1
4λ)2ρe−τ(∆),

(1 + 2ǫ
1
4λ)2(1+L)

µ
ρe−τ(∆),

(1 + 2ǫ
1
4λ)ρe−τ(∆), 2(1+L)

µ
ρ}

≤ max
{
(1 + 2ǫ

1
4λ)2e−

µ
2
tV (φ(0, 0)),

(1 + 2ǫ
1
4λ)2(1+L)

µ
ρ, (1 + 2ǫ

1
4λ)ρ,

2(1+L)
µ

ρ, ρ, 2(1+L)
µ

ρ}

(A.44)

V (φ(t, 2)) ≤ max
{
(1 + 2ǫ

1
4λ)2e−

µ
2
tV (φ(0, 0)),

(1 + 2ǫ
1
4λ)2(1+L)

µ
ρ, (1 + 2ǫ

1
4λ)ρ}.

(A.45)

Hence, by induction, we deduce that, for any (t, j) ∈ dom φ

V (φ(t, j)) ≤ max
{
(1 + 2ǫ

1
4λ)je−

µ
2
tV (φ(0, 0)), θρ}

= max
{
eln(1+2ǫ

1
4 λ)j−µ

2
tV (φ(0, 0)), θρ}

(A.46)

We now use similar arguments as in Proposition 3.29 [34] to conclude. Let (t, j) ∈ dom φ. We

want to show that eln(1+2ǫ
1
4 λ)j−µ

2
t ≤ e−ψ(t+j), where ψ > 0, which is equivalent to show that

ln(1 + 2ǫ
1
4λ)j − µ

2 t ≤ −ψ(t+ j). (A.47)

By re-arranging the terms

(ln(1 + 2ǫ
1
4λ) + ψ)j ≤ (µ2 − ψ)t. (A.48)

Since τ(∆) is a dwell-time by assumption, it holds that, for any (t, j) ∈ dom φ, t ≥ τ(∆)j, i.e.
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j ≤ t
τ(∆) . As a result, the following inequality ensures (A.48)

(ln(1 + 2ǫ
1
4λ) + ψ) t

τ(∆) ≤ (µ2 − ψ)t

(ln(1 + 2ǫ
1
4λ) + ψ) 1

τ(∆) ≤ µ
2 − ψ

ψ( 1
τ(∆) + 1) ≤ µ

2 − ln(1 + 2ǫ
1
4λ) 1

τ(∆) .

(A.49)

We therefore see that it suffices to have µ
2 − ln(1 + 2ǫ

1
4λ) 1

τ(∆) > 0 to guarantee the existence

of ψ > 0, which can be written as

µ

2
> ln(1 + 2ǫ

1
4λ)

1

τ(∆)
. (A.50)

Using the definition of τ(∆), we obtain

µ
2 > ln(1 + 2ǫ

1
4λ) µ

4 ln(1+2
√
d(∆)λ)

µ
2 > µ

4

(A.51)

which is always true since µ > 0. Hence, we take

ψ ∈


0,

µ
2 − ln(1 + 2ǫ

1
4λ) 1

τ(∆)

1 + 1
τ(∆)


 . (A.52)

As a consequence, for any (t, j) ∈ dom φ,

V (φ(t, j)) ≤ max
{
e−γ(t+j)V (φ(0, 0)), θρ}. (A.53)

To finish the proof of Claim A.1, we need to show that (A.22) is always satisfied. For that

purpose, we study the dynamics of the sampling error function γ1(|e|) as follows. The length of

the inter-jump interval is lower bounded by the time it takes for γ1(|φe|) to grow from 0 to ρ in

view of (4.31). In view of (4.24), (4.25), (A.29), it holds that

V (φ(t, 0)) ≤ max
{
e−

µ
2
tV (φ(0, 0)), 2 (1+L)

µ
ρ}

≤ max
{
V (φ(0, 0)), θρ}

≤ max
{
αx(|φx(0, 0)|) +

√
ǫαy(|φy(0, 0)|), θρ}

≤ max
{
α(|(φx(0, 0), φy(0, 0))|), θρ},

(A.54)
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where α(|(φx(t, j), φy(t, j))|) = αx(|φx(t, j)|) + αy(|φy(t, j)|) and using the fact that ǫ∗ ≤ 1.

Consequently, (φx(t, 0), φy(t, 0)) lie in the compact set, for all (t, 0) ∈ dom φ

S(∆) := {(x, y) : V (x, y, 0) ≤ max
{
α(∆), θρ}}. (A.55)

Since φe(t, 0) = φx(0, 0) − φx(t, 0), we deduce that φ(t, 0) lie in the compact set S(∆) for all

(t, 0) ∈ domφ. Since γ1 is continuously differentiable by assumption, φ is continuous between

two jump instants, fx is continuous and S(∆) is compact

d
dt
γ1(|φe(t, 0)|) ≤ ∂γ1(|φe(t, 0)|)|fx(φ(t, 0))|

≤ sup
q∈S(∆)

{∂γ1(|e|)|fx(x, y, e)|}

< ξ(∆),

(A.56)

for some ξ(∆) > 0, which ensures the property on the inter-jump intervals stated below (4.32).

Hence τ(∆) ≥ ρ
ξ(∆) . The first jump instant t1 is lower bounded by the time it takes for γ1(|e|)

to grow form 0 to ρ which in return is lower bounded by the time it takes for t 7→ ξ(∆) to grow

from 0 to ρ, i.e.

t1 ≥
ρ

ξ(∆)
. (A.57)

By following similar lines as above, we deduce that tj+1 − tj ≥ ρ
ξ(∆) for all (t, j) ∈ dom φ. To

satisfy dwell-time condition (A.22), the following must hold, for all (t, j) ∈ domφ

tj+1 − tj ≥
ρ

ξ(∆)
≥ 4

µ
ln(1 + 2ǫ

1
4λ) (A.58)

which is verified for ǫ ∈ (0, ǫ∗), where

ǫ∗ := min

{(
1

2
(e

4ρ
µξ(∆) − 1)

)− 1
4

, 1

}
(A.59)

which completes the proof of Claim A.1. �

A.2 Proof of Theorem 4.2

The proof uses elements of the proofs of Theorems 2.1, 4.1 and Theorem 1 in [79]. We first build

a differential equation from which the value of T in (4.34) is obtained. Second, we construct
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a Lyapunov function candidate R for system (4.22). Third, we study the evolution of R along

flows and jumps. Finally, we apply Proposition 3.29 in [34] to deduce (4.36).

Let the function ϕ : [0,T ] → R be the solution of the differential equation, see [17],

ϕ̇ = −1− 2Mϕ− γ̄1N
2

α1
ϕ(τ)2 ϕ(0) = ϑ−1 ϕ(T ) = ϑ, (A.60)

where ϑ ∈ (0, 1), M,N come from Assumption 4.6 and γ̄1 is defined in condition (1) in Theo-

rem 4.2. The time T is the time it takes for the ϕ to decrease from ϑ−1 to ϑ and is given by the

following claim.

Claim A.2. (i) For all τ ∈ [0,T ] we have ϕ(τ) ∈ [ϑ, ϑ−1] with

T (ϑ, α1, γ̄1,M,N) :=





1
Mr

arctan r(1−ϑ2)
1+ϑ( 2N

2

α1

γ̄1
M

+ϑ)+
α1
2N2

M
γ̄1
ϑ(1+r2)

M2 < γ̄1N
2

α1

1
M

(1−ϑ2)
(1+ϑ2)+

α1
2N2

M
γ̄1
ϑ(1+ 2N2

α1
)

M2 = γ̄1N
2

α1

1
Mr

arctanh r(1−ϑ2)
1+ϑ( 2N

2

α1

γ̄1
M

+ϑ)+
α1
2N2

M
γ̄1
ϑ(1−r2)

M2 > γ̄1N
2

α1
,

(A.61)

where r is defined in (4.35).

(ii) T (ϑ, α1, γ̄1,M,N) → T (α1, γ̄1,M,N) when ϑ → 0, where T (α1, γ̄1,M,N) defined

in (4.34).

�

The proof of Claim A.2 is given after the proof of Theorem 4.2.

We now define the following differential system

ζ̇ = −1− 2Mζ(τ)− η −
(
ηζ(τ) + γ̄1

α1−η (Nζ(τ))
2
)

=: fζ(τ)
(A.62)

with ζ(0) = ϑ−1, ϑ ∈ (0, 1) and η ∈ (0, α1). Let T̃ (η, ϑ) denotes the time it takes for ζ to

decrease from ϑ−1 to ϑ. We note that this time T̃ (η, ϑ) is a continuous function of η, ϑ which

is decreasing in η, ϑ (by invoking the comparison principle). On the other hand, we note that

T̃ (η, ϑ) → T as (η, ϑ) tends to (0, 0) by following similar lines as in the proof of Claim 1 in

[79], where T is defined in (4.34). As a consequence, since T ∗ < T , there exist η, ϑ such that

T ∗ ≤ T̃ (η, ϑ) which we fix.
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We define

R(q) := Vx(x) + dVy(x, y) + max{0, γ̄1ζ(τ)|e|2} ∀q ∈ R
nq , (A.63)

where

d ∈
(
0,min{ γ̄1

γ̄2
η,

1− σ

σ

γ̄1
γ̄2
,

ϑ2

(λ1 + λ2)2
,
(eηT

∗ − 1)2

λ2
, 1}

)
(A.64)

and

λ := max{λ2, (λ1 + λ2)σα1}. (A.65)

Let q ∈ C and consider the case where ζ(τ) > 0. In view of Assumptions 4.2-4.6 and Lemma 1

R◦(q;F (q)) ≤ −(χ, |e|)TA1(χ, |e|), (A.66)

where χ := (
√
Vx(x),

√
Vy(x, y)),

A1 :=




α1 −1
2(β1 + dβ2) −γ̄1Nζ(τ)

∗ d
ǫ
α2 − dβ3 −γ̄1Nζ(τ)

∗ ∗ υ(τ)


 (A.67)

and

υ(τ) := −γ̄1 − dγ̄2 − γ̄1fζ(τ)− 2γ̄1Mζ(τ). (A.68)

The following conditions ensure that, according to Sylvester’s criterion,

A1 ≥ ηdiag(1, d, γ̄1ζ(τ)). (A.69)

As a consequence,





0 ≤ α1 − η

0 ≤ (α1 − η)d(1
ǫ
α2 − β3 − η) ≥ 1

4(β1 + dβ2)
2

0 ≤ (α1 − η)
{
d(1

ǫ
α2 − β3 − η)(υ(τ) − ηγ̄1ζ(τ))− (γ̄1ζ(τ)N)2

}

+1
2(β1 + dβ2)

{
−1

2(β1 + dβ2)(υ(τ) − ηγ̄1ζ(τ))− (γ̄1ζ(τ)N)2
}

−γ̄1Nζ(τ)
{
1
2(β1 + dβ2)γ̄1ζ(τ)N + γ̄1Nζ(τ)d(

1
ǫ
α2 − β3 − η)

}
.

(A.70)

The first two inequalities above are respectively verified by definition of η and by taking ǫ
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sufficiently small. For the last inequality to hold, it suffices to select ǫ sufficiently small provided

that

d

ǫ
α2

(
(α1 − η)(υ − ηγ̄1ζ(τ))− (γ̄1Nζ(τ))

2
)
> 0 (A.71)

which is equivalent to, by definition of υ and definition of fζ in (A.62),

(α1 − η)(γ̄1η − dγ̄2) > 0 (A.72)

which holds by definition of d and η. Consequently, by selecting ǫ sufficiently small

R◦(q;F (q)) ≤ −ηR(q). (A.73)

Suppose now that ζ(τ) < 0, hence γ̄1|e|2 ≤ σα1Vx(x) in view of the definition of the set C .

Using Assumptions 4.2-4.6 and Lemma 1,

R◦(q;F (q)) ≤ −χTA2χ, (A.74)

where

A2 :=


 α1

(
1− σ(1 + dγ̄2γ̄

−1
1 )

)
−1

2(β1 + dβ2)

−1
2(β1 + dβ2)

d
ǫ
α2 − dβ3


 . (A.75)

By following similar arguments as above and since d < 1−σ
σ

γ̄1
γ̄2

and R(q) = Vx(x) + dVy(x, y)

in this case, we derive that (A.73) holds by selecting ǫ sufficiently small.

When ζ(τ) = 0, (A.73) is verified in view of Lemma 1 and the results obtained for the cases

where ζ(τ) > 0 and ζ(τ) < 0.

Let q ∈ D. Suppose that τ = T ∗ (note that γ̄1|e|2 ≥ σα1Vx(x) in this case). In view of

Assumption 4.5

R(G(q)) = Vx(x) + dVy(x, hy(x, y, e))

≤ Vx(x) + d
(
Vy(x, y) + λ1γ̄1|e|2 + λ2

√
γ̄1|e|2Vy(x, y)

)
.

(A.76)

Using that √
γ̄1|e|2Vy(x, y) ≤

1√
d
γ̄1|e|2 +

√
dVy(x, y) (A.77)
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and since d ≤
√
d ≤ 1, it holds that

R(G(q)) ≤ Vx(x) + dVy(x, y) +
√
d(λ1 + λ2)γ̄1|e|2 + dλ2

√
dVy(x, y)

≤ Vx(x) + dVy(x, y) +
√
d(λ1 + λ2)γ̄1|e|2 + λ2

√
d(Vx(x) + dVy(x, y)).

(A.78)

We take d sufficiently small such that (since ζ(T̃ (η, ϑ)) = ϑ)

√
d(λ1 + λ2)γ̄1|e|2 ≤ γ̄1ζ(T̃ (η, ϑ))|e|2

= γ̄1ϑ|e|2
(A.79)

As a consequence

R(G(q)) ≤ (1 + λ2
√
d)(Vx(x) + dVy(x, y) + γ̄1ζ(T̃ (η, ϑ))|e|2). (A.80)

Since in this case we transmit at τ = T ∗ ≤ T̃ (η, ϑ), then ζ(τ) ≥ ζ(T̃ (η, ϑ)), as ζ(τ) is a

decreasing function, and we obtain

R(G(q)) ≤ (1 + λ2
√
d)R(q). (A.81)

When τ > T ∗, it holds that γ̄1|e|2 = σα1Vx(x) in view of (4.33). Hence, by following similar

lines as above, we deduce that

R(G(q)) ≤ (1 + λ
√
d)R(q), (A.82)

where λ = max{λ2, (λ1 + λ2)σα1}. Thus, (A.82) holds for all q ∈ D (since λ2 ≤ λ).

Finally, we use similar arguments as in Proposition 3.29 in [34] to conclude. In view of (A.73)

and (A.82), the property (3.10) in Proposition 3.29 holds with λc = −η and eλd = (1 + λ
√
d).

Let ψ > 0 and (t, j) ∈ dom φ. To satisfy the last condition of Proposition 3.29, we need to show

that

ln(1 + λ
√
d)j − ηt ≤ −ψ(t+ j). (A.83)

Since j ≤ t
T ∗

in view of (4.33), it suffices to show that

ln(1 + λ
√
d)

t

T ∗ − ηt ≤ −ψ(t+ t

T ∗ ) (A.84)
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which is equivalent to

(ln(1 + λ
√
d) + ψ)

t

T ∗ ≤ (η − ψ)t (A.85)

i.e.

ψ(
1

T ∗ + 1) ≤ η − ln(1 + λ
√
d)

1

T ∗ . (A.86)

Hence, we take d ≤ (e
ηT∗−1
λ

)2 which ensures that

η − ln(1 + λ
√
d)

1

T ∗ > 0. (A.87)

It then suffices to take

ψ ∈ (0,
η − ln(1 + λ

√
d) 1
T ∗

1
T ∗

+ 1
) > 0. (A.88)

As a result, like in the proof of Proposition 3.29 in [34], we obtain, for all (t, j) ∈ dom φ

R(φ(t, j)) ≤ e−ψ(t+j)R(φ(0, 0)). (A.89)

By using Assumptions 4.2-4.3 and the fact that ζ(τ) ∈ [ϑ, ϑ−1], we deduce from (A.89) that

(4.36) holds.

Let φ = (φx, φy, φe, φτ ) be a maximal solution to (4.22)-(4.33). We note that φ is non-trivial

by using similar arguments as in the proof of Theorem 4.1. In view of (A.89), φx and φy cannot

explode in finite time. Since φe(t, j) = φx(tj , j) − φx(t, j) for any (tj, j), (t, j) ∈ dom φ

and j ≥ 1, φe cannot explode in finite time. The same conclusion holds for φτ in view of its

dynamics, see (4.22). Hence, φ cannot explode in finite-time. In addition, G(D) ⊂ C . As a

consequence, φ is complete according to Proposition 6.10 in [34]. �

Now we provide the proof of Claim A.2.

Proof of Claim A.2: Let β := γ̄1N
2

α1
for the sake of simplicity. We follow similar lines as in the

proof of Lemma 2 in [17]. In view of (A.60), it holds that

T = −
∫ ϑ

1
ϑ

dφ

βφ2 + 2Mφ+ 1
. (A.90)
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We define s := φ+ M
β

. Hence, (A.90) in terms of s becomes

T = −
∫ ϑ+M

β

1
ϑ
+M

β

ds

βs2−M2

β
+1

= − 1
β

∫ ϑ+M
β

1
ϑ
+M

β

ds

s2−(M
β
)2+ 1

β

.

In view of (4.35), r =

√∣∣∣ β
M2 − 1

∣∣∣. Hence, (A.91) can be written as

T = − 1

β

∫ ϑ+M
β

1
ϑ
+M

β

ds

s2 − sgn(M2 − β)(Mr
β
)2
, (A.91)

where sgn(.) is the sign function with sgn(0) = 0.

When M2 = β, using the fact that − 1
β

∫ b
a
ds
s2

= 1
β
(1
b
− 1

a
), we have

T = 1
β

(
β

βϑ+M − βϑ
β+Mϑ

)

= 1
βϑ+M − ϑ

β+Mϑ

= β+Mϑ−ϑ(βϑ+M)
(βϑ+M)(β+Mϑ)

= β(1−ϑ2)
β2ϑ+βMϑ2+βM+M2ϑ

since M2 = β, it holds that

T = β(1−ϑ2)
βM2ϑ+βMϑ2+βM+M2ϑ

= 1
M

β(1−ϑ2)
βMϑ+βϑ2+β+Mϑ

= 1
M

β(1−ϑ2)
β(1+ϑ2)+Mϑ(1+β)

= 1
M

(1−ϑ2)
(1+ϑ2)+Mϑ

β
(1+β)

.
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When M2 < β, using the fact that − 1
β

∫ b
a

ds

s2+(Mr
β

)2
= − 1

Mr

(
arctan( bβ

Mr
)− arctan( aβ

Mr
)
)

and

that for all n1, n2 ≥ 0 we have arctan(n1)− arctan(n2) = arctan( n1−n2
1+n1n2

), we obtain

T = − 1
Mr

(
arctan

(
βϑ+M
β

β
Mr

)
− arctan

(
β+Mϑ
βϑ

β
Mr

))

= − 1
Mr

(
arctan

(
βϑ+M
Mr

)
− arctan

(
β+Mϑ
Mrϑ

))

= − 1
Mr

arctan

(
βϑ+M
Mr

−β+Mϑ
Mrϑ

1+
(βϑ+M)(β+Mϑ)

M2r2ϑ

)

= − 1
Mr

arctan

(
βϑ2+Mϑ−β−Mϑ

Mrϑ
M2r2ϑ+β2ϑ+βMϑ2+βM+M2ϑ

M2r2ϑ

)

T = − 1
Mr

arctan
(

βMr(ϑ2−1)
M2r2ϑ+β2ϑ+βMϑ2+βM+M2ϑ

)

= − 1
Mr

arctan βMr(ϑ2−1)

βM(1+ β
M
ϑ+ϑ2)+M2ϑ(1+r2)

using the fact that − arctan(x) = arctan(−x), it holds that

T = 1
Mr

arctan r(1−ϑ2)
1+ϑ( β

M
+ϑ)+Mϑ

β
(1+r2)

. (A.92)

When M2 > β, using the fact that 1
β

∫ b
a

ds

(Mr
β

)2−s2 = 1
Mr

(
arctanh( bβ

Mr
)− arctanh( aβ

Mr
)
)

and

that for all n1, n2 ≥ 0 we have arctanh(n1)−arctanh(n2) = arctanh( n1−n2
1−n1n2

) and in the light

of (A.92), we obtain

T = 1
Mr

arctanh
(

βMr(ϑ2−1)
M2r2ϑ−β22ϑ−βMϑ2−βM−M2ϑ

)

= 1
Mr

arctanh −βMr(1−ϑ2)
−βM(1+ β

M
ϑ+ϑ2)−M2ϑ(1−r2)

= 1
Mr

arctanh βMr(1−ϑ2)
βM(1+ β

M
ϑ+ϑ2)+M2ϑ(1−r2)

= 1
Mr

arctanh r(1−ϑ2)
1+ϑ( β

M
+ϑ)+Mϑ

β
(1−r2)

recall that r2 < 1 since M2 > β. Thus, in view of (A.92), (A.92) and (A.93), Claim A.2 holds.
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Appendix B

Mathematical review

In this appendix, we provide some mathematical preliminaries and fundamental tools that have

been used to obtain the technical results.

B.1 Fundamental properties

The following concepts are useful to investigate the existence and uniqueness of solutions of

differential equations.

Definition B.1. A function f : Rn → R
m is said to be locally Lipschitz in x if there exist a

neighbourhood D ⊂ R
n of x and a constant L ≥ 0, called the Lipschitz constant, such that

|f(y)− f(x)| ≤ L|y − x| ∀x, y ∈ D. (B.1)

If D = R
n, we say that the function f is globally Lipschitz. �

The following lemma shows that a continuously differentiable function is locally Lipschitz.

Lemma B.1 (Lemma 3.1 [52]). Let f : [a, b] × D → R
m be continuous for some domain

D ⊂ R
n. Suppose that [∂f

∂x
] exists and is continuous on [a, b] × D. If, for a convex subset

W ⊂ D, there is a constant L ≥ 0 such that

∣∣∣∣
∂f

∂x
(t, x)

∣∣∣∣ ≤ L (B.2)
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on [a, b]×W , then

|f(t, x)− f(t, y)| ≤ L|x− y| (B.3)

for all t ∈ [a, b], x ∈W , and y ∈W . �

The local Lipschitz property of a function is stronger than continuity and weaker than contin-

uous differentiability. The absolute value function for instance is globally Lipschitz but not

(continuously) differentiable everywhere.

Functions properties

A function V : Rnx → R is said to be positive definite if V (0) = 0 and V (x) > 0 for x 6= 0.

The sign function of a real number x, denoted as sgn : R → R, is defined as

sgn(x) =





−1 if x < 0;

0 if x = 0;

1 if x > 0.

(B.4)

The following properties of comparison functions are useful and have been used within the

proofs of our results.

Lemma B.2 (Lemma 4.2 [52]). Let α1 and α2 be class K functions on [0, a) for some a > 0,

α3 and α4 be class K∞ functions, and β be a class KL function. Denote the inverse of αi by

α−1
i . then

• α−1
1 is defined on [0, α1(a)) and is of class K;

• α−1
3 is defined on [0,∞) and is of class K∞;

• α1 ◦ α2 is of class K;

• α3 ◦ α4 is of class K∞;

• σ(r, s) = α1(β(α2(r), s)) is of class KL. �
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Lemma B.3 (Remark 2.3 in [24]). For any α1, α2 ∈ K, there exist α,α ∈ K such that

α(s1 + s2) ≤ α1(s1) + α2(s2) ≤ α(s1 + s2), ∀s1, s2 ≥ 0. (B.5)

In particular, we can take α(s) := min{α1(
s
2 ), α2(

s
2 )} and α(s) := max{2α1(s), 2α2(s)} for

all s1 ≥ 0, s2 ≥ 0. �

Lemma B.4 (Lemma 4.3 [52], [51]). Let V : D → R be a continuous positive definite function

defined on a domain D ⊂ R
n that contains the origin. Let Br ⊂ D for some r > 0. Then, there

exist class K functions α1 and α2, defined on [0, r], such that

α1(|x|) ≤ V (x) ≤ α2(|x|) (B.6)

for all x ∈ Br. If D = R
n and V (x) is radially unbounded, then there exist class K∞ functions

α1 and α2 such that the above inequality holds for all x ∈ R
n. �

Derivative of locally Lipschitz functions

We consider locally Lipschitz Lyapunov functions that are not necessarily differentiable every-

where. Therefore, we use the generalized directional derivative of Clarke which inherits some

useful properties when dealing with locally Lipschitz functions, see Proposition 2.1.1 in [18].

For a locally Lipschitz function V : Rn → R≥0 and a vector υ ∈ R
n,

V ◦(x; υ) := lim sup
h→0+, y→x

V (y + hυ)− V (y)

h
. (B.7)

For a continuously differentiable function V , V ◦(x; υ) reduces to the standard directional deriva-

tive 〈∇V (x), υ〉, where ∇V (x) is the (classical) gradient.

Note that, if ẋ = υ(t) for almost all t, then d
dt
V (x(t)) is defined for almost all t and equals the

usual one-sided directional derivative, i.e., for almost all t,

d

dt
V (x(t)) = lim

h→0+

V (x(t) + hυ(t)) − V (x(t))

h
. (B.8)

Comparing (B.8) with (B.7), we see that the generalized directional derivative upper bounds the

usual directional derivative. Moreover, the generalized directional derivative offers the following

convenient property
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• If f(x, d) and α̃(x, d) are continuous and

∂V

∂x
(x)f(x, d) ≤ α̃(x, d), ∀d, x /∈ Ω, (B.9)

where Ω is a set of measure zero containing the set where V is not differentiable, then

V ◦(x; f(x, d)) ≤ α̃(x, d), ∀(x, d). (B.10)

Fore more detail, see pages 99, 100 in [107].

The proofs of the previous chapters often involve a Lyapunov function which is defined by

the maximum of two locally Lipschitz functions. To deal with such functions, we invoke the

following result, see Lemma II.1 in [60].

Lemma 1. Consider two functions U1 : Rn → R and U2 : Rn → R that have well-defined

Clarke derivatives for all x ∈ R
n and υ ∈ R

n. Introduce three sets A := {x : U1(x) > U2(x)},

B := {x : U1(x) < U2(x)}, Γ := {x : U1(x) = U2(x)}. Then, for any υ ∈ R
n, the function

U(x) := max{U1(x), U2(x)} satisfies

(i) U◦(x; υ) = U◦
1 (x; υ) for all x ∈ A;

(ii) U◦(x; υ) = U◦
2 (x; υ) for all x ∈ B;

(iii) U◦(x; υ) ≤ max{U◦
1 (x; υ), U

◦
2 (x; υ)} for all x ∈ Γ. �

B.2 Input-to-state stability

Consider the following system

ẋ = f(x, u), (B.11)

where x ∈ R
n, u ∈ R

m and f : Rn × R
m is locally Lipschitz in x and u.

Definition B.2 (Input-to-state stability (ISS), Definition 4.7 in [52]). The system (B.11) is said

to be input-to-state stable if there exist a class KL function β and a class K function γ such that

for any initial state x(0) and any bounded input u, the corresponding solution x exists for all
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t ≥ t0 and satisfies

|x(t)| ≤ β(|x(t0)|, t− t0) + γ

(
sup

t0≤τ≤t
|u(τ)|

)
.

�

ISS is usually ensured using the following Lyapunov characterization.

Theorem B.1 (Lyapunov conditions for ISS, Theorem 4.19 in [52]). Let V : Rn → R be a

continuously differentiable function such that

α1(|x|) ≤ V (x) ≤ α2(|x|)
∂V
∂x
f(x, u) ≤ −α(x), ∀|x| ≥ ρ(|u|) > 0

(B.12)

for all (x, u) ∈ R
n × R

m, where α1, α2 ∈ K∞, ρ ∈ K and α : R≥0 → R≥0 is a continuous

positive definite function on R
n. Then, the system is input-to-state stable with γ = α−1

1 ◦α2 ◦ ρ.

�

B.3 Hybrid dynamical systems

Throughout the thesis, we model the event-triggered controlled systems by using the hybrid

formalism of [34] which allows us to use the well-defined notion of solutions and the tools

developed to analyse the stability in [34]. Hence, we consider hybrid systems of the following

form

ẋ = F (x) x ∈ C, x+ = G(x) x ∈ D, (B.13)

where x ∈ R
n is the state, C,D ∈ R

n and F,G are single-valued functions. This model

suggests that the state x of the hybrid system evolves according to the differential equation

ẋ = F (x) as long as x ∈ C , and it experiences an instantaneous change according to the

difference equation x+ = G(x) when x ∈ D. When x ∈ C ∩D, the system behaves according

to the differential equation ẋ = F (x) only if this evolution keeps x in C , otherwise the system

experiences a discrete transition. To shorthand the notation, we will refer to the continuous

behaviour described by a differential equation as flow and the discrete behaviour described by a

difference equation as jump. Consequently, from now on, the elements of hybrid model (B.13)

will be named as follows
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• F is the flow map;

• C is the flow set;

• G is the jump map;

• D is the jump set.

Assumption 6.5 in [34] provides sufficient conditions on the hybrid model to ensure that model

is well-posed, see Section 5.4 in [63] for more detail on the well-posedness of hybrid dynamical

models. In the case of single-valued functions F,G, these sufficient conditions reduce to

(i) C,D ⊂ R
n are closed sets;

(ii) F,G are continuous functions.

From now on, we assume that conditions (i) and (ii) hold.

Notion of solution

The solutions to system (B.13) are defined on the so-called hybrid time domains. A set E ⊂
R≥0 × Z≥0 is called a compact hybrid time domain if E = ∪

j∈{0,...,J−1}
([tj , tj+1], j) for some

finite sequence of times 0 = t0 ≤ t1 ≤ ... ≤ tJ and it is a hybrid time domain if for all

(T, J) ∈ E,E∩([0, T ]×{0, 1, ..., J}) is a compact hybrid time domain. A function φ : E → R
n

is a hybrid arc if E is a hybrid time domain and if for each j ∈ Z≥0, t 7→ φ(t, j) is locally

absolutely continuous on Ij := {t : (t, j) ∈ E}. A hybrid arc φ is a solution to system (B.13)

if φ(0, 0) ∈ C ∪D and

(i) for every j ∈ Z≥0,

φ(t, j) ∈ C,

φ̇(t, j) = F (φ(t, j)),
for almost all t ∈ Ij; (B.14)

(ii) for every (t, j) ∈ domφ such that (t, j + 1) ∈ dom φ,

φ(t, j) ∈ D,

φ(t, j + 1) = G(φ(t, j)),
for almost all t ∈ Ij . (B.15)

Definition 1 (Types of hybrid arcs). A hybrid arc φ is called:

• nontrivial if dom φ contains at least two points;
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• maximal if dom φ cannot be extended;

• complete if dom φ is unbounded;

• Zeno if it is complete and supt dom φ <∞. �

The following notion of tangent cone is useful to study the existence of nontrivial solutions for

system (B.13).

Definition 2 (Tangent cone). The tangent cone to a set S ⊂ R
n at a point x ∈ R

n, denoted

TS(x), is the set of all vectors w ∈ R
n for which there exists xi ∈ S, τi > 0 with xi → x,

τi ց 0, and

w = lim
i→∞

xi − x

τi
. (B.16)

�

Proposition 1 (Basic existence of solutions, Proposition 6.10 in [34]). Let H = (C,F,D,G).

Take any arbitrary ξ ∈ C ∪D. If ξ ∈ D or

(VC) there exists a neighborhood U of ξ such that for every x ∈ U ∩ C ,

F (x) ∈ TC(x),

then there exists a nontrivial solution φ to H with φ(0, 0) = ξ. If (VC) holds for every ξ ∈ C\D,

then there exists a nontrivial solution to H form every initial point in C ∪D, and every φ ∈ SH

satisfies exactly one of the following conditions:

(a) φ is complete;

(b) dom φ is bounded and the interval IJ , where J = supj dom φ, has nonempty interior and

t 7→ φ(t, J) is a maximal solution to ż ∈ F (z), in fact limt→T |φ(t, J)| = ∞, where

T = supt dom φ;

(c) φ(T, J) /∈ C ∪D, where (T, J) = sup dom φ.

Furthermore, if G(D) ⊂ C ∪D, then (c) above does not occur. �

Stability

We introduce here the definitions of some stability properties and alternative characterizations.

We start by defining the uniform global pre-asymptotic stability (UGpAS) of a closed set. This
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property entails that the distance of each solution to a given set is bounded by a function of two

quantities: the initial condition’s distance to the set and the amount of elapsed time at which the

solution is evaluated; moreover, this bound tends to zero as the initial condition’s distance to the

set tends to zero or the amount of elapsed hybrid time tends to infinity.

Definition 3 (Distance to a closed set, Definition 3.5 in [34]). Given a vector x ∈ R
n and a

closed set A ⊂ R
n, the distance of x to A is denoted as |x|A and is defined by

|x|A := inf
y∈A

|x− y|. (B.17)

�

The UGpAS property is formally defined as follows.

Definition 4 (Uniform global pre-asymptotic stability (UGpAS), Definition 3.6 in [34]). Con-

sider a hybrid system H on R
n. Let A ⊂ R

n be closed. The set A is said to be

• uniformly globally stable for H if there exists a class-K∞ function α such that any solution

φ to H satisfies |φ(t, j)|A ≤ α(|φ(0, 0)|A) for all (t, j) ∈ dom φ;

• uniformly globally pre-attractive for H if for each ε > 0 and r > 0 there exists T > 0

such that, for any solution φ to H with (t, j) ∈ domφ and t+j ≥ T imply |φ(t, j)|A ≤ ε;

• uniformly globally pre-asymptotically stable for H if it is both uniformly globally stable

and uniformly globally pre-attractive. �

The prefix “Pre” indicates that maximal solutions are not required to be complete. We remove

this prefix when maximal solutions are complete. The following theorem is an equivalent char-

acterization of UGpAS.

Theorem 1 (Equivalence of UGpAS and a KL bound, Theorem 3.40 in [34]). Let H be a

hybrid system and A ⊂ R
n be closed. The following statements are equivalent:

(a) The set A is uniformly globally pre-asymptotically stable for H;

(b) There exists a KL function β such that any solution φ to H satisfies

|φ(t, j)|A ≤ β(|φ(0, 0)|A , t+ j) ∀(t, j) ∈ dom φ. (B.18)

�
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B.4 Miscellaneous

We provide below a review of some diverse elements of mathematical analysis that have been

used in this thesis.

Definition B.3 (Schur complement, Appendix A.5.5 [16]). Consider a real symmetric matrix

X ∈ R
n×n partitioned as

X =


 A B

BT C


 ,

where A ∈ R
k×k. If det(A) 6= 0, the matrix

S = C −BTA−1B

is called the Schur complement of A in X. The following characterizations of positive definite-

ness or semidefiniteness of the block matrix X hold:

• X > 0 if and only if A > 0 and S > 0;

• If A > 0, then X ≥ 0 if and only if S ≥ 0. �

Lemma B.5 (Comparison lemma, Lemma 3.4 [52]). Consider the scalar differential equation

u̇ = f(t, u), u(t0) = u0

where f(t, u) is continuous in t and locally Lipschitz in u, for all t ≥ 0 and all u ∈ J ⊂ R.

Let [t0, T ) (T could be infinity) be the maximal interval of existence of the solution u(t), and

suppose u(t) ∈ J for all t ∈ [t0, T ). Let υ(t) be a continuous function whose upper right-hand

derivative D+υ(t) satisfies the differential inequality

D+υ(t) ≤ f(t, υ(t)), υ(t0) ≤ u0

with υ(t) ∈ J for all t ∈ [t0, T ). Then, υ(t) ≤ u(t) for all t ∈ [t0, T ). �

Theorem B.2 (Mean Value Theorem, page 651 in [52]). Assume that f : Rn → R is contin-

uously differentiable at at each point x of an open set S ⊂ R
n. Let x and y be two points of S
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such that the line segment L(x, y) ⊂ S. Then there exists a point z of L(x, y) such that

f(y)− f(x) =
∂f

∂x

∣∣∣∣
x=z

(y − x),

where the line segment L(x, y) joining two distinct points x, y ∈ R
n is

L(x, y) = {z|z = θx+ (1− θ)y, 0 < θ < 1}.

�

Lemma B.6. For any a, b ∈ R and η ∈ R>0, 2ab ≤ 1
η
a2 + ηb2. �

Lemma B.7. For any a, b ∈ R≥0, max{a, b} ≤ a+ b. �

Lemma B.8. For any real symmetric positive definite matrix P ∈ R
n×n and for any x ∈ R

n,

λmin(P )|x|2 ≤ xTPx ≤ λmax(P )|x|2.

�
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[8] K.J. Åström. Event based control. In A. Astolfi and L. Marconi (editors), Analysis and

Design of Nonlinear Control Systems:127–147, 2008.
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Résumé

La commande à transmissions événementielles est une approche dans laquelle les instants de

transmission sont définis selon un critère dépendant de l’état du système et non plus d’une hor-

loge à l’instar des implantations périodiques. Dans cette thèse, nous nous concentrons sur la

synthèse de telles lois de commande par retour de sortie. Les contributions sont les suivantes :

(i) nous proposons une méthode de synthèse dite par émulation pour des systèmes non linéaires;

(ii) nous présentons une méthode de synthèse jointe de la loi de commande et de la condition de

déclenchement pour les systèmes linéaires; (iii) nous nous intéressons au cas de systèmes non

linéaires singulièrement perturbés et nous construisons le contrôleur à partir d’approximation de

la dynamique lente uniquement.

Mots clés : Commande à transmissions événementielles; Systèmes contrôlés via un réseau;

Systèmes singulièrement perturbés; Systèmes dynamiques hybrides; Systèmes non linéaires.

Summary

Event-triggered control is a sampling paradigm in which the sequence of transmission instants is

determined based on the violation of a state-dependent criterion and not a time-driven clock. In

this thesis, we deal with event-triggered output-based controllers to stabilize classes of nonlinear

systems. The contributions of the presented material are threefold: (i) we stabilize a class of

nonlinear systems by using an emulation-based approach; (ii) we develop a co-design procedure

to simultaneously design the output feedback law and the event-triggering condition for linear

systems; (iii) we propose stabilizing event-triggered controllers for nonlinear systems whose

dynamics have two-time scales (in particular, we only rely on the knowledge of an approximate

model of the slow dynamics).

Keywords: Event-triggered control; Networked control systems; Singularly perturbed systems;

Hybrid dynamical systems; Nonlinear systems.
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