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Abstract 
 

The macroscopic failure of composite laminates subjected to tensile increasing load is 

preceded by initiation and evolution of several microdamage modes. The most common 

damage mode and the one examined in this thesis is intralaminar cracking in layers. Due 

to this kind of microdamage the laminate undergoes stiffness reduction when loaded in 

tension. For example, the elastic modulus in the loading direction and the corresponding 

Poisson’s ratio will decrease. 

The degradation of the elastic properties of these materials is caused by reduced stress 

in the damaged layer which is mainly due to two parameters: crack opening 

displacement (COD) and crack sliding displacement (CSD). At fixed applied load these 

parameters depend on the properties of the damaged and surrounding layers, on layer 

orientation and on thickness. When the number of cracks per unit length is high (high 

crack density in the layer) the COD and CSD are reduced because of to crack 

interaction. 

The main objective of the second chapter of this thesis is to investigate the effect of 

crack interaction on COD using FEM and to describe the identified dependence on 

crack density in a simple and accurate form by introducing an interaction function 

dependent on crack density. This interaction function together with COD of non-

interactive crack gives accurate predictions of the damaged laminate properties. The 

application of this function to more complex laminate lay-ups is demonstrated. All these 

calculations are performed assuming that cracks are equidistant.  

However, the crack distribution in the damaged layer is very non-uniform, especially in 

the initial stage of multiple cracking. In the third chapter, the earlier developed model 

for general symmetric laminates is generalized to account for non-uniform crack 
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distribution. This model is used to calculate the axial modulus of cross-ply laminates 

with cracks in internal and surface layers. In parametric analysis the COD and CSD are 

calculated using FEM, considering the smallest versus the average crack spacing ratio 

as non-uniformity parameter. It is shown that assuming uniform distribution we obtain 

lower bond to elastic modulus. A “double-periodic” approach presented to calculate the 

COD of a crack in a non-uniform case as the average of two solutions for periodic crack 

systems is very accurate for cracks in internal layers, whereas for high crack density in 

surface layers it underestimates the modulus reduction. 

In the fourth chapter, the thermo-elastic constants were calculated using shear lag 

models and variational models in a general calculation approach (GLOB-LOC) for 

symmetric laminates with transverse cracks in 90° layer. The comparison of these two 

models with FEM was presented for cross-ply and quasi-isotropic laminates.  

Using FEM, we assume linear elastic material with ideal crack geometry. Fiber bridging 

over the crack surface is possible which can affect COD and CSD. The only correct way 

to validate these assumptions is through experiments. 

The main objective of the fifth and the sixth chapter is to measure these parameters for 

different laminate lay-ups in this way providing models with valuable information for 

validation of used assumptions and for defining limits of their application.  In particular, 

the displacement field on the edge of a [90/0]s and [903/0]s carbon fiber/epoxy laminates 

specimens with multiple intralaminar cracks in the surface layer is studied. The 

specimen full-field displacement measurement is carried out using ESPI (Electronic 

Speckle Pattern Interferometry).  
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Chapter 1 
 
General Introduction 
 
 
 
Composite is a material which has at least two distinct phases or constituents. This 

material has found usage in many industrial applications and more recently it is 

increasingly being used in aerospace panels and airframes. The use of composites in the 

aerospace industry is justified by their excellent specific modulus and strength (referred 

to the property divided by the density). Fig. 1.1 shows the increase in percentage of 

components made from composites for commercial airplanes.  

 
Figure 1.1. Commercial Airplane Models over time by percentage of composites 

 

Fig. 1.2 shows the increase of composite use in commercial airplane from 1%  (Boeing 

747) in 1969 to 50% (Boeing 787) in 2009.  
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Recently the new generation commercial aircraft, the 787 (Dreamliner), was designed 

almost entirely with high performance carbon fiber materials including the stabilizers, 

wings, and fuselage, which represents 50% of aircraft structural weight (Fig. 1.3). 

Composite materials represent 53% of the Airbus A350. 

 
Figure 1.2. Composite materials trends [1] 

 

 
Figure 1.3. Composite structure content on the Boeing 787 [1] 
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When a composite is loaded in tension with increasing load it will eventually fail 

(macroscopically). The failure is preceded by initiation and evolution of several 

microdamage modes. On the microscale, a part of the matrix can fail, fibers can fail and 

there can be fiber/matrix interface debonding (Fig. 1.4(a)). On the mesoscale, three 

different modes of damage can be observed.  

 
Matrix microcraking or intralaminar cracking 

Fiber-reinforced composites offer strength and stiffness properties in the longitudinal 

direction. Their properties, however, in the transverse direction are generally low. As 

results, they readily develop cracks along fibers. These cracks are usually the first mode 

of damage in fiber-reinforced composites. Such cracks are found to be caused by tensile 

loading, fatigue loading, as well as by changes in temperature or by thermal cycling. 

These cracks run parallel to fibers in the layer with the crack plane being transverse to 

the laminate midplane. Intralaminar cracks do not usually cause the final failure of a 

laminate, but may significantly impair the effective properties of the composite and 

serve as a source for other damage modes initiation, such as delamination.  

(Fig. 1.4(b)): 

 
Delamination or interlaminar cracking 

 It is cracking in the interfacial plane between two adjoining plies in a laminate, causes 

separation of the plies and is referred to as delamination. The growth of delamination 

cracks under the subsequent application of external loads leads to a rapid deterioration 

of the mechanical properties and may cause catastrophic failure of the composite 

structure. 

(Fig. 1.4(C)): 

 
Fiber breaks 

The failure (separation) of a multidirectional fiber-reinforced composite ultimately 

comes from breakage of fibers. In a unidirectional composite loaded in tension along 

(Fig. 1.4(d)): 
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fibers the individual fibers fail at their weak points and stress redistribution between 

fibers and matrix occurs, affecting other fibers in the local vicinity of the broken fibers 

and possibly broken some. 

 
Figure 1.4. Various mechanics of damage in composite laminates  

(a): Fiber/Matrix debonding, (b): Matrix cracking, (c): Delamination, (d): Fiber breaks 
 

 
Figure 1.5. Elastic properties dependence on the microdamage level [2] 
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The number of cracks increases during service life reducing laminate thermo-elastic 

properties (Fig. 1.5). Many papers have been written on this subject, covering a broad 

range from “micromechanics” based to continuum damage mechanics based models 

(see review for example in [3-6]).  

All models analyzing the stress state between two cracks are commonly referred as 

“micromechanics models”. Most of the analytical stress distribution modeling has been 

performed for cross-ply laminates with cracks in the 90-layer.  

The shear-lag type of analysis is the simplest way to describe intralaminar cracking in 

cross-ply laminates. This group of models was used by many authors, for example in [7-

10], where a linear or parabolic shape of the crack face displacement or of the out-of-

plane shear stress is assumed. In [10] a bi-linear distribution of the shear stress in the 

undamaged layer was suggested as more coherent with findings from FEM analysis. 

General drawbacks of these models are that the equilibrium equations are not satisfied 

in any point but only in average and that the shear stress is not zero on crack surface. 

The “shear lag parameter” governing the shape of stress distributions is often used as a 

fitting parameter. 

Hashin [11] generalized his model [12] to the case when cracks are in both 0- and 90-

layers of a cross-ply laminate. Solution for an orthogonally cracked cross-ply laminate 

under tension was found constructing a simple admissible stress field in the context of 

the principle of minimum complementary energy. The chosen stress field satisfies 

equilibrium equations and all boundary and interface conditions in tractions. The 

assumed constant in-plane normal stress distribution over each layer thickness leads to 

linear and parabolic through-the-thickness distributions of out-of-plane shear and 

normal stresses, respectively. The principle of minimum complementary energy (which 

for approximate stress distributions is equivalent satisfying the displacement continuity 
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equations in average) is used to calculate the stress distributions. Expressions for 

damaged laminate E-modulus and Poisson’s ratio were derived. This model does not 

involve any fitting parameters and is simple to use.  

As any model based on the principle of minimum complementary energy it 

overestimates the stiffness reduction. The accuracy has been improved using more 

sophisticated shape functions for stresses [13,14].  

The most accurate local stress state comparable with a very fine FE solution and, 

therefore, also accurate stiffness prediction can be obtained using semi-analytical 

McCartney [15,16] and Schoeppner and Pagano [17] models.  

In the McCartney model [15,16] each layer in the laminate is divided in a large number 

of thin sub-layers and in each sub-layer the stress assumptions are as in Hashin’s 

variational model [12]. All displacement and stress continuity conditions at sub-layer 

interfaces are satisfied. The stress-strain relationships are also satisfied, except one, 

which is satisfied in an average sense. It was proven that satisfying in average is 

identical to asking for minimum of the Reissner energy functional in the used 

approximation of the stress-strain state. 

 The Schoeppner-Pagano model [17], which is also based on Reissners principle, 

considers a system of hollow concentric sub-cylinders with a radius approaching to 

infinity.  Each layer is divided in a number of coaxial cylinders. These two methods 

have to be considered as numerical or semi-analytical. They render local stress state 

with accuracy comparable with a very fine FE solution and, therefore, also accurate 

stiffness prediction. However, the calculation routines in these models are extremely 

complex which limits the application for more general cases than cracks in one layer 

only. 



 

7 
 

Cross-ply laminates are a good configuration for analysis of basic phenomena in 

intralaminar cracking but they are seldom used in practical applications. Laminates with 

a general lay-up containing cracks in several layers of different orientation are, 

therefore, a challenge for any constitutive model. Analytical solutions except a 

straightforward generalization for [S/90]s laminates with homogenized sublaminate S, 

see [7,18], are not available.  

In [19] the constitutive equations for a layer with cracks are presented. These 

expressions apart from lamina properties contain also so-called “in-situ damage 

effective functions -IDEF” which depend on crack density in the lamina and on 

the neighbouring layer constraint. In order to determine IDEF they introduced “an 

equivalent constraint model”, which assumes that the constraint of the lay-ups above 

and below the analyzed lamina can be described by two sublaminates with properties 

calculated using laminate theory (CLT). Thereby the actual laminate was replaced 

by a cross-ply. The stress state in the repeating unit of the cross-ply laminate and the 

IDEF’s were calculated using standard shear lag model with linear distribution of 

out-of-plane shear stresses. Then the constitutive relationships for damaged layers 

were used in the framework of the CLT to obtain the stiffness matrix of the damaged 

laminate. 

The same micromechanics model was used also by Kashtalyan et al [20] where in the 

“equivalent constraint model” the effective properties of the constraint layer were 

adjusted for damage when analyzing the local stresses in another layer. This leads to 

an iterative procedure when cracks are present in both 0- and 90-layer of the cross-ply 

laminate. It was shown that a) the results are quite different when the shear stress 

localization model is used; b) the interaction of cracks in two layers leads to 

considerable additional reduction of the laminate shear modulus.  It should be noted 
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that the methodology, which was developed and used for cross-ply laminates, could be 

rather easy generalized to more general lay-ups. Local delaminations at the tip of 

transverse cracks were included in the analysis by the same authors [21] were 

also a rather detailed analysis of the state of art on this subject is presented. 

Two tracks may be distinguished in this type of modelling in recent years: a) 

generalizing analytical models to lay-ups where the lay-up supporting the damaged 

layer is monoclinic, leading to coupling of the normal and shear loading problems [22-

25]; b) developing computational tools for calculating thermo-elastic properties of 

multidirectional laminates with cracks in several layers [ 26-30]. The iterative approach 

here is usually based on using effective constants of the damaged layers when cracks in 

another layer are explicitly analysed (generalized “equivalent constraint” model). 

Generally speaking, the continuum damage mechanics (CDM) approach [5] also may be 

used to describe the stiffness of laminates with intralaminar cracks in off-axis plies of 

any orientation. The damage in CDM model is represented by internal state variables 

(ISV) and the laminate constitutive equations are expressed in general forms containing 

ISV and a number of material constants  that must be for each laminate configuration 

determined experimentally measuring stiffness. Synergistic damage mechanics (SDM) 

version was published in [31] where micromechanics input in a form of calculated crack 

opening displacement (COD) is combined with the classical CDM. 

The stiffness degradation phenomenon is indeed related to the opening and sliding of 

crack surfaces. Due to the relative displacement of both crack faces the average stress 

between cracks is reduced and, hence, the contribution of the damaged ply in bearing 

the applied load is reduced.  

This relationship was used by Gudmundson et al. [32,33] considering laminates with 

general lay-up and using homogenization to derive expressions for stiffness and thermal 
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expansion coefficients of laminates with cracks in layers of  a 3-D laminate. Their 

expressions in an exact form correlate damaged laminate thermo-elastic properties with 

parameters characterizing crack behavior: the average COD and the crack face sliding 

displacement (CSD). These parameters should be found solving the local boundary 

value problem. Gudmundson and co-workers suggested neglecting the effect of 

neighboring layers on COD and CSD. They were assumed equal to the known solution 

for a periodic system of cracks in an infinite homogeneous transversely isotropic 

medium (90-layer). FEM analysis in [28] shows that this approximation is not accurate 

for composites with stiff layers surrounding the damaged 90-layer. 

A similar approach in the framework of the classical laminate theory (CLT) (called 

GLOB-LOC approach), which links the macro-constants of the damaged laminate with 

the geometry of the individual crack surface in deformed state, was developed in 

[28,29]. Exact analytical expressions for thermo-elastic constants of general symmetric 

laminates with cracks in layers were presented. In addition to laminate lay-up, layer 

properties and density of cracks in each layer they contain two parameters of the 

deformed crack surface: averaged relative opening (COD) and sliding displacements 

(CSD) normalized with respect to the far field stress in the layer. The largest advantage 

of this model is the transparency of derivations and the simplicity of application. 

In [28,29,18] FEM analysis was used to identify parameters affecting these quantities. It 

was found that at low crack density (number of cracks per mm measured transverse to 

the fiber direction in a layer) the average COD and CSD are very robust parameters 

dependent only on the cracked and the neighboring layer stiffness and thickness ratios. 

The conclusion was that increasing modulus and thickness of the constraint layer leads 

to significant reduction of the average normalized COD and CSD. Simple but rather 

accurate fitting functions (“power laws”) were presented. Hence, the GLOB-LOC 
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approach can be used instead of FEM. The effect of material properties on the 

normalized COD was studied also experimentally using optical microscopy of loaded 

damaged specimens in [2,34]. It was shown that the measured COD profiles and 

average values are affected by the constraining layer orientation and stiffness. 

Experimental determination of the average COD and CSD needs the measurement of 

the displacement for all points of the crack surfaces, which justifies the use of full-field 

measurement technique Electronic Speckle Pattern Interferometry (ESPI). ESPI is an 

optical technique that provides the displacement for every point on a surface and offers 

the possibility to measure both, the in-plane and out-of-plane displacement without 

surface preparation [35]. 

This technique was used in [36,37] to measure the COD for cracks in internal layers on 

the specimen’s edge. It was shown that the profile of the crack on the edge is very close 

to elliptical. 

At higher density of transverse cracks the local stress states of individual cracks start to 

overlap and the effect of each individual crack on stiffness is reduced. This overlapping 

of stress perturbations is called ”interaction” and cracks at high densities as 

”interactive”. Interactive cracks have smaller opening. One can visualize it by 

imagining two existing cracks and a new crack (a “cut” in 90-layer) created between 

them. The “cut” will reduce the stress between existing cracks and the displacement of 

the corresponding faces of these two cracks. 

The objectives of the presented doctoral thesis are the following: 

The main objective of chapter 2 is to investigate the effect of crack interaction on COD 

using FEM and to describe the identified dependence on crack density in a simple and 

accurate form by introducing an interaction function.  
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In chapter 3, model with non-uniform crack distribution is used to calculate the axial 

modulus of cross-ply laminates with cracks in internal and surface layers. 

In parametric analysis the COD and CSD are calculated using FEM, considering the 

smallest versus the average crack spacing ratio as non-uniformity parameter. 

A “double-periodic” approach is presented in this chapter to calculate the COD of a 

crack in a non-uniform case as the average of two solutions for periodic crack systems. 

The main objective of chapter 4 is to demonstrate the application of simple analytical 

models (shear lag, Hashin) to analyze the change of the whole set thermo-elastic 

properties of cross-ply and quasi-isotropic laminates with intralaminar cracks in layers. 

Predictions are performed using previously derived general expressions for stiffness of 

symmetric damaged laminates as dependent on crack density and crack face opening 

(COD) and sliding (CSD). 

The main objective of chapter 5 is to measure experimentally the crack opening 

displacement (COD) and the crack sliding displacement (CSD) providing laminate 

stiffness reduction models with valuable information for validation of used assumptions 

and for defining limits of their application. In particular, the displacement field on the 

edges of a [0/ +704/ -704]s glass fiber/epoxy laminate specimens with multiple 

intralaminar cracks is studied and the COD and CSD dependence on the applied 

mechanical load is measured. 

In chapter 6, the first objective is to measure experimentally the COD profile using the 

displacement field on the edge and on the surface of a [90/0]s and [903/0]s carbon 

fiber/epoxy laminates subjected to tension. The comparison between finite element 

method (FEM) and experimental results is the second objective of this chapter. 
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Chapter 2 
 
Engineering expressions for thermo-elastic constants of 
laminates with high density of transverse cracks 
 
 
 
2.1. Introduction 
 
Intralaminar cracks are caused by in-plane transverse and shear stresses in layers with 

current understanding that the role of transverse stress is much more important. The 

number of cracks increases during service life reducing laminate thermo-elastic 

properties. Many papers have been written on this subject, covering a broad range from 

“micromechanics” based to continuum damage mechanics based models (see review for 

example in [3-6]).  

All models analyzing the stress state between two cracks are commonly referred as 

“micromechanics models”. Most of the analytical stress distribution modeling has been 

performed for cross-ply laminates with cracks in the 90-layer.  

The shear-lag type of analysis is the simplest way to describe intralaminar cracking in 

cross-ply laminates. This group of models was used by many authors, for example in [7-

10], where a linear or parabolic shape of the crack face displacement or of the out-of-

plane shear stress is assumed. In [10] a bi-linear distribution of the shear stress in the 

undamaged layer was suggested as more coherent with findings from FEM analysis. 

General drawbacks of these models are that the equilibrium equations are not satisfied 

in any point but only in average and that the shear stress is not zero on crack surface. 

The “shear lag parameter” governing the shape of stress distributions is often used as a 

fitting parameter. 

The variational model by Hashin [11], is free of any fitting parameters, but it is based 

on an oversimplified assumption that the axial stress in the cracked 90-layer does not 
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depend on the thickness coordinate. As any model based on the principle of minimum 

complementary energy it overestimates the stiffness reduction. The accuracy has been 

improved using more sophisticated shape functions for stresses [13,14].  

In the McCartney model [15,16] each layer in the laminate is divided in a large number 

of thin sub-layers and in each sub-layer the stress assumptions are as in Hashin’s 

variational model [11]. All displacement and stress continuity conditions at sub-layer 

interfaces are satisfied. The stress-strain relationships are also satisfied, except one, 

which is satisfied in an average sense. It was proven that satisfying in average is 

identical to asking for minimum of the Reissner energy functional in the used 

approximation of the stress-strain state. The Schoeppner-Pagano model [17], which is 

also based on Reissners principle, considers a system of hollow concentric sub-

cylinders with a radius approaching to infinity.  Each layer is divided in a number of 

coaxial cylinders. These two methods have to be considered as numerical or semi-

analytical. They render local stress state with accuracy comparable with a very fine FE 

solution and, therefore, also accurate stiffness prediction. However, the calculation 

routines in these models are extremely complex which limits the application for more 

general cases than cracks in one layer only.  

Cross-ply laminates are a good configuration for analysis of basic phenomena in 

intralaminar cracking but they are seldom used in practical applications. Laminates with 

a general lay-up containing cracks in several layers of different orientation are, 

therefore, a challenge for any constitutive model. Analytical solutions except a 

straightforward generalization for [S/90]s laminates with homogenized sublaminate S, 

see [7,18], are not available. In [19] “equivalent constraint” model was introduced, 

which assumes that the constraint of the lay-ups above and below the analysed lamina is 
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the same as from two homogenized orthotropic sublaminates and the actual laminate 

was replaced by a cross-ply. 

Two tracks may be distinguished in this type of modelling in recent years: a) 

generalizing analytical models to lay-ups where the lay-up supporting the damaged 

layer is monoclinic, leading to coupling of the normal and shear loading problems [22-

26]; b) developing computational tools for calculating thermo-elastic properties of 

multidirectional laminates with cracks in several layers [26-30]. The iterative approach 

here is usually based on using effective constants of the damaged layers when cracks in 

another layer are explicitly analysed (generalized “equivalent constraint” model). 

Generally speaking, the continuum damage mechanics (CDM) approach [5] also may be 

used to describe the stiffness of laminates with intralaminar cracks in off-axis plies of 

any orientation. The damage in CDM model is represented by internal state variables 

(ISV) and the laminate constitutive equations are expressed in general forms containing 

ISV and a number of material constants  that must be for each laminate configuration 

determined experimentally measuring stiffness. Synergistic damage mechanics (SDM) 

version was published in [31] where micromechanics input in a form of calculated crack 

opening displacement (COD) is combined with the classical CDM. 

The stiffness degradation phenomenon is indeed related to the opening and sliding of 

crack surfaces. Due to the relative displacement of both crack faces the average stress 

between cracks is reduced and, hence, the contribution of the damaged ply in bearing 

the applied load is reduced.  

This relationship was used by Gudmundson et al. [32,33] considering laminates with 

general lay-up and using homogenization to derive expressions for stiffness and thermal 

expansion coefficients of laminates with cracks in layers of  a 3-D laminate. Their 

expressions in an exact form correlate damaged laminate thermo-elastic properties with 
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parameters characterizing crack behavior: the average COD and the crack face sliding 

displacement (CSD). These parameters should be found solving the local boundary 

value problem. Gudmundson and co-workers suggested neglecting the effect of 

neighboring layers on COD and CSD. They were assumed equal to the known solution 

for a periodic system of cracks in an infinite homogeneous transversely isotropic 

medium (90-layer). FEM analysis in [28] shows that this approximation is not accurate 

for composites with stiff layers surrounding the damaged 90-layer. 

A similar approach in the framework of the classical laminate theory (CLT)  (called 

GLOB-LOC approach), which links the macro-constants of the damaged laminate with 

the geometry of the individual crack surface in deformed state, was developed in 

[28,29]. Exact analytical expressions for thermo-elastic constants of general symmetric 

laminates with cracks in layers were presented. In addition to laminate lay-up, layer 

properties and density of cracks in each layer they contain two parameters of the 

deformed crack surface: averaged relative opening (COD) and sliding displacements 

(CSD) normalized with respect to the far field stress in the layer. The largest advantage 

of this model is the transparency of derivations and the simplicity of application. 

In [18,28,29] FEM analysis was used to identify parameters affecting these quantities. It 

was found that at low crack density (number of cracks per mm measured transverse to 

the fiber direction in a layer) the average COD and CSD are very robust parameters 

dependent only on the cracked and the neighboring layer stiffness and thickness ratios. 

The conclusion was that increasing modulus and thickness of the constraint layer leads 

to significant reduction of the average normalized COD and CSD. Simple but rather 

accurate fitting functions (“power laws”) were presented. Hence, the GLOB-LOC 

approach can be used instead of FEM. The COD and CSD have been measured also 

experimentally [34,37] and trends as well as values are confirmed.  
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At higher density of transverse cracks the local stress states of individual cracks start to 

overlap and the effect of each individual crack on stiffness is reduced. This overlapping 

of stress perturbations is called ”interaction” and cracks at high densities as 

”interactive”. Interactive cracks have smaller opening. One can visualize it by 

imagining two existing cracks and a new crack (a “cut” in 90-layer) created between 

them. The “cut” will reduce the stress between existing cracks and the displacement of 

the corresponding faces of these two cracks. 

We suggest accounting for interaction in a very simple way: introducing crack density 

dependent interaction function which multiplied by the COD and CSD of non-

interactive cracks would give the opening and sliding at any crack density.  Previously 

the crack interaction for COD was studied using FEM in [38], considering cracks in 90-

layer of [0n/90m]s laminate. The FEM data were fitted with logarithmic function with 

limited range of applicability in terms of laminate lay-up and crack density. 

The objectives of the presented chapter are 

a) To use FEM to analyze COD’s in cross-ply laminates at high crack density in 

surface layers (“surface cracks”) and inside layers (“inside cracks”) 

b)  to present unified interaction functions for COD of surface and internal cracks 

to be used together with noninteractive crack COD 

c) to adapt the methodology for more general laminate and to demonstrate the 

accuracy  predicting stiffness of damaged quasi-isotropic laminates 

Features of the crack face sliding, CSD in the interactive region as well as the 

interaction of cracks belonging to different layers in the laminate are not considered in 

this chapter. The GLOB-LOC model accounts for latter phenomena via changed COD 

and CSD. The determination of the COD and CSD change in that case is a very 

complex topic and generally speaking the solution has to be found in an iterative way. 
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However, see [28,29] for details, the level of interaction depends on the particular case 

and on the considered parameter. For example in cross-ply laminate with cracks in 0- 

and 90-layers, the COD of 90-cracks is almost not affected by cracks in the 0-layer. In 

contrary, CSD of the 90-crack is significantly higher in presence of cracks in the 0-

layer. 

2.2. Material model of damaged symmetric laminates with 
intralaminar cracks  
2.2.1 Model formulation 
 
The upper part of symmetric N- layer laminate is shown in Fig. 2.1. The k-th layer of 

the laminate is characterized by thickness kt  , fiber orientation angle  with respect to the 

global x-axis kθ  and by stiffness in the local axes [ ]Q (defined by thermo-elastic 

constants 21121221 ,,,,, αανGEE ). The total thickness of the laminate, ∑
=

=
N

k
kth

1
. The 

crack density in a layer is  ( )kkk l θρ sin21=  where kkl θsin2  is the average distance 

between cracks measured transverse to the crack plane. Dimensionless crack density 

ρ kn is introduced as 

kkkn t ρρ = .            (2.1) 

It is assumed that the damaged laminate is still symmetric; the crack density in 

corresponding symmetrically placed layers is the same. The stiffness matrix of the 

damaged laminate is [ ]LAMQ  and the stiffness matrix of the undamaged laminate is 

[ ]LAMQ 0 .  The compliance matrix of the undamaged laminate is [ ] [ ]( ) 1

00

−
= LAMLAM QS , 

{ }α LAM
0 is the thermal expansion coefficient vector. Constants of the undamaged 

laminate are calculated using CLT. 
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Figure 2.1. RVE of the damaged laminate with intralaminar cracks in layers 

 

The expressions for thermo-elastic constants of the damaged laminate presented below 

are exact. 
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They were derived in [28,29] expressing the integral effect of cracks in terms of crack 

density and normalized average crack face opening (COD) and sliding displacements 

(CSD), anan uu 12 ,  which may be different in different layers. In (2.3) [ ]kK  is a 3X3 

matrix-function dependent on ply properties. The [ ]kK matrix for a ply in a laminate is 

defined as  

[ ] [ ] [ ] [ ] [ ] [ ]kkk
T
kk

2
k QTUTQ

E
1K =        (2.4) 

The involved matrices [ ]kT and [ ]kQ  are defined according to CLT, upper index T 

denotes transposed matrix and bar over  stiffness matrix indicates that it is written in 

global coordinates. For a layer with fiber orientation angle kθ  , km θcos=  and 

kn θsin=  
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The influence of each crack is represented in (2.4) by matrix [ ]U k  which contains the 

normalized average COD and normalized average CSD of the crack surfaces in k-th 

layer 
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Simple and reliable determination of anan uu 12 ,  in high crack density region is the main 

subject in this chapter. In (2.3) { }kα  is the vector of thermal expansion coefficients of a 

damaged layer in global coordinates. 

2.2.2 Thermo-elastic constants of balanced laminates with cracks in 
90-layers 
 
For balanced and symmetric laminates with cracks in 90-layers only, analytical 

expressions for [ ]kK  can be obtained performing the multiplication in (2.4). Using the 

result in (2.2) and (2.3) the following expressions for the damaged laminate thermo-

elastic constants were obtained 
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Index 90 is used for 90-layer thickness, crack density and COD. The quantities with 

lower index x,y are laminate constants, quantities with additional upper index 0 are 

undamaged laminate constants. If the laminate contains several 90-layers, the term 

90
2

90
90 ann u

h
tρ   has to be replaced by∑

k

k
an

k
k

n u
h

t )(90
2

90
90ρ . It is noteworthy that 

a) neglecting Poisson’s effects leads to 043 == cc . Hence, in this approximation yE  

and yα  do not change because of damage in 90-ply. 

b) the shear modulus xyG  is not related to COD. It depends on the sliding displacement 

only. 

The class of laminates covered by expressions (2.7)-(2.12) is broader than just cross ply 

laminates or laminates with 90-layers. For example, any quasi-isotropic laminate with 

an arbitrary cracked layer can be rotated to have the damaged layer as a 90-layer. The 

only limitation for applying (2.7)-(2.12) is that the laminate after rotation is balanced 

(zero coupling terms in [ ]LAMS 0  ). 

Application of (2.7)-(2.12) requires values of anan uu 12 , . Simple and rather accurate 

expressions are presented in section 3 where FEM parametric analysis is used. 
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2.3. Numerical parametric analysis of COD 
2.3.1 Definitions, interaction mechanisms and FEM model 
 
Since the theory is developed to assess material thermo-elastic properties degradation 

(which is represented by the middle part of an infinite plate and not by a finite 

specimen) calculations have to exclude possible edge effects. It is assumed that all 

cracks in the same layer are equal and equidistant. The average CSD and COD are 

defined as  

∫ ∆=
−

2

2

3311 )(
2
1
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t

t
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k
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t
u    ∫ ∆=
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u   (2.13) 

Here iu∆ is the displacement gap between points at both crack faces. Index 1 denotes 

the displacement in fiber direction (sliding) and index 2 in the transverse direction 

(opening). 

In a linear model the average displacements k
au2  and k

au1   are proportional to the applied 

stress and to the ply thickness (they are 2 times larger in [ ]S22 90/0  than in [ ]S90/0  

laminate). Hence, a load and size independent parameters may be obtained normalizing 

(2.13) with respect to the far field (CLT) shear stress k0
12σ  and transverse stress k0

2σ  in 

the layer (resulting from the applied macro-load { }LAM
0σ and the temperature difference 

T∆ ) and with respect to the thickness of the cracked layer kt  

k
k

k
a

k
an t

Guu 0
12

12
11 σ

=    k
k

k
a

k
an t

Euu 0
2

2
22 σ

=       (2.14) 

Elastic constants 12G  and 2E  are introduced in (2.14) to have dimensionless descriptors 

k
anu1  and  k

anu2  representing the crack face displacements. The influence of each crack 

on thermo-elastic laminate constants is represented by k
au2  and k

au1 , see (2.2)-(2.6) or 

(2.7)-(2.12). As demonstrated in [39], they can be deduced from simple stress models 
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like shear lag [7] or variational models [11], however the accuracy of these models is 

rather low. Instead, in this chapter we present expressions based on FEM parametric 

analysis for a wide range of material properties and crack density. Analysis in this 

chapter is limited to crack opening displacements leaving sliding for a separate studies. 

The normalized average COD and CSD in the low crack density region are independent 

on crack density. Upper index 0 is used to indicate values in this region ( k
anu 0

1 , k
anu 0

2 ). 

Fitting expressions for k
anu 0

1 , k
anu 0

2  are given in [28,29].  

When the distance between cracks decreases the stress perturbation regions overlap and 

the normalized average COD and CSD start to decrease. This phenomenon was studied 

in [32], however, considering only COD for “inside cracks” (defined in Fig. 2.2a). Here 

we a) extend the analysis to damaged surface layers, see Fig. 2.2b) and b) present more 

reliable description of the interaction in inside layers. 

As in [38] in this chapter we also express k
anu2  through COD of non-interactive cracks, 

k
anu 0

2  by introducing “interaction function” dependent on normalized crack density in the 

layer 

( )u k
anknk

k
anu 0

22 ρλ=          (2.15) 

The interaction function λ depends also on elastic and geometrical parameters of the 

cracked and surrounding layers. For non-interactive cracks 1=kλ . 

In [38] a rather inaccurate logarithmic “master” curve was used with a good fit only for 

medium crack densities. The role of elastic constants and geometrical parameters on 

crack interaction was not really understood and therefore the “master curve” did not 

include these parameters. The outcome was a simple interaction function on the expense 

of reduced accuracy. 
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In the presented chapter we analyzed the effect of the dimensionless crack density nρ on 

anu2  using FEM for [ ]Sn 890/0  and [ ]Sn0/908 laminates (n=2,8,24) shown in Fig. 2.2. 

To have large variation in elastic constants both CF/EP and GF/EP composites with 

constants given in Table 2.1 were analyzed. Since all expressions contain thickness 

ratios, the thickness of a single ply is irrelevant as long as dimensionless crack density 

is used. 

In calculations the commercial code ABAQUS was used. In order to model the 

repeating volume element (see Fig. 2.2), a 3-D model was created. All plies are 

considered to be transversely isotropic, and hence the thickness direction related 

properties are taken as 32 EE = ; 1312 GG = and 1312 νν = . 

Table 2.1. Material properties used in simulations, t is the ply thickness 

Material E1(GPa) E2(GPa) ν 12 ν 23 G12 (GPa) G23 (GPa) 
t 

(mm) 

GF/EP 45 15 0.3 0.4 5 5.36 0.5 

CF/EP 150 10 0.3 0.4 5 3.57 0.5 

 

In order to mesh volumes, 3D continuum elements (C3D8) 8-node linear brick were 

used. The same fine mesh with 86400 elements was used in each FE model. The (X, Z) 

plane consisted of 21600 elements, with refined mesh near the crack surfaces. The 

number of elements in y-direction was 4 which as described below is more than 

sufficient for the used edge conditions. 
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Figure 2.2. Models used for determination of average crack face opening displacement 
 

Constant displacement corresponding to 1% average strain was applied to the repeating 

unit in x-direction. On the front edge (y=0) and the far-away edge (y=w) coupling 

conditions were applied for normal displacements ( yu = unknown constant). In this way 

edge effects are eliminated and the solution does not depend on y-coordinate. It 

corresponds to solution for an infinite structure in the width direction. Obviously these 

conditions correspond to generalized plane strain case and the size of the model in the 

y-direction could be reduced or 2D generalized plane strain elements used instead. Our 

choice was based on ambition to use the same mesh in shear loading studies. The 

displacement in x-direction for the nodes at the crack surface was used to calculate the 

average value of the COD. Varying length 902l of the repeating unit, the elastic modulus 

change and the average strain of 1% corresponds to different values of the applied load 

(laminate stress). Hence, performing normalization according to Equation (2.14) we 

have to use the corresponding far field stress 0
2σ  and 0

12σ  in the 90° layer. 

The COD affects the axial stress distribution between neighbouring ply cracks. For high 

ply crack densities, compressive axial stresses can arise that might be associated with 

ply crack saturation. 
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Fig. 2.3 shows the normalized crack face opening displacement anu2  for [ ]Sn0/908  and 

[ ]Sn 890/0 laminates made of GF/EP and CF/EP materials as a function of normalized 

crack density nρ  in the 90-layer.  

 
Figure 2.3. The FEM calculated anu2 dependence on crack density for GF/EP and 

CF/EP laminates with varying layer thickness ratio 
 

A large variation in anu2 values dependent on the composite elastic properties and 

laminate lay-up is shown in Fig. 2.3. For a fixed value of the normalized crack density, 

anu2  is bigger for GF/EP than for CF/EP laminate because GF/EP 0-layer applies less 

constraint to the COD than the CF/EP 0-layer. The COD decreases with increasing 

crack density. The effect of increasing crack density is analyzed first normalizing the 

results in Fig. 2.3 with respect to the COD’s of corresponding noninteractive cracks, 

0
2anu , obtained by FEM. According to (2.15) the normalized values define the 

interaction function. As a result of many trials to fit these data we suggest the following 

form of the ‘interaction function” 









=

n
n ρ

αρλ tanh)(          (2.16) 
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The form (2.16) is similar to the corresponding term in shear lag model’s solution for 

stiffness but the definition of α  (see (2.17), (2.18)) is different.  

2.3.2 Internal cracks 
 
For internal cracks the constant α  is defined by  
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In (2.17) and also in (2.18) sE  is the elastic modulus of the support layer in the 

transverse direction of the 90-layer. Obviously, 1EEs =  for cross-ply laminates. C  is a 

material and ply geometry independent fitting constant which has different value for 

“surface” and  for “inside” cracks. To find C  the FEM values of the interaction function 

)( nρλ  for each lay-up and material separately were plotted versus nρ . Then the value 

of the parameter α  in (2.16) was determined using free software REGRESSI. In this 

way α  dependence on geometrical and elastic parameters was obtained. To calculate 

the constant C  in (2.17), we plotted all 2α  data points versus the corresponding 
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2  value. According to (2.17) the relationship has to be 

linear. Indeed it was rather linear and fitting it with linear trend line gave the value in 

(2.17).  

Using this value of C  the inside crack interaction function may be calculated for any 

lay-up and material. For example in Fig. 2.4 values from direct FE calculations for 

internal cracks are compared with values according to expression (2.16) for [0/90]s 

laminates. The accuracy is good. 
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Figure 2.4. Interaction function according to FEM and equation (2.16) for inside cracks 

in GF/EP and CF/EP cross-ply laminates 
 

2.3.3 Surface cracks  
 
For surface cracks in cross-ply laminates  
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The expression (2.18) is essentially the same as (2.17). The difference is because of the 

slightly different notation for ply thicknesses in Fig. 2.2a and Fig. 2.2b. In Fig. 2.5 the 

values of the interaction function from direct FE calculations for cracks in surface layer 

of GF/EP and CF/EP [90/0]s cross-ply laminate are compared with values according to 

the fitting expression (2.16), (2.18). Similar calculations for different layer thickness 

ratios showed as good agreement as in Fig. 2.5 except for relatively very thick 90-layer 

case with rather limited practical significance, where the crack interaction is 

overestimated by (2.16), (2.18) leading to too low COD values. As a consequence the 

elastic modulus reduction will be slightly underestimated. 
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Figure 2.5. Interaction function according to FEM and equation (2.16) for surface 

cracks in GF/EP and CF/EP cross-ply laminates 
 

2.4. Stiffness of cross-ply laminates 
  
Elastic constants of the damaged laminates were calculated using (2.7) and (2.8). For 

cross-ply laminate with internal cracks the laminate thickness according to Fig. 2.2a is 

Stth 290 += . For laminate with surface crack the same laminate thickness according to 

Fig. 2.2b) is stth += 902  . However, in the latter case we have two cracked surface 

layers with equal effect on stiffness. Hence, we have to consider two cracked layers in 

(2.7) to (2.12). We can achieve the same result dividing the laminate thickness in (2.7) 

to (2.12) by 2 and considering cracks in one layer. Calculations were performed with a 

half of the laminate thickness  290
stth +=  and cracks in one surface layer.  The 

COD’s of non-interactive cracks in (2.15) is taken from FEM considering the values as 

exact. Therefore the possible error in elastic constants is due to inaccuracy of (2.16) for 

)( nρλ . The noninteractive COD’s are given in Table 2.2. 

Table 2.2. Values of anu2  for non-interactive cracks (FEM) 
Laminate CF/EP GF/EP 

[02/908]s 0.6243 0.8880 
[08/908]s 0.5720 0.6941 
[024/908]s 0.5653 0.6593 
[908/02]s 1.3321 1.7654 
[908/08]s 1.3602 1.5915 
[908/024]s 1.4010 1.6174 
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For validation the elastic constants of the damaged cross-ply laminates were calculated 

also directly from FEM using the same mesh as for interactive COD determination: a) 

the total force and the applied axial strain were used to determine the axial modulus; b) 

the relative displacement of the coupled edge surfaces was used together with the 

applied axial strain to find the Poisson’s ratio. 

2.4.1 Stiffness of cross-ply laminates with damage in inside layers 
 
The predicted axial modulus and Poisson’s ratio of cross-ply laminates with cracks in 

inside layer is shown for GF/EP composite in Fig. 2.6 and for CF/EP in Fig. 2.7. The 

accuracy of predictions is good. Ply discount model predictions are also shown as 

dotted lines. It has to be reminded that the normalized crack density larger than 1 is 

extremely high and data in this region are shown to demonstrate the asymptotic 

approaching to the ply-discount value.  

 
Figure 2.6. Elastic modulus (a) and Poisson’s ratio (b) degradation in [ ]Sn 890/0 GF/EP 

laminate. FEM data are shown with symbols, predictions according to (2.16) by solid 
curves, dotted lines represent ply-discount model 
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Figure 2.7. Elastic modulus (a) and Poisson’s ratio (b) degradation in [ ]Sn 890/0  CF/EP 

laminate. FEM data are shown with symbols, predictions according to (2.16) by solid 
curves, dotted lines represent ply-discount model 

 

2.4.2 Stiffness of cross-ply laminates with damage in surface layers  
 
Elastic modulus and Poisson’s ratio reduction with increasing crack density in 

[ ]Sn0/908  GF/EP cross-ply laminates is presented in Fig. 2.8. The elastic modulus 

reduction calculated using (2.7) with non-interactive COD’s in Table 2.2 and the 

interaction function (2.16) is slightly underestimated for [908/08]s laminates at very high 

crack density. The agreement is very good for [908/024]s laminate. The same observation 

holds for Poisson’s ratio reduction. 

 
Figure 2.8 . Elastic modulus (a) and Poisson’s ratio (b) degradation in 

[ ]Sn0/908 GF/EP laminate due to cracking in 90-layer. FEM data are shown with 
symbols, predictions according to (2.16) by solid curves, dotted lines represent ply-

discount model 
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In carbon fiber/epoxy laminates, see Fig. 2.9, the elastic modulus reduction due to 

cracks in 90-layer is much smaller, especially for relatively thin 90-layers. The accuracy 

using the interaction function is good also for Poisson’s ratio prediction (except very 

high crack density). 

 

Figure 2.9. Elastic modulus (a) and Poisson’s ratio (b) degradation in [ ]Sn0/908 CF/EP 
laminate due to transverse cracking in 90-layer. FEM data are shown with symbols, 
predictions according to (2.16) by solid curves, dotted lines represent ply-discount 

model 
 

2.5. Quasi-isotropic laminates 
2.5.1 Generalization of the methodology 
 
In section 3 we used FEM to analyze crack interaction and summarized the results in a 

simple but accurate interaction function. This analytical function together with 

expressions (2.7)-(2.12) can be used to predict stiffness of damaged laminates without 

any need to involve FEM. However, the value of the performed work finding COD 

interaction function would be rather limited if it can be applied for cross-ply laminates 

only. In this section we suggest to use the same interaction function )( nρλ  also for more 

complex lay-ups. The necessary generalization and input parameters will be described. 

For quasi-isotropic laminates the predictions will be compared with numerical values of 

crack interaction and stiffness obtained directly from FE analysis. 
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 In these calculations the commercial code ANSYS 12.1 was used. The 3-D 8-node 

structural solid element SOLID185 with three degrees of freedom for each node was 

used and the number of elements was 86400. Displacement coupling was applied. It 

means that points on the surface at y=0 has the same displacement in x- and z-directions 

as the corresponding points on the surface at y=w. In the same way, the points on the 

surface at x=0 and 902lx =  have the same displacement in y-direction. The coupling 

conditions were applied also for normal displacement (Uy=unknown constant) on all 

nodes at the front edge y=0 and the far-away edge y=w respectively.  

CF/EP and GF/EP quasi-isotropic laminates with lay-up [90/0/45/-45]s and [90/45/-

45/0]s  containing cracks in surface layers as well as [45/-45/0/90]s and [0/45/-45/90]s 

laminates with cracks in the inside 90-layer were considered. 

Applying (2.17) and (2.18) to “non-cross-ply” laminates further details have to be given 

with respect to the meaning of sE and st . FEM results show that, when the neighboring 

layer is much stiffer than the 90-layer (for example 0-layer), the major part of the 

support is supplied by this layer and it is not really important what the following layers 

are. In contrary, when the layer closest to the 90-layer is less stiff (for example +45 or -

45 layers), this layer alone can not govern crack interaction and the presence of 

following stiff layer is important (for example, the 0-layer in [0/45/-45/90]s laminate 

affects interaction of cracks in 90-layer). When this is the case, all neighboring layers 

have to be included in sE  (for example, considering [0/45/-45]s as sublaminate). Based 

on these observations the suggestion for sE and st  is as follows 





=
not if   

neighborclosest   theislayer -0 if  1
subl
x

s E
E

E       (2.19) 
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For surface cracks 
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For inside cracks 
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
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=
°
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subls t
t

t        (2.21) 

2.5.2 Interaction of inside cracks 
 
The fitting function (2.16) with (2.17) was adapted for [0/-45/45/90]s laminate as 

described above. Since the 0° layer is not the closest layer, sE is calculated using LAP 

software for [0/45/-45]s sublaminate and st  is ½ of its thickness. The obtained values 

(using data in Table 2.1) are: 62.622 GPa for CF/EP and 25.669 GPa for GF/EP. For 

[45/-45/0/90]s laminate where the 0° layer is the closest layer, 1EEs = and st is the 

thickness of the 0-layer. As shown in Fig. 2.10 the interaction function adapted from 

cross-ply case gives very good approximation of the crack interaction for CF/EP 

laminates. The agreement for GF/EP laminates is equally good. 

 
Figure 2.10. Interaction function according to FEM and equation (2.16), (2.17) for 

quasi-isotropic CF/EP laminates 
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2.5.3 Interaction of surface cracks 
  
The fitting function (2.16) with (2.18) was adapted for [90/-45/45/0]s laminate as 

described above. Since the 0° layer is not the closest layer, sE is calculated using LAP 

for [0/45/-45]s sublaminate and 2
st  is ½ of its thickness. The obtained values are the 

same as for the inside crack case. For [90/0/45/-45]s laminate where the 0° layer is the 

closest layer, 1EEs = and 2
st is the thickness of the 0-layer. The values of interaction 

function are in a very good agreement with numerical values calculated directly from 

FEM, see Fig. 2.11 for GF/EP laminates. 

 
Figure 2.11. Interaction function according to FEM and equations (2.16),(2.18)  for 

GF/EP laminates 
 

2.5.4 Stiffness of damaged quasi-isotropic laminates 
2.5.4.1 Quasi-isotropic laminates with cracks in inside layers 
 
Predicted axial modulus and Poisson’s ratio of quasi-isotropic laminates with cracks in 

inside layers is shown for CF/EP composite in Fig. 2.12 and for GF/EP in Fig. 2.13. Ply 

discount model predictions are also shown as dotted lines. The elastic modulus 

reduction is calculated using (2.7) and the Poisson’s ratio is calculated using (2.8). The 

non-interactive COD’s are from Table 2.2 and the interaction function (2.16) with 
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suggestions (2.19) and (2.21) is used. The accuracy of predictions is very high for both 

materials and for both cases of the closest support layer. 

 
Figure 2.12. Elastic modulus (a) and Poisson’s ratio (b) degradation in CF/EP quasi-

isotropic laminate due to transverse cracking in 90-layer 
 

 
Figure 2.13. Elastic modulus (a) and Poisson’s ratio (b) degradation in GF/EP quasi-

isotropic laminate due to transverse cracking in 90-layer 
 

2.5.4.2 Quasi-isotropic laminates with cracks in surface layers 
 
Elastic modulus and Poisson’s ratio reduction of quasi-isotropic laminates with cracks 

in surface layers is shown for GF/EP composite in Fig. 2.14 and for CF/EP in Fig. 2.15. 

For [ ]S45/45/0/90 −  laminate the calculated elastic modulus reduction is slightly 

overestimated, but the accuracy is good. For both lay-ups and materials the elastic 

properties predictions are slightly conservative, but the accuracy is good.  
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Figure 2.14. Elastic modulus (a) and Poisson’s ratio (b) degradation in GF/EP quasi-

isotropic laminate due to transverse cracking in 90-layer 
 

 
Figure 2.15. Elastic modulus (a) and Poisson’s ratio (b) degradation in CF/EP quasi-

isotropic laminate due to transverse cracking in 90-layer 
 

2.6. Conclusions   
 
Exact analytical expressions for thermo-elastic constants of symmetric and balanced 

laminates with intralaminar cracks in 90-layers are presented as a special case of the 

GLOB-LOC model developed in [28,29]. They can be used if simple and accurate 

expressions for normalized crack opening (COD) and sliding (CSD) displacements are 

available. At high crack density where cracks interact these parameters depend on 

distance between cracks. 



 

40 
 

The COD of an interactive crack is presented as a product of the COD of non-

interactive crack and an interaction function which value is equal or smaller than one. In 

this chapter the tanh() form of the interaction function for COD is introduced and 

parameters determined using data generated by FEM for large variety of geometrical 

and material parameters considering cracks in surface as well as inside layers. 

Comparison with direct FEM calculations show that the interaction function gives a 

very good axial modulus and Poisson’s ratio prediction for all possible crack densities 

and cross-ply laminates. 

The interaction function derived for cross-ply laminates is adapted for more complex 

lay-ups and its accuracy is demonstrated for quasi-isotropic laminates. 
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Chapter 3 
 

Applicability of solutions for periodic intralaminar 
crack distributions to non-uniformly damaged 
laminates 
 
 
 
3.1. Introduction 
 
Intralaminar cracking in laminates is the most typical mode of damage in laminates. 

Initiation, evolution and effect of these cracks on laminate stiffness has been discussed 

in many papers, see for example review papers [3,6]. Intralaminar cracks (called also 

matrix cracks, transverse cracks, inclined cracks) are orthogonal to the laminate 

midplane, they run parallel to fibers in the layer, usually cover the whole thickness and 

width of the layer in the specimen.  

In the presence of cracks the average stress in the damaged layer is lower than in the 

same layer in undamaged laminate. The average stress between two cracks depends on 

the distance between them (normalized spacing). Usually the extent of cracking 

(number of cracks and distance between them) is characterized in an average sense by 

average crack spacing and crack density (cracks/mm). Most of the existing stiffness 

models, for example, [5,11,22,28] use this assumption. It is convenient for use and is 

expected to give sufficient accuracy. 

However, the crack distribution in the layer may be highly non-uniform as 

schematically shown in Fig. 3.1. This is more pronounced in the beginning of the 

cracking process when the average crack density is relatively low.  At high crack 

density close to saturation the cracks are more equidistant. The reason is the random 

distribution of transverse failure properties along the transverse direction of the layer. 

At low crack density the stress distribution between two existing cracks has a large 
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plateau region and any position there is a site of possible failure. At high crack density 

there is a distinct maximum in the stress distribution and a new crack most likely will be 

created in the middle between existing cracks. 

The discussion in this chapter is focused on the possible inaccuracy introduced in 

laminate stiffness prediction by using assumption of uniform spacing between cracks in 

a layer. Numerical results presented here are for two cases: a) when the system of cracks 

is ”non-interactive” in average (low crack density) but some cracks are close to each 

other and interact; b) the crack density is high and cracks interact “in average”. 

There are only a few studies where the effect of non-uniformity is addressed, see for 

example [25,40,41]. In [40] hypothesis was introduced that for a non-uniformly cracked 

laminate, the deformation field in the “element” between two neighbouring ply cracks 

separated by a distance kl  is identical to that in a uniformly cracked laminate where the 

crack spacing is kl . Then, for example, the axial strain of the whole Representative 

Volume Element (RVE) can be calculated by the “rule of mixtures” of average strains 

of “elements” leading to simple expressions for RVE axial modulus. The high accuracy 

of this approach was demonstrated in [40] comparing results with another high accuracy 

semi-analytical methodology applied to the RVE. This assumption is reexamined in our 

chapter analyzing crack opening displacements (COD) of both crack faces and showing 

that the average stress in the “element” on one side, where the distance to the next crack 

is smaller, is overestimated by this assumption whereas on the other side it is 

underestimated. In [25,41] the non-uniform damage evolution is analyzed in a 

probabilistic way not discussing the effect of non-uniform distribution on stiffness. 

The reduced average transverse stress and in-plane shear stress in the damaged layer are 

responsible for laminate stiffness changes. The average stress change between two 

cracks is proportional to the COD and sliding displacements (CSD) normalized with far 
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field stress [18,42]. The far-field stress at the given load is calculated using laminate 

theory (CLT). Therefore the damaged laminate stiffness can be expressed also in terms 

of density of cracks and two parameters: average COD a CSD as done in the GLOB-

LOC model [28,29]. These two rather robust parameters depend on the normalized 

distance to neighboring cracks. Therefore for non-uniform crack distribution they are 

different for each individual crack. The values of COD and CSD in the commonly 

assumed uniform crack distribution case correspond to average spacing between cracks 

and are different than the calculated average over COD’s and CSD’s of all individual 

cracks. 

 
Figure 3.1. Non-uniform distribution of M cracks in damaged layer shown in its local 

coordinate system. 
 

In this chapter we first will generalize the previously developed expressions for stiffness 

reduction in symmetric laminates (GLOB-LOC model [28]) for non-uniform spacing 

case. Then parametric analysis of the effect of geometrical non-uniformity in terms of 

COD and the laminate axial modulus will be performed for particular cases of 

[ ]snm 0/90  and [ ]smn 90/0 cross-ply laminates with cracks in 90-layers. Cases when 

sliding displacement CSD affects the stiffness are included in the stiffness expressions 

in Section 3.2.2 but they are not numerically analyzed in this chapter. Extreme layer 

thickness ratios and different material anisotropy levels comparing carbon fiber (CF) 

and glass fiber (GF) composites will be discussed. To simplify stiffness calculations for 

an arbitrary non-uniform distribution, routine allowing determination of COD’s for any 
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crack as a sum of solutions for two periodic systems of cracks, will be formulated and 

its accuracy discussed (one solution is for periodic system with spacing as on the “+” 

side of the crack and another one for a periodic system with spacing as on the “-“ side of 

the crack, see Fig. 3.1). 

3.2. Material model of damaged symmetric laminates with 
intralaminar cracks  
3.2.1 Distances between cracks 
 
We consider RVE of a layer with M cracks as shown in Fig. 3.1. The RVE length is L , 

the average distance between cracks (spacing) is avl , the crack density is ρ  

∑=
−

=

1

0

M

m
mlL   

M
Llav =  

avl
1

=ρ     (3.1) 

Stress state between two cracks in a layer, see Fig. 3.1 where the cracked layer is shown 

in its local coordinates, and also the opening and sliding displacements of crack faces 

depend on the normalized distance between cracks. Normalization is with respect to the 

layer thickness t  

t
l

l m
mn = ,  m=0,1,..., 1−M ,  

t
l

l av
avn =    (3.2) 

Index k , used in following sections to identify k-th layer in the laminate, is omitted 

here for simplicity. Crack with index m  has two neighbors located at different distances 

1−ml  and ml from this crack. Using notation anan uu 12 ,  for the average normalized COD 

and CSD defined by (A2.3) – (A2.5), we can write for the m -th crack 

( )( )mnnm
m
an

m
an lluu ,122 −=    ( )( )mnnm

m
an

m
an lluu ,111 −=     (3.3)  

If 1−> mm ll  the displacements on the “-” side will be larger than on the “+” side.  

If the part of the layer shown in Fig. 3.1 is smaller than the RVE, the methodology of 

this chapter can still be applied but the unknown displacements of the outmost to the left 

(m=1) and the outmost to the right (m=M) positioned cracks are affecting the calculated 
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homogenized stiffness. The uncertainty is because COD and CSD of these two cracks 

depend on the distance to the next cracks not shown in Fig. 3.1 or, in other words, on 

boundary conditions. The uncertainty is avoided if the shown distribution is considered 

as “repeating super-element” with M cracks in it. In this case symmetry conditions can 

be applied on 0=x  and Lx = . To model this periodic structure we have to assume 

Mll =0 . 

3.2.2 Stiffness Model  
 
The upper part of symmetric N- layer laminate with intralaminar cracks is shown in Fig. 

3.2. The k-th layer of the laminate has thickness kt  , fiber orientation angle  with respect 

to the global x-axis kθ  and stiffness matrix [ ]Q  in the material symmetry axes, 

calculated from elastic constants 121221 ,,, νGEE . The total thickness of the laminate, 

∑
=

=
N

k
kth

1
. The crack density in a layer kρ  is calculated using (3.1) where the average 

distance between cracks k
avl  is measured transverse to the fiber direction in the k-th 

layer.  Dimensionless crack density ρ kn in the layer is introduced as 

kkkn t ρρ =           (3.4) 

 
Figure 3.2. RVE of the damaged laminate with intralaminar cracks in layers. 

 



 

48 
 

It is assumed that in the damaged state laminate is still symmetric in other words the 

crack density in corresponding symmetrically placed layers is the same.  

The stiffness matrix of the damaged laminate, [ ]LAMQ  and the stiffness of the undamaged 

laminate, [ ]LAMQ 0  are defined by the stress-strain relationships 
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 (3.5) 

 The compliance matrix of the undamaged laminate is [ ] [ ]( ) 1

00

−
= LAMLAM QS .  

The expressions below for thermo-elastic constants of the damaged laminate with non-

uniform crack distribution are derived in Appendix 1 and 2  
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In (3.6a), (3.6b) and (3.7) the matrix-function [ ]kK  for a layer with index k   is defined 
as  
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The involved matrices [ ]kT and [ ]kQ  are defined according to CLT, upper index T 

denotes transposed matrix and bar over  stiffness matrix indicates that it is written in 

global coordinates. The influence of cracks in k-th layer is represented by matrix [ ]U k .  
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Elements of this matrix anan uu 12 ,   are defined in Appendix 2. They are calculated, see  

(A2.8), using normalized and averaged crack face opening (COD) and sliding 

displacements (CSD) of all cracks as affected by varying spacing between them.  
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Index for layer k  is omitted in (3.10). Certainly, since anan uu 12 ,  in k-th layer depend 

also on neighboring layer properties they are different in different layers. The 

methodology used in appendices is exactly the same as in [28]. The main difference is 

in Appendix 2 where the two crack faces of any crack may have different displacements 

due to nonuniformity. Appendix 1 which in a compact form contains the same 

information as given in [28] is included to insure consistency of explanation. 

3.2.3 Elastic modulus of balanced laminates with cracks in 90-layer 
 
In case of balanced laminates with damage in 90-layers only, expressions for [ ]kK  and 

for [ ]LAMS have been obtained calculating the matrix products in (3.6) - (3.8) 

analytically. For example, the obtained expression for laminate normalized axial 

modulus is 
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Index 90 is used to indicate 90-layer. The quantities with lower index x,y are laminate 

constants, quantities with additional upper index 0 are undamaged laminate constants 

and (3.10) has to be used to calculate 90
2anu . In the case of uniform crack distribution all 

COD’s in (3.10) are equal and (3.11) is just a different form of (31) in [28] leading to 

numerically identical results. In the following parametric analysis we consider COD 

related properties only and validation is based on axial modulus. Therefore shear 
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modulus expression of the damaged laminate which is related to CSD only is not 

presented here. 

3.3. Results and discussion 
3.3.1 Formulation of calculation examples 
 
The effect of the non-uniform crack distribution on 90

2anu  was analyzed using FEM for 

damaged [ ]Sn 890/0  and [ ]Sn0/908 laminates (n=1,8) at fixed dimensionless crack 

density n90ρ , see Fig. 3.3 where the repeating “super-element” with two cracks is 

shown. Parameter K  is introduced as the ratio  

avl
l

K 0=           (3.12) 

to characterize the non-uniformity of the spatial distribution. This parameter has value 1 

for uniform crack distribution. The average crack density, avl  was kept constant (two 

cracks over fixed distance 10 llL +=  give 
2

10 lllav
+

= ) with average normalized 

spacing calculated according to (3.1) ( )nnavn lll 102
1

+= . 

To cover large variation in elastic constants both CF/EP and GF/EP composites with 

constants given in Table 3.1 were analyzed. All results are presented in terms of 

dimensionless crack spacing and crack density. Results depend on layer thickness ratio, 

not on absolute value of ply thickness. 

For laminates with cracks in surface layers staggered crack system, where the crack in 

the bottom layer is located in the middle between cracks in the top layer, could be 

analysed instead of symmetric damage state shown in Fig. 3.3. This case analyzed in 

[43] by J. Nairn is relevant when the failure analysis is deterministic and the small 

variation in stress state points on the locus of the next failure (always exactly in the 

middle between two existing cracks). However, the strength (or the fracture toughness) 
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is not one single value but follows certain statistical distribution. The variation of failure 

properties along the 90-layer transverse direction is often much larger than the stress 

perturbation in the bottom layer of the laminate due to crack in the top layer. Therefore 

the assumption of staggered cracks is as far from reality as the assumed symmetry of the 

damage with respect to the midplane used in this chapter. Starting with symmetric 

damage state in the stiffness analysis we are trying to create a simple reference case. 

The interaction effects between systems of cracks in different layers have to be analysed 

separately. Otherwise the number of parameters changing is too large to draw 

conclusions. 

In all FE calculations the commercial code ABAQUS was used. In order to model the 

left half of the ”super-element” (see Fig. 3.3), a 3-D model was created. 3D continuum 

elements (C3D8) 8-node linear brick were used in order to mesh volumes. The same 

fine mesh with total number of elements 86400 was used in each FE model. The (x, z) 

plane consisted of 21600 elements, with refined mesh near the crack surfaces. In the ply 

with cracks the number of elements in the thickness direction was 120. The number of 

elements in y-direction was 4 which as described below is more than sufficient for the 

used edge conditions. The problem was solved by applying to the right boundary 0=x  

of the model a given constant displacement in x-direction corresponding to 1% average 

strain and keeping at the left boundary 0=xu .  The top surface was free of tractions. 

On the front edge (y=0) and the edge y=w coupling conditions were applied for normal 

displacements ( yu = unknown constant). In this way edge effects are avoided and the 

solution does not depend on y-coordinate. It corresponds to solution for an infinite 

structure in the width direction. Obviously these conditions lead to generalized plane 

strain case and corresponding finite elements could be used obtaining the same results. 
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The displacements in direction x for the nodes at the crack surface were used to 

calculate the average value of the crack face displacement COD. 

 

 
Figure 3.3.  ”super-element” models for COD studies with non-uniformly cracked 90-

layers: a) cracks in inside layer; b) cracks in surface layer 
 

All plies are considered to be transversally isotropic with 32 EE = , 1312 GG = and 

1312 νν = . 

Table 3.1. Material properties used in simulations 

Material E1(GPa) E2(GPa) ν 12 ν 23 G12 (GPa) G23 (GPa) 

GF/EP 45 15 0.3 0.4 5 5.36 

CF/EP 150 10 0.3 0.4 5 3.57 

 

In calculations two values of the average normalized spacing were used: a)  10=avnl  

corresponding to 1.090 =nρ  where the interaction between uniformly spaced cracks 

would be negligible; b) 2=avnl  corresponding to interactive crack region with crack 

density 5.090 =nρ . 

Studying the effect of non-uniform distribution the normalized spacing nl0 , see Fig. 3.3, 

was used as a parameter which was lower or equal to the average spacing. In case a) 

[ ]10;5.00 ∈nl  and in case b) [ ]2;5.00 ∈nl . It is worth to remind here that at very high 

crack density (in the so called crack saturation region) the normalized average spacing 
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may be close to 1 (the distance between cracks is equal to the crack size (layer 

thickness)). Straight intralaminar cracks are almost never observed closer to each other 

than half of the cracked layer thickness.  

3.3.2 COD parametric analysis at low crack density 
 
In this section results for average normalized spacing   10=avnl  ( 1.090 =nρ ) are 

presented. 

3.3.2.1   Internal cracks  
 
For internal cracks the profiles of normalized crack face displacements ( ( )nn zu −

2 , 

( )nn zu +
2  defined in Appendix 2) along the thickness coordinate 12

90

+=
t

zzn  are shown 

in Fig. 3.4 and Fig. 3.5. The “+” face of the crack has smaller displacements than the “-“ 

face and the difference is larger when the nl0  is smaller than 1 (the neighboring crack to 

the left is very close). The neighbor to the “-“ face is at larger distance than the average 

spacing and therefore the displacement profile is almost unaffected.  For the same 

geometry the COD’s in CF composites are always significantly smaller.  

 
Figure 3.4. COD profiles of cracks in [0/908]s laminate with normalized crack density 

1.090 =nρ  
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Figure 3.5. COD profiles of cracks in [0/90]s laminate with normalized crack density 

1.090 =nρ  
 

The displacements of both crack faces are significantly smaller when the relative 

thickness of the neighboring layer is higher, Fig. 3.5. This effect is more pronounced for 

GF composite where the 0-layer versus 90-layer modulus ratio is not very large.  

Using crack face displacements the average normalized COD’s 90
2anu  are calculated by 

numerical integration using expressions in Appendix 2. The obtained dependence on the 

non-uniformity parameter K  is shown in Fig. 3.6. The average normalized COD is 

larger if the spacing is uniform. However, the effect is negligible for 2.0>K  

( 900 2tl > ). 

 
Figure 3.6. Effect of non-uniform spacing on COD of internal cracks in cross-ply 

laminates with normalized crack density 1.090 =nρ  
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3.3.2.2   Surface cracks 
 
For surface cracks in [908/0]s and [90/0]s  laminates the profiles of normalized crack 

face displacements, ( )nn zu −
2 , ( )nn zu +

2  along the thickness coordinate 
90

0 2
t
tz

zn
−

=   

( 0t is 0-layer thickness) are shown in Fig. 3.7 and Fig. 3.8. The trends are the same as 

for internal cracks but the face displacements are larger and the shape of the profile, 

especially on the non-interactive side, is different not becoming vertical at outer surface, 

1=nz . Since the outer surface is not a symmetry surface this result was expected. 

 
Figure 3.7. COD profiles of surface cracks in [908/0]s laminate with normalized crack 

density 1.090 =nρ  
 

 
Figure 3.8. COD profiles of surface cracks in [90/0]s laminate with normalized crack 

density 1.090 =nρ  
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The average normalized COD’s, 90
2anu  are calculated as described in Section 3.2.1. The 

obtained dependence on the non-uniformity parameter K  is shown in Fig. 3.9. The 

average normalized COD is smaller if the spacing is non-uniform. According to (3.11) it 

will lead to smaller axial modulus reduction. For [908/0]s laminate this effect becomes 

negligible for 3.0>K  ( 900 3tl > ) whereas for [90/0]s  laminate the transition values are 

slightly larger ( 5.0>K , 900 5tl > ). 

 

Figure 3.9. Effect of non-uniform spacing on COD of surface cracks in cross-ply 
laminates with normalized crack density 1.090 =nρ  

 

3.3.3 Approximate COD determination from periodic solutions 
 
The average normalized COD, anu2  of a crack in a layer with non-uniform crack 

distribution can be found considering separately the average normalized COD of  the ”-

” face of the crack and ”+” of the crack in Fig. 3.1.  

( )−+ += ananan uuu 222 2
1          (3.13) 

In this section the following hypothesis will be analyzed:  

” The COD of ”-” face depends on the distance to the closest neighboring crack on the 

right only and can be calculated considering the region between these two cracks as a 

periodic element. The COD of the ”+” face is obtained in a similar manner, considering 

the region on the left as periodic element” 
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This “double-periodic” approach with considering two periodic solutions states that 

p
anan uu 22 ≈      ( )+− += p

an
p
an

p
an uuu 222 2

1    (3.14) 

The two values +p
anu2  , −p

anu2   are solutions of the two periodic models.  

This hypothesis is equivalent to saying that in Fig. 3.3 symmetry conditions on the 

plane 2
1lx ±= can be applied.  This would mean that even in the deformed state the 

line 2
1lx ±= in the 0-layer remains straight. Unfortunately there is no symmetry in 

Fig. 3.3 and this line will be deformed. The accuracy of the symmetry condition used in 

the “double-periodic” approach can be estimated only numerically. Hypothesis that the 

deviation can be neglected was used by Joffe et al in [18] calculating the work to close 

the crack for fracture mechanics based damage growth analysis. 

If the “double-periodic” approach is accurate enough, the anu2  for any crack location 

with respect to other cracks could be calculated from a master curve for uniform crack 

distribution. This curve, which is expression of anu2  as a function of crack spacing in 

layer with uniformly distributed cracks, would be used twice to read the  +p
anu2  , −p

anu2   

values of the left and the right face of the crack. 

In order to check the accuracy and validity of the “double-periodic” assumption, the 

anu2   for each value of non-uniformity parameter was calculated in two different ways: 

a) directly applying FEM to the non-uniform geometry; b) applying FEM two times and 

using (3.14), first, for periodic distribution with spacing as on the left from the crack 

and, second, for periodic distribution with spacing as on the right of the crack.  

From Fig. 3.10 were displacement profiles according to a) and b) are presented we 

conclude that the trends in the double-periodic approach are described correctly but the 

values of face displacements are not accurate. On the left face where the interaction is 
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strongest the +p
nu2  is too small but on the right face, where the next crack is further 

away, −p
nu2  is too large. It seems that this result questions the validity of used hypothesis 

at low crack density.  

 
Figure 3.10. Calculated COD profiles: a) of internal cracks in [0/90]s laminate b) of 

surface cracks in [90/0]s laminate with normalized crack density 1.090 =nρ  
 

However, for stiffness predictions the average of the COD of both faces, p
anu2   given by 

(3.14) is requested and not the value for each face separately. The values of anu2  and  

p
anu2  can be compared using results presented in Table 3.2 and Table 3.3 for all lay-ups, 

materials and non-uniformity parameter values. A very good agreement between values 

exists for all cases which validates the use of the “double-periodic” hypothesis. 
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Table 3.2. Average normalized COD of internal cracks from FEM and from “double-
periodic” approach at normalized crack density 1.090 =nρ  
 [0/908]s [0/90]s 

GF/EP CF/EP GF/EP CF/EP 

K anu2  p
anu2  anu2  p

anu2  anu2  p
anu2  anu2  p

anu2  
1.00 1.1027 1.1027 0.6927 0.6927 0.6941 0.6941 0.5720 0.5720 
0.50 1.1027 1.1030 0.6927 0.6927 0.6941 0.6943 0.5721 0.5722 
0.30 1.1027 1.1030 0.6928 0.6931 0.6928 0.6935 0.5712 0.5716 
0.20 1.1039 1.1045 0.6905 0.6907 0.6771 0.6786 0.5600 0.5607 
0.10 1.0510 1.0537 0.6189 0.6230 0.5860 0.5910 0.4857 0.4894 
0.05 0.8588 0.8811 0.4927 0.5091 0.4841 0.4890 0.3977 0.4035 

 

Table 3.3. Average normalized COD of surface cracks from FEM and from “double-
periodic” approach at normalized crack density 1.090 =nρ  
 [908/0]s [90/0]s 

GF/EP CF/EP GF/EP CF/EP 

K anu2  p
anu2  anu2  p

anu2  anu2  p
anu2  anu2  p

anu2  
1.00 2.0379 2.0379 1.3992 1.3992 1.5915 1.5915 1.3580 1.3580 
0.50 2.0314 2.0378 1.3912 1.3930 1.5649 1.5661 1.3327 1.3318 
0.30 2.0164 2.0169 1.3357 1.3364 1.4432 1.4471 1.2252 1.2256 
0.20 1.9062 1.9221 1.2230 1.2268 1.2856 1.2958 1.0910 1.0964 
0.10 1.6367 1.6421 1.0146 1.0184 1.0650 1.0798 0.9035 0.9141 
0.05 1.3707 1.3915 0.8675 0.8744 0.9368 0.9477 0.7949 0.8040 

 

The validity of enforcing symmetry in positions like 2
1lx ±= in Fig.3.3, is the basic 

assumption also in [40].  In our present chapter we have shown, see Fig. 3.10 that it can 

lead to noticeable inaccuracy in the displacement of each crack face. However the 

average COD of the crack presented in Fig. 3.2 and Fig 3.3 is very accurate.  Since the 

COD values of the “double-periodic” approach coincide with exact values when the 

spacing is uniform, the accuracy increases with higher values of the non-uniformity 

parameter. To understand the real boundary conditions at 2
1lx ±=  the intralaminar 

shear stress, xzσ  distribution along z-coordinate was calculated using FEM for different 

values of non-uniformity parameter K . For example, for GF/EP [0/90]s laminate with 
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1.090 =nρ  and 1% applied strain the xzσ  in 0-layer at a distance from the crack tip 

equal to 10% of the 0-layer thickness changes from 0 to 3.8 MPa  to 33 MPa when the 

non-uniformity parameter changes from 1 to 0.5 to 0.05 showing that the boundary 

conditions are noticeably violated only for high non-uniformity (low value of parameter 

K ). The effect is stronger for cracks in surface layers. 

Rephrasing the above in terms of average stresses and strains between two cracks 

calculated using similar assumption in [40], the accuracy in each element is reduced at 

high non-uniformity but the average values and the total values calculated in this way 

have as shown in [40] very high accuracy. 

3.4. Elastic modulus prediction and validation with FEM 
 
The effect of the non-uniform crack distribution on axial modulus of cross-ply 

laminates is shown in Fig. 3.11 for GF/EP laminates and in Fig. 3.12 for CF/EP 

laminates. All results are for the same normalized crack density 1.090 =nρ . The 

normalized axial modulus of the laminate is calculated in three different ways: 

a) Calculating the average applied stress using FEM and using definition of xE . 

b)  Applying (3.11) and using for 90
2anu values of anu2 obtained from FEM and 

presented in Table 3.2 and Table 3.3.  

c) Applying (3.11) and using for  90
2anu values of p

anu2  obtained from “double-

periodic” approach presented in Table 3.2 and Table 3.3. 
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Figure 3.11. Effect of non-uniform crack distribution on axial modulus of GF/EP cross-
ply laminates with normalized crack density 1.090 =nρ  

 

The elastic modulus of the RVE with two non-equidistant cracks calculated directly 

from force (FEM) and the applied average strain (notation FEM in Fig. 3.11) is equal to 

the elastic modulus for this RVE calculated using (3.11) with anu2  input from the same 

FEM solution. Since (3.11) is an exact analytical expression this result was expected 

and some numerical discrepancy is possible only if the elastic modulus of the RVE is 

calculated with a different mesh than the anu2 .  Since these two calculations always lead 

to coinciding results only one of them (called FEM) is shown in following figures. 

On other side FEM values practically coincide with the ones where the “double-

periodic” approach is used, proving the accuracy and potential of this approach for 

simulation of systems with multiple non-uniformly spaced cracks. 
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Figure 3.12. Effect of non-uniform crack distribution on axial modulus of CF/EP cross-
ply laminates with normalized crack density 1.090 =nρ  

 

For the used crack density and all investigated materials and lay-ups the axial modulus 

reduction is the highest if cracks have uniform distribution. For the reasons described in 

Introduction the experimental crack distribution at crack density 1.090 =nρ  is expected 

to be rather non-uniform and the axial modulus is higher than predicted by models 

based on periodic crack distribution. The normalized axial modulus value at the highest 

considered non-uniformity ( K =0.05) and at uniform distribution ( K =1) are given in 

Table 3.4. 

The axial modulus of laminates with relatively thick damaged layers is more sensitive to 

non-uniform crack distribution: the highest value  is 1.077  for GF/EP composite with 

lay-up [908/0]s. 

The non-uniform distribution of internal cracks does not affect laminate modulus if the 

non-uniformity parameter 2.0>K . For laminates with cracks in surface layers the 

corresponding value is between 0.3 and 0.5. Note that K  values given here are the same 

as the values when the non-uniformity stops to affect the average normalized COD. 
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Table 3.4. Normalized axial modulus of cross ply laminates with non-uniform and 
uniform ( K =1) crack distributions calculated using FEM 

  1.090 =nρ  5.090 =nρ  

Material Lay-up 
K=0.05 

5.00 =nl  
K=1 

100 =nl  
Ratio 

K=0.25 

5.00 =nl  
K=1 

20 =nl  
Ratio 

GF/EP [0/908]s 0.8894 0.8624 1.0312 0.6165 0.5556 1.1098 
GF/EP [908/0]s 0.8345 0.7725 1.0804 0.5016 0.4337 1.1565 
GF/EP [0/90]s 0.9768 0.9673 1.0098 0.8950 0.8619 1.0384 
GF/EP [90/0]s 0.9566 0.9285 1.0303 0.8305 0.8057 1.0308 
CF/EP [0/908]s 0.9671 0.9541 1.0136 0.8537 0.8070 1.0579 
CF/EP [908/0]s 0.9428 0.9116 1.0342 0.7756 0.7321 1.0594 
CF/EP [0/90]s 0.9950 0.9928 1.0022 0.9759 0.9672 1.0090 
CF/EP [90/0]s 0.9902 0.9835 1.0068 0.9580 0.9510 1.0074 

 
 

 

Figure 3.13. Effect of non-uniform crack distribution on axial modulus of GF/EP cross-
ply laminates with normalized crack density 5.090 =nρ  

 

Similar calculations as described above were performed for higher crack density 

5.090 =nρ  Results are presented in Table 3.4 and in Fig. 3.13 and Fig. 3.14. Due to 

limitations for minimum possible spacing the range of the considered non-uniformity in 

calculations is narrower. Nevertheless the effect of non-uniform distribution is even 

larger than at low crack density. In contrast to low crack density case, there is no plateau 
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region in Fig. 3.13 and Fig. 3.14. The “double-periodic” approach at high crack density 

is still highly accurate for internal cracks. For surface cracks with high non-uniformity 

this approach underestimates the modulus reduction. 

From section 3.2.2 follows that all elastic constants of the cross-ply laminate except the 

shear modulus can be analysed using the calculated anu2 . As shown in [40], the 

reduction of all properties in damaged laminate is linked and the same accuracy and 

trends as demonstrated for axial modulus apply for other constants. The shear modulus 

in our formulation depends on sliding displacements which have to be studied 

separately. 

Calculations where performed also for carbon fiber/epoxy [ 290/0 ]s laminate with non-

uniformly distributed cracks in the 90 layer analyzed by McCartney et al in [40]. The 

used unidirectional composite properties are 

GPaE 78.1441 = ,  GPaE 58.92 = , GPaG 785,412 = ,  GPaG 090.323 = ,  31.012 =ν , 

°⋅−= − C/1072.0 6
1α ,  °⋅= − C/100.27 6

2α , mmt 127.00 = . 

One of the numerical examples in [40] is for RVE between two cracks of length 

mmL 12 =  (notation as in [40]). The third crack is embedded in-between these two and 

the distance to the closest crack mmL 1.02 1 = . Using our terminology the average 

spacing in the RVE is 0.5mm and the non-uniformity parameter 2.0=K . Elastic 

modulus of the RVE in [40] was calculated using LRAM and sub-dividing each layer in 

7-8 sub-layers. In the analytical model which is based on similar assumptions as our 

“double-periodic” model each layer was sub-divided in 5-8 layers of equal thickness.  

Their results are compared with our results (FEM for the RVE and the “double-

periodic“  model)  in Table 3.5. Our FEM results and LRAM results for  xE  of the RVE 

are almost coinciding (our mesh had 120 elements in each layer in the thickness 



 

65 
 

direction).In addition also the xyν and the axial thermal expansion coefficient were 

calculated and for the latter the difference is slightly larger. Analytical expressions for 

these constants of the damaged cross-ply laminate one can find in [44]. 

Table 3.5. Thermo-elastic properties of damaged cross-ply laminates according to [40] 
and the present chapter with normalized crack density 016.1n90 =ρ  
Method FEM LRAM 

[40] 
Double-
periodic 

Error (%) 
 

Analytical 
[40] 

Error (%) 
[40] 

)(GPaEx  50.9606 50.9602 50.9224 -0.075 50.9111 -0.096 

xyν  0.01746 0.01748 0.01736 -0.620 0.01733 -0.872 
)/110( 6 °⋅− Cxα  1.09622 1.10161 1.08213 -1.285 1.07685 -2.248 

 

The results of the analytical method [40] and the “double-periodic” approach are very 

similar. In all cases they give slightly lower values than the values obtained by FEM or 

LRAM. Since our values are slightly higher the accuracy is slightly better than for the 

analytical model [40]. We believe that the accuracy of results in [40] could be improved 

by sub-division of layers in more sub-layers. Another observation from [40] is that even 

in the case when the third crack is exactly in the middle between the two cracks the 

results of LRAM and the analytical model [40] slightly differ. It can be explained only 

by different sub-division in sub-layers in both methods which has affected the accuracy. 

 
Figure 3.14. Effect of non-uniform crack distribution on axial modulus of CF/EP cross-

ply laminates with normalized crack density 5.090 =nρ  
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3.5. Conclusions 
 
Earlier developed model for elastic properties of damaged symmetric laminates was 

generalized for case when the intralaminar crack distribution is non-uniform and due to 

interactions each crack may have different opening (COD) and sliding (CSD) 

displacements. These displacements and the number of cracks per unit length in the 

layer are governing the laminate properties reduction. The obtained analytical 

expressions for elastic constants are exact. This model was applied to cross-ply 

laminates with cracks in 90-layers located in the middle or on the surface. The 

dependence of the damaged cross-ply laminate axial modulus (it depends on COD only) 

on the non-uniformity parameter in a repeating element containing two cracks was 

analyzed numerically. The non-uniformity parameter is defined as the ratio of the 

smallest and the average spacing between cracks. COD values needed as an input in the 

model were calculated using FEM in generalized plane strain formulation and stiffness 

calculations were performed for GF/EP as well as CF/EP laminates with low and also 

with high crack density. The trend is the same for all crack densities and lay-ups: 

assuming uniform crack distribution the damaged laminate modulus is underestimated.  

An approximate “double-periodic” approach was proposed stating that the COD of a 

crack with different distances to the closest neighbors can be calculated as the average 

of two solutions for equidistant cracks. It was shown numerically for cross-ply 

laminates that in internal layers very accurate COD values for cracks with non-uniform 

spacing and elastic modulus values can be obtained using this approach. For cracks in 

surface layers this approach is accurate only for low crack densities. The applicability of 

the “double-periodic” approach to sliding displacement of non-uniformly distributed 

cracks has not been investigated. 
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Chapter 4 
 
Thermo-elastic constants of symmetric laminates with 
cracks in 90-layer: application of simple models 
 
 
 
4.1. Introduction 
 
Composite laminates under service loading undergo complex combinations of thermal 

and mechanical loading leading to microdamage accumulation in layers. The most 

common damage mode is intralaminar cracking in layers. During service life, the 

number of these cracks, which are transverse to the midplane, increases reducing 

laminate thermo-elastic properties. 

The stiffness degradation of composite laminates due to cracking can be explained in 

terms of opening and sliding of crack surface. The crack face relative displacement 

during loading reduces the average stress in the damaged layer, thus reducing the 

laminate stiffness. 

Numerous analytical models have been developed to study the stiffness degradation due 

to transverse cracks. They are all based on approximate solution for the stress state 

between two cracks (repeating element). Reference is given only to papers with direct 

relevance to the current study [47-52]. 

The simplest type of models leading to linear second order differential equation with 

constant coefficients is called shear lag models [47-49]. General for all shear-lag models 

is that the equilibrium conditions are satisfied in average only and the shear stress free 

condition on crack surfaces is not satisfied. A “shear lag” parameter which is often a 

fitting parameter is needed in these models. The stress distribution and the stiffness 

degradation calculated according to these models in [39,51] are affected by the value of 

this parameter. The most typical modifications and values of the shear lag parameter 
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compared in [39,50,51] are: a) assuming a resin rich layer of unknown thickness 

between layers of different orientation where the out-of-plane shear deformation at the 

crack tip takes place. In this chapter we assume that this layer can not be thicker than 

fibre diameter; b) assuming that the shear strain acts in the cracked layer only and it is 

due to linear or  parabolic crack opening displacement dependence on the thickness 

coordinate; c) assuming shear strain also in the constraint layer. The last model was 

refined by Zhang et al in [10] assuming that the intralaminar shear stress in 0-layer is 

present only in a part of the constraint layer. Unfortunately, unless experimental full 

field measurements or FEM are used, the thickness of this zone becomes a fitting 

parameter. 

The first model based on the principle of minimum complementary energy which was 

free of these assumptions was developed by Hashin [11] to investigate the axial 

modulus reduction of cross ply laminate with cracks in inside 90 layers. The 

approximate stress field derived with this approach satisfies all the necessary 

equilibrium as well as the boundary conditions including zero tractions on the crack 

surfaces. Since the approximate nature of the selected stress functions lead to increase 

of the value of the complementary energy, it does not reach the minimum corresponding 

to the exact solution and the displacement continuity is satisfied only approximately.  

Hashin’s model is relatively simple to use and it renders lower bond for the axial 

modulus of the damaged laminate. Refined variational models based on minimum 

principle of the complementary energy with more accurate predictions of axial modulus 

and Poisson’s ratio were developed in [14,52]. However, higher accuracy of analytical 

solutions is always on the expense of significant increase of complexity. For example, 

use of the model [52] requires rather complex numerical minimization routine. 
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Therefore [52] as well as models by McCartney [16] and Shoeppner and Pagano [17] 

could rather be considered as numerical routines.  

Two main problems/limitations related to the use of analytical solutions are: a) 

approximate analytical solutions are available for cross-ply laminates only; b) these 

models are developed to calculate only one or two of the whole set of laminate thermo-

elastic constants (usually axial or shear modulus of the damaged laminate). 

In practice a cross-ply laminate lay-up is rarely used. This limitation has been handled 

by several authors [19,28,29]. Zhang et al [10] introduced the concept of “an equivalent 

constraint” assuming that the constraint on the damaged layer of the lay-ups above and 

below the damaged lamina can be replaced by two sublaminates with properties 

calculated using laminate theory (CLT). Thereby the actual laminate, considered in the 

coordinate system related to the damaged layer symmetry, could be replaced by a cross-

ply with orthotropic constraint layers. Similar approach was used in Lundmark et al 

[28,29] applying FEM to analyze the effect of surrounding layers. They demonstrated 

that the modulus and the thickness ratio of the closest neighbor to the damaged layer are 

the parameters governing the constraint. 

In [28] a unique relationship between the damaged laminate thermo-elastic properties 

and the microdamage parameters was established (GLOB-LOC approach). Exact 

analytical expressions for thermo-elastic constants of general symmetric laminates with 

cracks in multiple layers were presented. These matrix expressions are given in Section 

4.2. It was shown that the local parameters in these expressions are the normalized 

average values of crack opening displacement (COD) and crack sliding displacement 

(CSD). In addition the laminate lay-up, layer properties and density of cracks in layers 

has to be given. In this chapter we demonstrate how using this framework and the axial 

stress distributions obtained from shear lag or from Hashin’s model one can calculate all 
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thermo-elastic constants of a damaged laminate (except shear modulus). The key point 

in the procedure is that the average COD can be related to the average stress in a layer 

between two cracks (see section 4.3.2). 

The accuracy of predictions is evaluated comparing with direct FEM calculations. 

4.2. Material model of damaged symmetric laminates with 
intralaminar cracks  
4.2.1 Model formulation 
 
The upper part of symmetric N- layer laminate is shown in Fig. 4.1. The k-th layer of 

the laminate is characterized by thickness kt  , fiber orientation angle  with respect to the 

global x-axis kθ  and by stiffness matrix in the local axis [ ]Q  (defined by thermo-elastic 

constants 21121221 ,,,,, αανGEE ). The total thickness of the laminate, ∑
=

=
N

k
kth

1
. The 

crack density in a layer is ( )kkk l θρ sin21=  where average distance between cracks 

measured on the specimen edge is kl2 . Dimensionless crack density ρ kn  is introduced 

as 

kkkn t ρρ =            (4.1) 

It is assumed that the damaged laminate is still symmetric: the crack density in 

corresponding symmetrically placed layers is the same. The stiffness matrix of the 

damaged laminate is [ ]LAMQ  and the stiffness of the undamaged laminate is [ ]LAMQ 0 .  

The compliance matrix of the undamaged laminate is [ ] [ ]( ) 1

00

−
= LAMLAM QS , { }α LAM

0  is the 

thermal expansion coefficient vector. Constants of the undamaged laminate are 

calculated using CLT. 
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Figure 4.1. RVE of the damaged laminate with intralaminar cracks in layers 

 

The expressions for compliance matrix and thermal expansion vector of the damaged 

laminate presented below are exact. 
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In (4.2) and (4.3) [ ]I  is identity matrix. These expressions were derived in [28] 

expressing the integral effect of cracks in terms of crack density and [ ]kK , which is a 

known matrix-function dependent on ply properties and normalized and averaged crack 

face opening (COD) and sliding displacements (CSD), anan uu 12 , , which may be 

different in different layers. In (4.3) { }kα  is the vector of thermal expansion coefficients 

of the k-th layer in global coordinates. The [ ]kK  matrix for a ply in a laminate is defined 

as  

[ ] [ ] [ ] [ ] [ ] [ ]kKk
T
kkk QTUTQ

E
K

2

1
=        (4.4) 
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The involved matrices [ ]kT  and 

 

Q [ ]k
 are defined according to CLT, superscript T 

denotes transposed matrix and bar over  stiffness matrix indicates that it is written in 

global coordinates. For a layer with fiber orientation angle kθ , km θcos=  and 

kn θsin=  

[ ]









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



−+−
−
+

=
22

22

22

2
2

nmmnmn
mnmn
mnnm

T k ,  

 

Q [ ]k
= T[ ]k

−1 Q[ ] T[ ]k

−1( )T
  (4.5) 

The influence of each crack is represented in (4.4) by matrix

 

[U]k , which contains the 

normalized average COD and normalized average CSD of the crack surfaces in k-th 

layer 

[ ]





















=
k
an

k
ank

u
G
E

uU

1
12

2

2

00

00
000

2         (4.6) 

Correlation of anan uu 12 ,  with the stress state between cracks is the key point in this 

chapter.  

4.2.2 Thermo-elastic constants of balanced laminates with cracks in 
90-layers 
 
For balanced laminates with cracked 90-layer, 

 

K[ ]k  can be calculated analytically. 

Using the result in (4.2) and (4.3) the following expressions for laminate thermo-elastic 

constants were obtained for the case with only one cracked 90-layer (if laminate has 

several cracked 90-layers summation is required in the denominator). 
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Index 90 is used for thickness, crack density and COD in 90-layer. The quantities with 

subscripts x,y and superscript LAM are laminate constants, quantities with additional 

subscript 0 are undamaged laminate constants. It is noteworthy that 

a) If Poisson’s effects are neglected 043 == cc . In this approximation LAM
yE  and LAM

yα  

do not change because of damage in 90-ply. 

b) Shear modulus is not related to COD and depends on sliding displacement only. It is 

not analyzed in the present chapter. 

The class of laminates covered by these expressions is broader than just cross ply 

laminates or laminates with 90-layers. For example, any quasi-isotropic laminate with 

an arbitrary cracked layer can be rotated to have the damaged layer as a 90-layer. The 

only limitation of (4.7)-(4.12) is that the laminate after rotation is balanced with zero 

coupling terms in 

 

S[ ]0

LAM . 
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Application of (4.7)-(4.12) requires values of anan uu 12 , . Three different expressions of  

anu2  are presented in section 4.3 according to FEM, shear-lag and Hashin’s models. 

4.3. Determination of COD 
4.3.1 Crack face displacements 
 
It is assumed that all cracks in the same layer are equal and equidistant. The average 

CSD and COD are defined as  

∫ ∆=
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a dxxu
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Here iu∆  is the displacement gap between corresponding points at both crack faces. 

Subscript 1 denotes the displacement in fiber direction (sliding) and subscript 2 in the 

transverse direction (opening). 

In linear model the average displacements 90
2au  and 90

1au   are linear functions of the 

applied stress and the ply thickness. Therefore, they are normalized with respect to the 

far field (CLT) shear stress 90
0xyσ  and transverse stress 90

0xσ  in the layer (resulting from 

the macro-load { }LAM
0σ  and temperature difference T∆ ) and with respect to the 

thickness of the cracked layer 90t  

90
090

1290
1

90
1

xy
aan t

Guu
σ

= ,    90
090

290
2

90
2

x
aan t

Euu
σ

=    (4.14) 

Elastic constants 2E  and 12G  of the UD composite are introduced in (4.14) to have 

dimensionless descriptors. The influence of each crack on thermo-elastic laminate 

constants is represented by 90
2au  and 90

1au . 
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4.3.2 Average COD relation to stress perturbation 
 
 Part of the deformed laminate with an open crack is shown in Fig. 4.2. Thickness of the 

supporting sublaminate is st  and its effective modulus in the axial direction is s
xE . 

Denoting the displacement of the undamaged sublaminate at 90lx =  ( 90l  is the half 

distance between cracks) by ( )0lus  and the displacement of the crack face by ),( 090 zlu  

we can write that the average COD is 

 

u2a
90 =

2
t90

us l90( )− u90 l90,z( )[ ]dz
0

t90

2

∫ = us l90( )−
2
t90

u90 l90,z( )dz
0

t90

2

∫    (4.15) 

 
Figure 4.2.  Schematic showing of the deformation of the laminate in the vicinity of 

transverse crack 

 

The crack opening leads to reduction of axial stress in the 90-layer. The stress between 

two cracks in the 90-layer can be written in the following general form 

( )[ ]90
90
0

90 ,,1 lzxfxx −= σσ         (4.16) 

Function f  in (4.16) represents the stress perturbation and 90
0xσ  is the axial stress in the 

undamaged 90-layer (CLT). The average value of the stress between two cracks is 

defined as 
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( )[ ]naxxa f 90
90
0

90 1 ρσσ −=         (4.17) 
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2
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f x,z,l90( )dxdz
0
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2

∫
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∫        (4.18) 

The average stress in the sublaminate can be obtained from force balance 
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In this section we will establish relationship between 90
2au  and af . 

Neglecting Poisson’s effects the ( )zlu ,090  can be written as  
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Similarly for  ( )90lus  we can write 
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0
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Substituting (4.20) and (4.21) in (4.15) we obtain 
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Substituting (4.17), (4.19) in (4.22) and using approximate expressions 

s
x

s
xx

EE
0

2

90
0 σσ
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Ex0
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we obtain 

 

u2a
90 = fa ⋅ l90σ x0

90Ex0
LAM

t90

2
+ ts

tsE2Ex
s         (4.24) 
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Using (4.14) the relationship between normalized average COD and stress perturbation 

af  is written as 

 

u2an
90 = fa ρ90n( )⋅

1
ρ90n

Ex 0
LAM

Ex
s

t90

2
+ ts

2ts

       (4.25) 

4.3.3 Shear-lag model 
 
The stress perturbation function for shear lag models is given in [50]. Using expression 

(40) from [50] in (4.25) we obtain (note that Rf n
a 2

90ρ
=  is used in [50]) 
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The shear lag parameter ξ  depends on the chosen modification of the shear lag model. 

Assuming existence of a resin rich layer with shear modulus mG  and thickness 0d  at the 

0/90 interface we have the following expression 
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Usually the thickness of the resin layer is taken equal to one fiber diameter. It seems 

physically unrealistic to have it larger than that (if any). In other modifications of the 

shear lag model [7,49] the expressions for the shear lag parameter are different. In one 

of the most common modifications 

 

Gm /d0 in (4.27) is replaced by 

 

2G23 / t90, whereas in 

modification assuming parabolic displacement distribution it is equal to 

 

6G23 / t90. 
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4.3.4 Hashin´s model 
 
Expressions for Hashin’s model for the case when 90-layer is supported by orthotropic 

sublaminate are given in [50]. Expression for stress perturbation function is also given 

there. After substituting these expressions in (4.25) and using our notation we obtain 
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For cross-ply laminates 1EE s
x = , 2EEs

z = , 12GGs
xz = , 12νν =s

xz  and st is equal to the 

thickness of 0 layer. 

For “non cross-ply laminate”, GF/EP2 [±15/904]s laminate (in section 4.4.3) and GF/EP 

[0/±45/90]s laminate (in section 4.4.4) s
xE  is calculated using CLT, st  is the thickness 

of the sublaminate. s
zE , s

xzG  and s
xzν  in this case are calculated using FEM. 

4.3.5 Ply discount model  
 
In the ply discount model it is assumed that as soon as damage appears in a layer its 

load bearing capacity reduces to zero. This assumption corresponds to infinite number 

of cracks in the layer. Zero load bearing by the layer can be obtained by changing 
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elastic properties of the layer to zero. In the most conservative form of this model all 

elastic constants are assumed zero. More representative for the case of transverse 

cracking is assumption used in this chapter stating that the transverse and the shear 

modulus of the damaged layer is close to zero whereas the longitudinal modulus and 

Poisson’s ratio have not changed. The stiffness of the damaged laminate is calculated 

using CLT. 

The transverse elastic modulus 2E  and shear modulus 12G  were reduced to 0.01 of their 

initial values. In section 4.4.5, where the ply discount model is used for case with 

neglected Poisson’s effects the CLT analysis is reduced to the rule of mixtures. 

4.4. Results and discussion 
4.4.1 Material properties 
 
The elastic properties of the unidirectional composites relevant to this study are given in 

Table 4.1. Elastic properties of GF/EP and CF/EP used in simulations were arbitrary 

assumed to represent materials like glass fiber/epoxy and carbon fiber/epoxy 

respectively. 

Elastic properties of GF/EP2 were taken from [50] where the properties (except the out-

of-plane Poisson's ratio 

 

ν 23, which was assumed) were obtained experimentally. 

It has to be noted that the GF/EP and CF/EP in Table 4.1 do not have isotropy in the 

transverse plane and the out-of-plane shear modulus is slightly different than it would 

be for transverse isotropic material. Reason for the increased anisotropy could be 

through the thickness stitching observable in many composites. However, shear lag 

model does not contain 23G  and Hashin’s model, which has it in 11C  is insensitive to it. 
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Table 4.1. Ply properties of the studied materials 

 

 

E1 

 

E2 

 

ν12 

 

ν 23 

 

G12 

 

G23 

 

α1 

 

α2 
0t  0d  

Material [GPa] [GPa] [-] [-] [GPa] [GPa] [°C-1] [°C-1] [mm] [mm] 
GF/EP 45 15 0.3 0.4 5 6 1.0e-5 2.0e-5 0.13 0.007 
CF/EP 150 10 0.3 0.4 5 6 4.3e-7 2.6e-5 0.13 0.0035 

GF/EP2 44.73 12.76 0.297 0.42 5.8 4.49 - - 0.144 0.007 
 

 
0d  is the thickness of the shear layer ( fdd ⋅= 5.00 , where fd  is the diameter of one 

fiber) 

4.4.2 Parametric analysis on cross-ply laminates 
 
In all figures below the notation "Shear-lag" is used to indicate results calculated using 

COD obtained from shear lag stress analysis (4.26) in expressions (4.7)-(4.12). The 

thickness of the shear layer is given in Table 4.1 or indicated in figures if selected 

differently. The notation "Hashin" is used for predictions where the stress perturbation 

function from Hashin’s model (generalized for orthotropic support layers/sublaminates) 

(4.28) is used. The notation used for considered cross-ply lay-ups is shown in Table 4.2. 

Table 4.2. Cross-ply laminate lay-ups and used notation 
Notation Lay-up 

{1} [0/90/0] 
{2} [0/90]s 
{3} [0/902]s 
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Figure 4.3. Simulation results showing changes in the axial modulus of the laminate 

 

Ex
LAM  for GF/EP. 

 

In Fig. 4.3 and Fig. 4.4 the axial modulus reduction normalized with respect to its initial 

value is shown for all three lay-ups and for GF/EP and CF/EP composites. Predictions 

of the ply-discount model are shown as horizontal lines. The modulus reduction 

behavior is well known and described in literature: a) more modulus reduction in 

laminates with relatively thick cracked plies; b) much more modulus reduction in 

GF/EP composites because the damaged layer has relatively high modulus as compared 

with the longitudinal modulus; c) more modulus reduction according to Hashin’s model 

which as a consequence of the used minimum principle always gives conservative 

results.  
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Figure 4.4. Simulation results showing changes in the axial modulus of the laminate 

 

Ex
LAM  for CF/EP 

 

 The rate of the modulus reduction according to the shear lag model depends on the 

shear lag parameter (related to the thickness of the resin layer 0d ). The values given in 

Table 4.1 lead to much slower decrease rate than in Hashin’s model. All simulated 

curves approach to the ply discount value. Surprisingly, the asymptotic values of both 

models go slightly below the ply-discount value. Since ply-discount model corresponds 

to an infinite number of cracks this trend needs an explanation which is given in section 

4.4.5.  

The normalized transverse modulus LAM
y

LAM
y EE 0/  of the damaged laminate reduction is 

marginal, see Fig. 4.5 and Fig. 4.6, which validates the usual assumption that due to 

cracks in 90-layer it is not changing at all. Also for this elastic property the Hashin’s 

model predicts faster reduction with increasing crack density than the shear lag model. 

The change is very similar for GF/EP and CF/EP and the asymptotic values are very 

insensitive to the damaged ply thickness.  
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Figure 4.5. Simulation results showing changes in the transverse modulus of the 

laminate 

 

Ey
LAM  for GF/EP 

 

 
Figure 4.6. Simulation results showing changes in the transverse modulus of the 

laminate 

 

Ey
LAM  for CF/EP 
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Similar results for the normalized Poisson’s ratio are given in Fig. 4.7 and Fig. 4.8. For 

this property the asymptotic values does not depend on the used material but the rate of 

approaching to these values is material dependent, especially according to the shear lag 

model. The asymptotic value for damaged cross-ply laminate depends only on ply-

thickness ratio.  

 
Figure 4.7. Simulation results showing change in Poisson’s ratio of the laminate 

 

ν xy
LAM  

for GF/EP 
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Figure 4.8. Simulation results showing change in Poisson’s ratio of the laminate 

 

ν xy
LAM  

for CF/EP 

 

Change of thermal expansion coefficients, which is seldom discussed in analytical 

models is shown in Fig. 4.9 and Fig. 4.10 for LAM
xα / LAM

x0α  and in Fig. 4.11 and Fig. 4.12 

for LAM
yα / LAM

y0α . The relative change is much larger for CF/EP laminates but the 

absolute values are, certainly, much smaller. The trend is the same: Hashin’s model 

predicts much faster properties reduction. It is noteworthy that for CF/EP laminate the 

transverse thermal expansion coefficient change is more than 20% (for lay-up with 

thickest 90-layer). 
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Figure 4.9. Simulation results showing change in the axial coefficient of thermal 

expansion of the laminate 

 

αx
LAM  for GF/EP 

 

 
Figure 4.10. Simulation results showing change in the axial coefficient of thermal 

expansion of the laminate 

 

αx
LAM  for CF/EP 

 



 

89 
 

 
Figure 4.11. Simulation results showing change in the transverse coefficient of thermal 

expansion of the laminate 

 

αy
LAM  for GF/EP 

 

 
Figure 4.12. Simulation results showing change in the transverse coefficient of thermal 

expansion of the laminate 

 

αy
LAM  for CF/EP 
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4.4.3 Comparison between simulations and experimental data 
 
The shear lag model and the Hashin’s model predictions are compared with 

experimental data in Fig. 4.13 to Fig. 4.16. It is obvious that for both GF/EP2 laminate 

lay-ups ([02/904]s and [±15/904]s) Hashin’s model describes the axial modulus and 

Poisson’s ratio reduction more accurate than the shear lag model. Still, the Hashin’s 

model gives conservative values, especially for the [±15/904]s lay-up. The shear lag 

model by far under-predicts the reduction of these constants. 

 

 
Figure 4.13. Simulations  and experimental data showing the change in axial modulus 

 

Ex
LAM  of GF/EP2 [02/904]s laminate 
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Figure 4.14. Simulations and experimental data showing the change in Poisson’s ratio 

 

ν xy
LAM  of GF/EP2 [02/904]s laminate. 

 

The excellent agreement between the test results and the predictions of the Hashin’s 

model, which suppose to give a lower bond to stiffness, requires an explanation.  90-

layer thickness was rather large (1.15mm) and much thicker than the constraint layer. 

Laminates with such geometry are prone to local delaminations starting from transverse 

crack tip. These local delaminations would increase the crack opening and lead to more 

modulus reduction than in the case without delaminations and improve the agreement 

with Hashin’s model. FEM results for this laminate presented in [50] are higher than 

experimental data indicating that in this case indeed the crack model without 

delaminations may not correspond to reality. 
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Figure 4.15. Simulations and experimental data showing the change in axial modulus 

 

Ex
LAM  of GF/EP2 [±15/904]s laminate 

 

 
Figure 4.16. Simulations and experimental data showing the change in Poisson’s ratio 

 

ν xy
LAM  of GF/EP2 [±15/904]s laminate 
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4.4.4   Comparison between analytical simulations and FEM data 
 
To validate the results and trends presented in section 4.4.2 FEM analysis was 

performed and the thermo-elastic properties of damaged laminates were analyzed 

directly from the FEM model or indirectly (for example, thermal expansion coefficients) 

determining COD with FEM and using (4.7)-(4.12). Results are presented in Fig. 4.17 

to Fig. 4.24. 

 
Figure 4.17. Simulations and FEM data showing the change in axial modulus 

 

Ex
LAM  of 

GF/EP [0/90]s laminate 
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Figure 4.18. Simulations  and FEM data showing the change in Poisson’s ratio 

 

ν xy
LAM  of 

GF/EP [0/90]s laminate 
 

Comparison for GF/EP [0/90]s laminates can be based on data presented in Fig. 4.17 to 

Fig. 4.19. The shear lag model with the selected resin layer thickness of  0.007 mm 

gives excellent accuracy for axial modulus and for thermal expansion coefficient and 

slightly larger differences for Poisson’s ratio. Noteworthy, the differences have the 

same trends with crack density change for all three properties. Hashin’s model largely 

overestimates changes of all three properties. 
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Figure 4.19. Simulations and FEM data showing the change in axial coefficient of 

thermal expansion 

 

αx
LAM  of GF/EP [0/90]s laminate 

 

In CF/EP [0/90]s laminate, see Fig. 4.20 to Fig. 4.22,  the situation is different: the shear 

lag model with 0035.00 =d  mm (half of the carbon fiber diameter) gives very poor 

prediction. Voluntarily taking it two times larger (equal to the value for glass fiber 

radius) improves the agreement but it still underestimates the properties reduction. 
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Figure 4.20. Simulations and FEM data showing the change in axial modulus 

 

Ex
LAM  of 

CF/EP [0/90]s laminate. “Shear-lag” corresponds to 0035.00 =d mm, “Shear-lag 2” to 
007.00 =d mm  

 

The lower bond from Hashin’s model is much lower than the FEM data. Fig. 4.20 to 

Fig. 4.22 reveal the features of the shear lag model: using the resin layer thickness as a 

fitting parameter we could find a value which gives a very good fitting for all three 

considered properties. This is useful result suggesting approximate procedure: find this 

fitting parameter from FEM data for axial modulus and use it for all thermo-elastic 

properties. 
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Figure 4.21. Simulations and FEM data showing the change in Poisson’s ratio 

 

ν xy
LAM  for 

CF/EP [0/90]s laminate. “Shear-lag” corresponds to 0035.00 =d mm, “Shear-lag 2” to 
007.00 =d mm  

 

 
Figure 4.22. Simulations and FEM data showing the change in longitudinal coefficient 

of thermal expansion 

 

αx
LAM  of CF/EP [0/90]s laminate. “Shear-lag” corresponds to 
0035.00 =d mm, “shear-lag 2” to 007.00 =d mm  
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Unfortunately, the value, which gives the best fit, will be different for different 

materials and lay-ups. In addition, this value of resin layer thickness in our case has no 

physical meaning because it is too large (more than one fiber diameter). 

Application of the suggested calculation approach to quasi-isotropic laminates is 

demonstrated in Fig. 4.23 and Fig. 4.24. The material is GF/EP and the 90-layer 

thickness is the same as for cross-ply laminates analyzed in Fig. 4.17 to Fig. 4.19. The 

agreement of the shear lag model with FEM results is as good as in case of cross-ply 

laminates (using the same resin layer thickness). The Hashin’s model even in this case 

strongly overestimates the rate of the reduction. 

 
Figure 4.23. Simulations and FEM data showing the change in longitudinal modulus 

 

Ex
LAM  of GF/EP [0/±45/90]s laminate 
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Figure 4.24. Simulations and FEM data showing the change in Poisson’s ratio 

 

ν xy
LAM  of 

GF/EP [0/±45/90]s laminate 
 

4.4.5 Ply-discount model and the asymptotic behavior of stiffness 
reduction 
 
In this section we will address the observation from all presented figures that both 

models predict asymptotic values of thermo-elastic properties that are slightly lower 

than the ply-discount value calculated using CLT.  It seems to be theoretically 

impossible. Nevertheless it is possible because in both analytical models the stress 

analysis is 2-dimensional, neglecting Poisson’s interactions in layers and stress 

components in the specimen width direction. The used ply discount model was based on 

use of CLT which accounts for these interactions. In other words the comparison of 

asymptotic values in the way we did is inconsistent. The ply discount model used to 

compare asymptotic values should be based on the same assumptions as the stress 

analysis. In this particular case instead of CLT we should use rule of mixtures (ROM), 

for example, to calculate degraded laminate axial modulus with ply-discount.  
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Figure 4.25. Simulation results showing change in the axial modulus of the laminate 

 

Ex
LAM  for GF/EP 

 

 
Figure 4.26. Simulation results showing change in the axial modulus of the laminate 

 

Ex
LAM  for CF/EP 
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The results presented in Fig. 4.25 and Fig. 4.26 show that the asymptotic values 

coincide with the ply-discount values based on rule of mixture analysis (instead of 

CLT). 

This result explains the observed discrepancies but it does not mean that the rule of 

mixtures based ply-discount value is more accurate than the CLT based. 

4.5. Conclusions 
 
Methodology has been developed for approximate evaluation of all thermo-elastic 

constants of general symmetric laminates with cracked 90-layers. It is based on use of 

stress solutions from shear lag and Hashin’s models in a general framework where 

laminate macroscopic properties are expressed through average stress perturbation 

between two cracks. This methodology has been validated with FEM and experimental 

data.  

As expected all predicted curves approach to the ply-discount model predictions which 

assume almost zero transverse and shear properties of the damaged layer. 

The predictions of the Hashin’s model are always conservative but may be close to 

experimental data if the layer is relatively thick and local delaminations occur. 

Comparing the shear lag model with FEM the accuracy of axial modulus determination 

is the same as the accuracy of thermal expansion coefficients. The shape function of the 

elastic property reduction from shear lag model can give a good agreement to FEM 

results if the shear lag parameter (thickness of the resin layer in our case) is used as a 

fitting parameter. For given material and lay-up all properties can be fitted with the 

same value of the parameter. It applies even for quasi-isotropic laminates if the ply 

thickness is the same. 
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Chapter 5 
 
Damage Characterization in Glass Fiber/Epoxy laminates 
using Electronic Speckle Pattern Interferometry 
 
 
 
5.1. Introduction 
 
Composite materials have found usage in many industrial applications and more 

recently they are increasingly being used in aerospace panels and airframes. The use of 

fiber composites in the aerospace industry is justified by their excellent specific 

modulus and strength (referred to the property divided by the density). 

When cross-ply laminates are subjected to mechanical loading, different failure 

mechanisms are induced (see Fig. 1.4): transverse matrix cracking in 90° plies, 

delamination between 0° and 90° plies, and fiber fracture in 0° plies. In the case of 

uniaxial loading, the early stage of damage is transverse (intralaminar) matrix cracking 

in 90° plies. The transverse cracks develop in the fiber direction and extend across the 

laminates from the free edges of the specimen. The analysis of transverse cracking is 

important since cracking reduces the stiffness and strength of laminates. Transverse 

cracks induce local stress concentrations at crack tips and can initiate significant 

interlaminar delamination between 0° and 90° plies. Fiber fracture in 0° plies is induced 

only at high loads in the case of monotonic loading or for large cycle number in the case 

of fatigue loading. 

The degradation of the elastic properties of composite laminates is caused by reduced 

average axial stress between two cracks in the damaged layer which is mainly due to 

two parameters: the crack face opening displacement (COD) and the crack face sliding 

displacement (CSD). Thus at fixed applied load the average axial stress in the layer with 

cracks is reduced and the remaining undamaged layers have to take an additional load, 
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leading to larger axial strain in these layers. Larger axial strain at the same macroscopic 

load means that the laminate modulus due to cracking is reduced. Similar reasoning 

explains the Poisson’s ratio reduction of the damaged laminate: reduced average axial 

stress in the damaged layer leads to smaller amount of the Poisson’s transverse strain 

which makes the transverse contraction strain of the whole laminate smaller.  

Many theoretical analytical and numerical models have been developed to calculate the 

reduced stiffness [28,29,34,38]. All of them are based on idealized assumptions, for 

example, assuming linear elastic material behavior even in high stress concentration 

region at crack tip as well as linearity in shear loading and assuming idealized geometry 

of these cracks which would not change during the service life [40].  

In a linear model these quantities are proportional to the applied load and, therefore, the 

COD and CSD should be normalized to be used in stiffness modeling. The effect of 

material properties on the normalized COD was studied experimentally using optical 

microscopy of loaded damaged specimens in [2,34]. It was shown that the measured 

COD profiles and average values are affected by the constraining layer orientation and 

stiffness.  

To establish the link between the damaged laminate thermo-elastic constants and the 

microdamage parameters (COD and CSD) a theoretical framework was developed in 

[28,29]. It was shown that the details of the relative displacement profile along the crack 

surface are not important: only the average values of these quantities enter the stiffness 

expressions directly. 

The effect of geometrical parameters and properties of the surrounding layers on the 

COD and CSD was studied using FEM in [28,29]. Analysis revealed that only two 

parameters are of importance for the normalized average COD and CSD: the modulus 

ratio of the cracked and the support layers in direction transverse to the crack and the 
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ratio of their thickness. Based on this analysis simple empirical relationships (power 

laws) were suggested. 

The COD and CSD dependence on crack density was analyzed theoretically in [18] and 

studied using FEM in [38]. It was shown that if the crack density is high the stress 

perturbations of two neighboring cracks interact and the average stress between cracks 

at the given applied load is lower. It means that the COD and CSD of interacting cracks 

are smaller than for non-interactive cracks.  

All these studies and analyses assume a linear elastic material with idealized geometry 

of cracks. The only correct way to validate these assumptions is through experiments. 

To study experimentally the COD and the CSD, the full-field measurement technique 

Electronic Speckle Pattern Interferometry (ESPI) [36,37] was used in this work. 

The main objectives of the present study are to visualize the displacement field on the 

edge of a [0, +704, -704]s Glass Fiber/Epoxy (GF/EP) laminate specimen with multiple 

transverse cracks and to analyze the crack face displacement dependence on the applied 

mechanical load. Using the displacement map, it is possible to obtain the displacement 

profiles along the tensile-axis. The different profiles drawn along the specimen edge at 

several distances from the mid-plane correspond to the different plies. By studying the 

displacement discontinuities, we can measure the crack face displacements 

corresponding to the cracks in the measurement field. A comparison between the COD 

and the CSD (for the same crack) is given in this chapter.  

5.2. Experimental technique and material 
5.2.1  Experimental technique: ESPI 
 
The principle of ESPI is based on the interference of two coherent laser beams: 

reference beam and observation beam. For in-plane measurement, the surface is 

illuminated by a coherent beam and the surface roughness causes multiple phase 

differences that create random interference. Hence, a Charge Coupled Device CCD 



 

108 
 

camera sensor collects a randomly distributed light intensity called speckle. Then, the 

first resulting speckle interferogram is transferred to a computer, and saved in memory. If a 

point of the surface is subjected to a displacement, the local speckle pattern undergoes 

the same displacement. The intensity of each speckle grain is also likely to vary because 

of the phase difference created by the displacement. Then the speckle interferogram is 

changed. This second interferogram is subtracted pixel by pixel from the first one. The result is 

rectified and displayed as a set of bright and dark fringes, known as correlation fringes, which 

constitute a contour map of the displacement of the object surface (see Fig. 5.1).  

 
Figure 5.1. Necessary steps to measure the displacement using ESPI. 

 

In our case, the surface is illuminated by two coherent beams that form the same angle 

θ  with respect to the normal studied surface, so the corresponding speckle patterns also 

interfere. Fig. 5.2 shows a schematic setup for the in-plane deformation measurement by 

ESPI. 

 
Figure 5.2. Schematic of ESPI setup 
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The resulting light intensity is given by [53] 

( )),(cos),(),(0 zxzxIzxII M φ+=       (5.1) 

MII ,0 and φ are respectively the background intensity, the modulation intensity and the 

phase, which is a random number directly linked to the speckle pattern of each beam. 

In order to implement the phase-shifting technique [54,55], a piezoelectric device is 

used to introduce a 2
π  phase shift in one of the two beams. The intensity images 

3210 ,,, IIII  and 4I  corresponding to phase shifts of respectively 2
3,,2,0 πππ and 

π2 are recorded so that the phase maps can be calculated using the following equation 

corresponding to the five-frame algorithm: 
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),( zxU is the relative displacement along the x-axis corresponding to a passage from an 

initial loading state to a final loading state. ),( zxU is proportional to φ∆  the phase 

difference between these two states: 

( )
λ

θπφφφ ),()sin(4 zxU
initialfinal =−=∆       (5.3) 

where θ is the incidence angle of the illumination beams, λ is the wavelength of the 

applied laser, in our case °= 45θ  and the laser wavelength  nm638=λ . 

The recordings of the phase maps for the initial and the final states lead to the relative 

displacement ),( zxU at each point of the specimen surface. This displacement map 

corresponds to a σ∆  increase of the average stress applied to the specimen. The cracks 

naturally correspond to discontinuities of the phase difference at the crack locations [56] 

and lead to displacement jumps on displacement profiles. 
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ESPI can provide full-field deformation information of different materials with a very 

high-precision. However it has a very high sensitivity, which corresponds to a fraction 

of the laser wavelength, in our case we expected about 15 nm as sensitivity [36]. Hence, 

the results can be easily influenced by external factors such as noise and vibration.  For 

that reason tests should be carried out in relatively quiet circumstances. Excessive 

displacement can be a source of de-correlation [54]. 

5.2.2  Material 
 
The [0, 704,-704]s laminate (see the geometrical details in Fig. 5.3) was made of glass 

fiber/epoxy using vacuum bag technique. The thickness of the laminate is 2.75 mm. 

 
Figure 5.3. Schematic view of the [0,704,-704]s laminate lay-up. (Z-axis is in the 

thickness direction) 
 

 The elastic properties obtained in tests on unidirectional and angle-ply composite 

specimens are, see [2]: 

Longitudinal modulus E1(GPa) = 44.7 

Transverse modulus E2(GPa) = 12.7 

Poisson’s ratio ν12 = 0.297 

In-plane shear modulus G12(GPa) = 5.8 

Thermal expansion coefficient C/1010 6
LT °×=− −αα  

Specimens of 20 mm width were reinforced with GF/EP end tabs in the gripping area. 
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A free length between tabs was 110 mm. The tensile loading to introduce damage in 

form of microcracks was applied using an INSTRON tensile testing machine with 

displacement rate of 3 mm/min. Cracks initiate first in the -70 layer, which is two times 

thicker than the +70 layer and propagate through the whole width of the specimen. At 

higher applied stresses, cracks appear in the +70 layer. The presence of these cracks (in 

+70 layer) affect the opening displacement of the large cracks in the -70 layer. 

5.3. Results 
5.3.1  Normalized relative displacement measurement 
 
The specimen edge is illuminated by two beams which come from the same laser that 

has mµλ 638.0= as wavelength. These beams illuminate the object at equal but 

opposite angles θ±  to the surface normal (see Fig. 5.4). Using this method of 

illumination, the measurement direction is in the x-axis direction which is the tensile-

axis. 

 
Figure 5.4. Symmetric illumination 

 

The digitization of the mmmm 1010 × image is performed at 512512 × pixels, thus the 

pixel size is md µ5.19= . To get the displacement map, the image corresponding to the 

phase difference was averaged using a [ ]1111× filter kernel. 

Fig. 5.5 shows the X-displacement profile in the central ply (-70°) when the cracks were 

first initiated. The displacement discontinuities caused by the cracks are clearly visible. 
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Figure 5.5. Profile of the relative displacement along the mid-plane (on the specimen 

edge) corresponding to a variation of the relative average stress MPa497.0=∆σ  
 

These displacement jumps indicate the presence of two cracks in the region of study.  

The displacement slope (strain) is smaller in the area at the vicinity of the crack 

surfaces. It certainly results from the boundary condition with traction free crack 

surfaces. Just before and after a displacement jumps, we detected small regions where 

the displacement slope (strain) has a minimum. We have calculated the displacement 

jumps by evaluating the displacement difference between these regions of low strain. 

Because of the 70° fiber orientation, the crack displacement discontinuity measured on 

the edge is not directly COD and neither the CSD. It is a projection of both these 

displacements on the specimen edge plane (Fig. 5.4). By definition, the crack opening 

displacement (COD) is transverse to the fiber direction and the sliding displacement 

(CSD) is in the fiber direction. The displacement jump is defined as a relative 

displacement (RD) which is related to the COD and the CSD by this relationship: 

α×+α×= cosCSDsinCODRD x        (5.4) 

where α is the fiber orientation of the damaged studied plies. 
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The displacement gap observed on the edge corresponds to a certain change in the 

applied average stress σ∆ . In other words σ∆ is the increase of the average stress 

applied to the sample ( initialfinal σσσ −=∆ ). Hence, the presented displacement data 

correspond to this load change. 

In order to perform comparative analysis for several applied load levels the relative 

displacement (RD) has to be normalized with respect to the relative average stress σ∆ . 

Thus, the results presented in the following for the normalized relative displacement 

(RDn) correspond to 1 MPa of the applied stress to the laminate, where the lower index 

n is used to indicate the normalized values. 

For an average stress increase from 27.01MPa to 27.51MPa a mµ189.0  and mµ196.0  

relative crack face displacement was measured for the first and the second crack, 

respectively. It corresponds to MPaµmRD n /380.01 =  and  MPaµmRD n /394.02 =   for 

the normalized relative displacement at the averaged applied 

stress MPaav 26.27
2

51.2701.27
=

+
=σ . 

It is also possible to estimate the displacement measurement resolution by evaluating 

the measurement noise. The physical quantity that is initially measured is the phase 

difference φ∆ . 

The displacement is thereafter obtained using equation (5.3). We have 

calculated 11fraw φφ −∆ : subtraction between the raw phase difference and the phase 

difference smoothed using a [ ]1111×  pixels filtering kernel. This calculation was 

performed for 150 pixels randomly selected in the measurement field but far from the 

cracks. In these regions, the displacement jumps are outside the filtering kernel and the 

displacement variations are slow. The filtering being rather strong, it can then be 

considered that the subtraction corresponds essentially to the noise that affects rawφ∆ . 
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For our 150 pixels sample, we have found that the standard deviation of the noise is: 

radS raw 62.0=∆φ . Using equation (5.3), it is then possible to estimate the standard 

deviation of the noise that affects the displacement measurement if no filtering is used: 

µmSU 044.0= . If the data is smoothed using a [ ]nn ×  filtering kernel, the standard 

deviation is divided by n [57]. For n = 11 pixels, we finally obtain µmSU 004.011 = . A 

displacement jump is obtained by subtracting two displacement values corresponding to 

the two crack faces. The standard deviation of the error on the relative crack face 

displacement is then: µmSRD 0057.0004.02 =×=  

Using the displacement map, the displacement profiles were drawn (not shown) along 

the tensile-axis at two different distances from the mid-plane (in the middle of +70° and 

0° layers). Two cracks were detected on the edge of the +70° layer very close the cracks 

in the -70° layer. The normalized relative displacement of these cracks which run along 

fibers in the +70° layer was smaller than those in -70° layer and interface delamination 

between both crack systems was observed. It is not clear at present whether the 

delamination is only at the edge where the stress state due to intersection of two cracks 

and the edge is very complex, or it covers larger zone inside the material. 

For 0° layer, the displacement profile does not show any displacement jumps, which 

means there are no cracks in this layer at this applied stress level.  

The separation of the values of the COD and the CSD is explained in the following 

section. 

5.3.2  Normalized crack opening displacement 
 
The object is illuminated by two beams. To measure directly the COD, theses two 

beams have to illuminate the object at equal and opposite angles to the fiber direction 

axis, which means the bisector of the angle between the first and the second beam has to 
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be in the same direction as fibers of the studied layer (Fig. 5.6). In this case, the 

measurement direction is transverse to the fiber direction. Hence, using this method of 

illumination, we can measure directly the COD. 

 
Figure 5.6. Non symmetric illumination 

 

Fig. 5.7 shows the profile of the displacement transverse to the fibers in the central ply         

(-70°). For an average stress increase from 27.00 MPa to 27.53MPa a m160.0 µ  and 

m166.0 µ  crack face opening displacement was measured for the first and the second 

crack, respectively. It corresponds to MPa/µm300.0CODn =  and  

MPa/µm311.0CODn = . 

 
Figure 5.7. Profile of the displacement transverse to the fiber direction along the mid-
plane (on the specimen edge) corresponding to a variation of the relative average stress 

Δσ = 0.533MPa 
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For the same crack, we measured the normalized relative displacement RDn and the 

normalized crack opening displacement CODn separately, and then we deduced the 

normalized crack sliding displacement CSDn using equation (5.4). 

All results are presented in this following table. 

Table 5.1. A comparison between the COD and the CSD 

 RDn 
(μm/MPa) 

CODn 
(μm/MPa) 

CSDn 
(μm/MPa) 

COD/CSD 
 

Crack 1 0.380 0.300 0.286 1.049 

Crack 2 0.394 0.311 0.297 1.047 
 

For the analyzed GF/EP laminate, Table 5.1 shows that the COD is slightly larger than 

the CSD. The experimental data presented in Table 5.1 are valuable for evaluating 

adequacy of models for thermo-elastic properties degradation of multidirectional 

laminates with cracks [18,38]. In these models the COD and the CSD have been 

calculated assuming linear elastic material behavior even in the high stress 

concentration regions at crack tips where as well known the shear response could be 

very nonlinear and permanent strains could be introduced or interface delamination 

could take place. Idealized geometry of these cracks (straight cracks, perpendicular to 

the midplane, covering the whole layer thickness) is assumed which would not change 

during the service life. Real cracks are often “bridged” by fiber bundles oriented almost 

parallel to the crack plane. It is expected that their effect on COD is marginal whereas 

the crack face sliding could be affected more. 

Using ESPI, we are performing measurements on the edge of the sample, for this reason 

the results can be affected by the edge effect. Even in an absence of damage the stress 

state at the specimen edge is 3-Dimensional [58]. Apart from the edge region the stress 

state follows the laminate theory and only in-plane stresses are active. In the specimen 

edge region out-of-plane stresses may be very high due to differences in thermal 
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expansion coefficients and Poisson’s contraction. Therefore, the specimen edge region 

can be more and differently damaged than the interior part. Even if not (as checked in 

our study), the axial stresses in the edge region are slightly higher and crack face 

displacements may be larger. It has to be stressed that material models for damaged 

laminates are developed for the representative volume element and not for a specimen. 

Therefore, in this context all differences in behavior caused by edge effects should be 

considered as artifacts and their influence estimated and minimized.   It is not clear 

whether the edge effect on COD and CSD is similar. Detailed numerical stress state 

analysis using finite element method is planed to decide how representative the edge 

measurements are. 

In this investigation cracks are treated as non-interactive. The term non-interactive is 

used in the sense that the average normalized COD and CSD are not affected by the 

presence of other cracks in this layer. This may be true in our study with respect to other 

cracks in the same layer but it does not apply with respect to cracks in neighboring 

layer, where in the edge region cracks were very close to the cracks investigated in this 

chapter. Therefore in future a) care should be taken to minimize this interaction when 

significance of each individual crack is analyzed; b) the possible effects of interaction 

between different systems of cracks for most typical cases should be analyzed 

numerically. 

5.4. Conclusions 
 
The displacement field on the edge of a [0/ +704/ -704]s glass fiber/epoxy laminate 

specimens with two intralaminar cracks is studied and the crack face opening 

displacement (COD) and the crack face sliding displacement (CSD) change with the 

applied mechanical load is measured. 
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The presented results prove that Electronic Speckle Pattern Interferometry ESPI can be 

used to measure directly the crack opening displacement and deduce the crack sliding 

displacement. A comparison between these two parameters shows that the COD for this 

laminate is slightly bigger than the CSD. 

The COD and the CSD depend on the materials properties and layer orientation and 

thickness which mean that the ratio (COD/CSD) varies dependent on laminate lay-up 

and therefore more studies on laminates with different lay-ups and material properties 

are required. 

The measurement of COD and CSD at low and high crack density is planned to 

investigate the interaction effects at high crack density. 



 

 



 

 

 



 

121 
 

Chapter 6 
 

Experimental and numerical analysis of the Crack 
Opening Displacement profile in damaged cross-ply 
laminates 
 
 
 
6.1. Introduction 
 
The final macroscopic failure of composite laminate is preceded by initiation and 

evolution of several microdamage modes. On the microscale, the failure can be in the 

matrix, at the fiber/matrix interface or fibers can fail. On the mesoscale, the first mode 

of damage is usually intralaminar cracking in layers with off-axis orientation regarding 

the main load component. These cracks run parallel to fibers in the layer with the crack 

plane being transverse to the laminate midplane. Intralaminar cracks do not usually 

cause the final failure of a laminate, but may significantly impair the effective properties 

of the laminate and serve as a source for other damage modes initiation, such as 

delamination and microcracking in the adjacent plies.  

The degradation of the elastic properties of composite laminates is caused by overload 

on the undamaged layers resulting from reduced average axial stress between two 

cracks in the damaged layer. The reduction of the average stress is due to the crack face 

opening displacement (COD) and the crack face sliding displacement (CSD). In other 

words, the elastic modulus in the loading direction and the corresponding Poisson’s 

ratio decrease.  

The link between the damaged laminate thermo-elastic properties and the microdamage 

parameters (COD and CSD) was established theoretically in [28,29]. It was shown that 
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the details of the relative displacement profile along the crack surface are not important: 

only the average values of these quantities enter the stiffness expressions directly.  

The effect of material properties on the normalized COD was studied experimentally 

using optical microscopy of loaded damaged specimens in [2,34]. It was shown that the 

measured COD profiles and average values are affected by the constraining layer 

orientation and stiffness. Experimental determination of the average COD and CSD 

needs the measurement of the displacement for all points of the crack surfaces, which 

justifies the use of full-field measurement technique Electronic Speckle Pattern 

Interferometry (ESPI). ESPI is an optical technique that provides the displacement for 

every point on a surface and offers the possibility to measure both, the in-plane and out-

of-plane displacement without surface preparation [35]. 

This technique was used in [36,37] to measure the COD for cracks in internal layers on 

the specimen’s edge. It was shown that the profile of the crack on the edge is very close 

to elliptical. 

In a linear elastic model these quantities are proportional to the applied load and, 

therefore, the COD and CSD should be normalized to be used in stiffness modeling. 

Finite element method (FEM) studies were performed to understand which material and 

geometry parameters affect the COD and CSD in [18,28,29] and simple empirical 

relationships (power laws) were suggested. The effect of crack density (number of 

cracks per unit length) on the COD and CSD was analyzed in [18] and studied using 

FEM in [38,59]. It was shown that if the crack density is high the stress perturbations of 

two neighboring cracks interact and the average stress between cracks at the given 

applied load is lower. It means that the COD and CSD of interacting cracks are smaller 

than for non-interactive cracks.  
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The analytical and numerical models for laminate stiffness reduction [2,28,29,38,40] are 

based on idealized assumptions, for example, assuming linear elastic material behavior 

even in high stress concentration region at crack tip as well as linearity in shear loading 

and assuming idealized geometry of these cracks which would not change during the 

service life (delta cracks and small local delaminations at crack tip are neglected). The 

only correct way to validate these assumptions is through experiments. 

The main objective of this chapter is to study intralaminar cracks in surface layers by 

measuring the COD variation along the crack path. For this reason the cross-ply 

laminate with surface cracks was selected. 

In particular, the displacement field on the surface of a [90/0]s and [903/0]s carbon 

fiber/epoxy specimens with multiple intralaminar cracks in the surface layer is studied 

and the relative displacement dependence on the applied mechanical load is measured.  

By looking to the displacement field the cracks appear as singularities and the 

corresponding displacement jumps are directly related to COD and CSD. In axially 

loaded cross-ply laminate the relative sliding displacement of the intralaminar crack 

faces is zero and the measured displacement discontinuity on the surface corresponds to 

COD.  

To investigate the COD profile from surface to the crack tip, measurements were 

performed also on the edge of the specimen. To evaluate the significance of edge 

effects, the COD profile as dependent on the distance from specimen edge was 

measured. To explain the discrepancies between measured and calculated values the 

interaction in terms of COD between cracks in the same layer and cracks belonging to 

the other surface layer were analyzed. Theoretical studies for two extreme cases have 

been reported previously: a) nonuniform crack distribution but assuming that the 

damage is symmetric with respect to the midplane [40,60]; b) staggered crack 
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distribution in surface layers keeping periodicity [43]. In the present work FEM was 

used to simulate the real crack distribution in the specimen. The results are compared 

with experimental COD values obtained in this work and the significance of the 

unsymmetric damage distribution is analyzed. 

6.2. Experimental technique and materials 
6.2.1 ESPI measurements 
 
The principle of ESPI is based on the interference of two coherent laser beams: 

reference beam and observation beam. For in-plane measurement, the surface is 

illuminated by a coherent beam and the surface roughness causes multiple phase 

differences that create random interference. Hence, a Charge Coupled Device CCD 

camera sensor collects a randomly distributed light intensity called speckle. Then, the 

first resulting speckle interferogram is transferred to a computer, and saved in memory. 

If a point of the surface is subjected to a displacement, the local speckle pattern 

undergoes the same displacement. The intensity of each speckle grain is also likely to 

vary because of the phase difference created by the displacement. Then the speckle 

interferogram is changed. This second interferogram is subtracted pixel by pixel from 

the first one. The result is rectified and displayed as a set of bright and dark fringes, 

known as correlation fringes, which constitute a contour map of the displacement of the 

object surface. In our case, the surface is illuminated by two coherent beams that form 

the same angle θ  with respect to the normal studied surface, so the corresponding 

speckle patterns also interfere.  

More details regarding the implementation of the phase-shifting technique and data 

reduction are given in [53-55]. In our case the incidence angle of the illumination beams 

°= 45θ , the wavelength of the applied laser  nm638=λ . 

The recordings of the phase maps for the initial and the final states lead to the relative 

displacement at each point on the specimen surface. This displacement map corresponds 
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to a σ∆  increase of the average stress applied to the specimen. The discontinuities of 

the phase difference naturally correspond to the crack locations and lead to 

displacement jumps on displacement profiles. ESPI can provide full-field deformation 

information of different materials with a very high-precision. However it has a very 

high sensitivity, which corresponds to a fraction of the laser wavelength, in our case we 

expected about 15 nm as sensitivity [35]. Hence, the results can be easily influenced by 

external factors such as noise and vibration.  For that reason tests should be carried out 

in relatively quiet circumstances. Excessive displacement can be a source of de-

correlation [54]. 

6.2.2 Materials 
 
Carbon fiber/epoxy [90/0]s and [903/0]s laminates were used. The elastic properties of 

the unidirectional composite are the following: one prepreg ply thickness 0.3 mm, 

longitudinal modulus: E1 (GPa) = 118, transverse modulus: E2 (GPa) = 9, Poisson’s 

ratio: 3.012 =ν , shear modulus: G12 (GPa) = 3.8. 

6.3. Numerical parametric analysis of COD 
6.3.1 Determination of COD 

 
The average CSD and COD are defined as  
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Here iu∆ is the displacement gap between corresponding points at both crack faces. 

Index 1 denotes the displacement in fiber direction (sliding) and index 2 in the 

transverse direction (opening), z-is the coordinate in the laminate thickness direction 

with origin at the ply interface, 90t  is thickness of the 90-layer. 

In linear model the displacements 90
2u  and 90

1u   are linear functions of the applied 

average stress and the ply thickness. Therefore, they are normalized with respect to the 
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far field (CLT) shear stress 90
0xyσ  and transverse stress 90

0xσ  in the 90-layer (resulting 

from the macro-load { }LAM
0σ and temperature difference T∆ ) and with respect to the 

thickness of the cracked layer 90t  
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Elastic constants 2E  and 12G of the UD composite are introduced in (6.2) to have 

dimensionless descriptors. The influence of each crack on thermo-elastic laminate 

constants is represented by 90
2nu  and 90

1nu . 

6.3.2 FEM analysis 
 
In all calculations the commercial code ABAQUS was used and a 3-D model was 

created. All plies are considered to be transversely isotropic, and hence the thickness 

direction related properties are taken as 32 EE = ; 1312 GG = and 1312 νν = . We used 

4.023 =ν  and GPa2.3G23 = . 

In order to mesh volumes, 3D continuum (C3D8) 8-node linear brick elements were 

used. A very fine mesh was used in each FE model. In the thickness (z) direction the 

90° layer and the 0° layer were divided into 100 and 60 elements respectively with 

refined mesh near the crack surfaces. The number of elements in y-direction was 3 

which as described below is more than sufficient for the used edge conditions. Constant 

displacement corresponding to 1% average strain was applied to the repeating unit in x-

direction at x=L, see Fig. 6.1.  

On the front edge (y=0) and the far-away edge (y=W) coupling conditions were applied 

for normal displacements (UY= unknown constant). In this way edge effects are 

eliminated and the solution does not depend on y-coordinate. It corresponds to solution 

for an infinite structure in the width direction. Obviously these conditions correspond to 
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generalized plane strain case and the size of the model in the y-direction could be 

reduced or 2D generalized plane strain elements used instead.  For the “Specimen 90-n” 

model cracks were introduced in their real positions and UZ = 0 was applied on the edge 

x=L. On the edge x=0, all displacements and rotations were equal to zero. These are 

clamped edge conditions approximately representing the real tensile test conditions with 

gripped ends of the specimen.  

Modeling the damaged laminate as containing uniform distribution of cracks “Unit cell 

90-n” model, with symmetry boundary conditions at x=0 and constant axial 

displacement applied at x=L was used.  

The displacement in x-direction for the nodes at the crack surface was used to calculate 

the COD. Equation (6.2) was used to calculate ( −
n2U ) the normalized displacement of 

the ‘-‘ face of the crack and  ( +
n2U ) the normalized displacement of the ‘+‘ face of the 

crack (see Fig. 6.1). 

6.4. Results 
6.4.1 [90/0]s CF/EP laminate 
6.4.1.1 Positions of intralaminar cracks 
 

A [90/0]s specimen of 17mm width and 1.2mm thickness was reinforced with glass 

fiber/epoxy end tabs in the gripping area. A free length between tabs measured 110mm. 

The sample was loaded in tension to 1% applied strain with displacement rate of 0.5 

mm/min in order to introduce damage in form of intralaminar cracks in the 90-layer. 

With this load 3 cracks were created in the top layer and 4 cracks were created in the 

bottom layer. The positions of all cracks were given in Fig. 6.1(a). The studied crack is 

shown with dotted lines.  
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Figure 6.1. Positions of cracks in damaged [90/0]s CF/EP laminate. (a): “Specimen 90-
1” model (The crack analyzed in detail is shown with dotted line), (b): “Unit cell 90-1” 

model used with uniform distribution of cracks 
 

The cracks in the 90° layer were observed using optical microscopy. They appear in 

surface layers, hence the name “surface cracks”. Observing specimen edges the shape of 

the studied crack was different from one edge to another. For this reason, the COD on 

each edge was measured separately.  

6.4.1.2 COD measurement using ESPI 
 
Fig. 6.2 shows the x-displacement profile in the top (90°) layer at the thickness 

coordinate 8.0Zn = , (
90t
zZn =  where z is measured from the layer interface) obtained 

using the ESPI method described in Section 6.2.1. The displacement discontinuities 

caused by the cracks are clearly visible.  
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Figure 6.2. Profile of the x-displacement in the top 90° layer of [90/0]s CF/EP laminate 
on edge y=W at thickness coordinate Zn=0.8 caused by variation of the relative average 

stress MPa65.4=σ∆  
 

In Fig. 6.2, just before and after a displacement jump, we detected small regions where 

the displacement slope (strain) has a minimum. It certainly results from the boundary 

condition with traction free crack surfaces. We have measured the displacement jumps 

by evaluating the displacement difference between these regions of low strain. Because 

of the 90° fiber orientation, the displacement discontinuity measured on the edge is 

directly COD (displacement gap between corresponding points on both crack faces).  

The displacement gap corresponds to a certain change in the applied average stress σ∆  

( initialfinal σσσ −=∆ ).In order to perform comparative analysis for several applied load 

levels the crack opening displacement (COD) has to be normalized using equation (6.2) 

with respect to the far field (CLT) transverse stress 90
0xσ  in the layer (resulting from the 

change of the average stress σ∆ ) and with respect to the thickness of the cracked layer 

90t .  

To investigate the COD´s profile along the thickness coordinate of the damaged 90° 

layer, the COD of the studied crack was measured at different nZ  values. Fig. 6.3 shows 
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the x-displacement profile in the top (90°) layer at four different values (Zn= 0, 0.2, 

0.4and 0.6). 

 
Figure 6.3. Profile of the x-displacement in the top 90° layer of [90/0]s CF/EP laminate 

at different Zn on edge y=W. The average stress change  MPa65.4=σ∆  
 

The measured COD is increasing with increase of the thickness coordinate. It varies 

from 0 (Zn=0) to 0.0910µm (Zn=0.6).  

It is also possible to estimate the displacement measurement resolution by evaluating 

the measurement noise, see [36] for details. Calculation was performed for 100 pixels 

randomly selected in the measurement field but far from the cracks. In these regions, the 

displacement jumps are outside the filtering kernel and the displacement variations are 

slow. The standard deviation of the noise that affects the displacement measurement if 

no filtering is used was estimated: µm023.0SU = . If the data is smoothed using a 

[ ]nn ×  filtering kernel, the standard deviation is divided by n  [57]. For n  = 11 pixels, 

we finally obtain µm0021.0S 11
U = . A displacement jump is obtained by subtracting two 
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displacement values corresponding to the two crack faces. The standard deviation of the 

error on the crack face displacement is then: µm0029.00021.02SCOD =×=  

The measurement of this standard deviation was obtained for MPa65.4=σ∆ . Equation 

(6.2) is used to normalize CODS  with respect to the far field (CLT) transverse stress 90
0xσ  

in the 90° layer and with respect to the thickness of the cracked layer 90t . The 

normalized standard deviation is 1278.0S n
COD = . 

6.4.1.3 Comparison with FEM for [90/0]s laminate 
 
To compare the experimental results with the numerical results, the COD was calculated 

using FEM for the two different models described in Section 6.2.1. The “Specimen 90-

1” model is shown in Fig. 6.1(a) where all cracks are presented at the real positions. The 

COD of the studied crack is calculated from this model. The “Unit cell 90-1” model is 

shown in Fig. 6.1(b) representing uniform crack distribution with the real crack density 

(3 cracks / 110 mm). 

The profile of the normalized crack face displacement nU 22  along the thickness 

coordinate Zn is shown in Fig. 6.4. The nU 22  is sum of the normalized displacement of 

the ‘-‘ face of the crack and the ‘+’ face of the crack as shown in Fig. 6.1 

( −+ += nnn UUU 2222 ).The normalized measured COD which is presented in Fig. 6.4 by 

squares is the displacement gap between corresponding points at both crack faces. 

Measurements at each position were repeated 2-3 times with unloading and loading 

again. There are some differences in measured values but there is no systematic trend 

regarding to repetition of the test. The agreement between experimental results and 

“Specimen 90-1” model is very good on both edges of the specimen. In contrary the 

agreement with the “Unit cell 90-1” model based on uniform crack distribution with 

average spacing is less good: the model underestimates the COD. 
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Figure 6.4. Crack opening displacement profiles along the thickness of 90° layer in 

[90/0]s CF/EP laminates ((a):COD measured on edge y=0 and (b): COD measured on 
edge y=W)  

 
Fig. 6.5 shows the variation of normalized crack face displacement nU 22   along the 

width coordinate Yn. (
2

W
yYn = ) on the surface of the specimen. In Fig. 6.5 y varies 

from 0 to W/2.  
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There is no noticeable edge effect on the COD proving that the edge measurements are 

representative for the main domain too. FEM results using “Specimen 90-1” model 

(suppressing edge effects in the analysis) are in good agreement with measurements on 

the specimen surface. As in Fig. 6.4 the “Unit cell 90-1” model underestimates the 

COD. Reasons for that will be analyzed in Section 6.4.3. 

 
Figure 6.5. Crack opening displacement variation along the width of [90/0]s CF/EP 

laminates on the surface of the specimen  
 

6.4.2 [903/0]s CF/EP laminate 
6.4.2.1 Positions of cracks 
 
The [903/0]s specimen of 20mm width and 2.4mm thickness reinforced with glass 

fiber/epoxy end tabs had 130mm free length between tabs. The sample was loaded in 

tension to 0.8% applied strain with displacement rate of 0.5 mm/min. With this load 2 

cracks were created in the top layer and 2 cracks in the bottom layer. The positions of 

all cracks are given in Fig. 6.6(a). The studied crack is shown with dotted lines. The 

shape of the studied crack was different at the two edges of the specimen. For this 

reason, the COD was studied on each edge separately.  
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Figure 6.6. Positions of cracks in damaged [903/0]s CF/EP laminate. (a): “Specimen 90-
3” model in FEM (the crack analyzed in detail is shown with dotted line), (b): “Unit cell 

90-3” model used with uniform distribution of cracks 
 

6.4.2.2 COD measurement using ESPI and FEM calculations 
 
The COD measurement routine was described in detail in Sections 6.2.1 and section 

6.4.1.2. 

To compare the experimental results with the numerical results, the COD was calculated 

using two different models: “Specimen 90-3” shown in Fig. 6.6(a) and “Unit cell 90-3” 

shown in Fig. 6.6(b) (uniform crack distribution with the real crack density 2 cracks / 

130 mm). 

The normalized crack face displacement nU 22  is a sum of the normalized displacement 

of the ‘-‘ face and the ‘+’ face of the crack shown in Fig. 6.6 ( −+ += nnn UUU 2222 ). The 

edge view of nU 22  along the thickness coordinate is shown in Fig. 6.7.  



 

135 
 

 
Figure 6.7. Crack opening displacement profiles along the thickness of 90° layer in 

[903/0]s CF/EP laminates ((a):COD measured on edge y=0 and (b): COD measured on 
edge y=W) 

 

The conclusions are the same as in section 6.4.1.3: a) agreement between experimental 

results and “Specimen 90-3” model where cracks are in their real positions is very good; 

b) the “Unit cell 90-3” model significantly underestimates the COD. 
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Fig. 6.8 shows the profile of normalized crack face displacement nU 22  along the width 

coordinate Yn, (
2

W
yYn =  where y varies from 0 to W/2). In this figure the COD is 

slightly larger closer to the edge (the left side) but it cannot be an edge effects. Edge 

effect (if any) is expected in a much smaller region at specimen edge. Even in this study 

the model with real crack positions gives much better agreement with measurements 

than the model based on uniform crack distribution with damage being symmetric with 

respect to the midplane. 

 
Figure 6.8. Crack opening displacement profiles along the width of [903/0]s CF/EP 

laminates  
 

6.4.3 The effect of the unsymmetrical crack distribution on the axial 
modulus 
 
Results presented above showed that the measured COD agreed well with COD 

calculated using models representing the real crack distribution in the specimen and the 

agreement was not so good comparing with models using uniform crack distribution. 

Since CODs are governing the elastic modulus reduction, similar effect of crack 
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distribution is expected on the specimen axial modulus. In this section the interaction 

effect on modulus is studied by analyzing cross-ply [ ]sn0/903  n=1,3 laminates made of 

materials with elastic constants given in Table 6.1. All results are presented for the same 

crack density (2 cracks/130 mm) in the surface 90-layer. The used four models are 

shown in Fig. 6.9. 

Table 6.1. Materials properties used in simulations 
Material E1 (GPa) E2 (GPa) 12ν  23ν  G12 (GPa) G23 (GPa) 

CF/EP 118 9 0.3 0.4 3.8 3.2 

GF/EP 45 15 0.3 0.4 5 5.36 

 

 
Figure 6.9. Models used to investigate the effect of interaction between cracks on the 

axial modulus ((a): Model A, (b): Model B, (c): Model C and (d): Model D). 
 

In model A all cracks are in their real positions. Then the shift between the previously 

studied crack and its neighbor crack in the bottom 90° layer presented by d   in Fig. 6.9 

is used as a parameter in laminate Young’s modulus calculations. 

Model B is used to determine the axial modulus of a laminate with symmetric damage 

with respect to midplane and with uniform crack spacing. This is the most commonly 

used model. 
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In Model C, the cracks which are in the top 90° layer are in their real positions with 

symmetry boundary condition on z=0. This means that damage is symmetric with 

respect to midplane (no shifts between cracks in the top and bottom layers) but the 

spacing is not uniform. This model was used in [60] to analyze the effect of the 

nonuniformity of cracks  in one layer. 

Finally in model D, the cracks in the top layer are in their real positions. The left crack 

in the bottom layer is placed symmetrically to the crack in the top layer. The right crack 

in the bottom layer is shifted by distance d  whereas the distance d  varies from 0 to 

5mm. When d  approach to zero this model should give the same result as Model C. 

In all cases the normalized axial modulus of the laminate is obtained calculating using 

FEM the average applied stress and using definition of modulus. The effect of the 

interaction between cracks on axial modulus of [903/0]s and [903/03]s laminates is 

shown in Fig. 6.10(a) for CF/EP  and in Fig. 6.10(b) for GF/EP.  
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Figure 6.10. Effect of crack interaction on axial modulus of [903/0]s and [903/03]s 

laminates. (a): for CF/EP, (b): for GF/EP 
 

Comparing models where the damage is assumed to be symmetric with respect to the 

specimen midplane (Model B and C) we conclude that assuming uniform crack spacing 

the modulus reduction is larger. This result agrees with conclusions in [60] where the 

effects of nonuniform spacing were analyzed. Since the crack density is low the effect 

of crack spacing nonuniformity in one layer is small. The next question is the effect on 

modulus of the shift between  crack locations in the top and in the bottom layer. 

Predictions according to model D, where only one crack in the bottom layer is shifted, 
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show that with increasing shift d the decrease in the specimen modulus is much larger 

than due to non-uniform spacing in the top layer. Finally, Model A renders the lowest 

stiffness because the crack in the bottom layer on the left is already shifted and even at 

0=d  for the crack on the right the specimen modulus is reduced. Further modulus 

reduction (similar to the one in Model D) is observed with increasing d . 

6.5. Conclusions 
 
The crack opening displacements (COD) and the crack density are the main parameters 

governing the reduction of laminate thermo-elastic properties. To validate the 

assumptions of linear elasticity and sharp crack geometry the COD of intralaminar 

cracks in surface 90-layers of cross-ply laminates with two different lay-ups was 

measured using Electronic Speckle Pattern Interferometry (ESPI) and analyzed using 

finite element method (FEM).  

It was found that the COD measured from the displacement field on the specimen 

surface does not show any enhancement close to specimen edges proving that the 

measurements on edges are representative for the bulk of the laminate. 

Crack opening profile measurement on specimen edges was performed and the obtained 

profile compared with calculations according to several FEM models. It was shown that 

the agreement of CODs is very good if in FEM the whole specimen is modeled with 

crack positions exactly as in the tested specimen. FEM calculations assuming uniform 

crack spacing in layers (the same spacing in the top and in the bottom damaged layer) 

underestimate the COD.  

These results prove that linear elastic analysis and straight sharp crack assumption for 

this material is valid at least for cracks introduced below 1% applied strain.  

Since COD is related to the laminate elastic modulus FEM parametric analysis was 

performed to find the nonuniformity parameters affecting most the modulus. It was 
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found that asymmetry in the damage with respect to the laminate midplane has larger 

effect on modulus than the nonuniform crack spacing in one layer. The shift in location 

between cracks in the top and bottom 90-layer is the dominating parameter. 
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Chapter 7 
 

Conclusions and perspectives 
 
 
Intralaminar cracks are the first mode of damage; they can trigger other damage modes 

and they change thermo-elastic properties of laminates. It has been shown that these 

phenomena are in a unique way related to transverse crack opening (COD) and sliding 

(CSD). The presented thesis is aimed to investigate these relationships and parameters 

affecting them.  

The COD of an interactive crack is presented as a product of the COD of non-

interactive crack and an interaction function which value is equal or smaller than one. 

The tanh() form of the interaction function for COD is introduced and parameters 

determined using data generated by FEM for large variety of geometrical and material 

parameters considering cracks in surface as well as inside layers. Comparison with 

direct FEM calculations show that the interaction function gives a very good axial 

modulus and Poisson’s ratio prediction for all possible crack densities and cross-ply 

laminates. The interaction function derived for cross-ply laminates is adapted for more 

complex lay-ups and its accuracy is demonstrated for quasi-isotropic laminates. 

The COD of non-interactive cracks is calculated directly from FEM. As perspective, a 

new expression of the COD “new power law” can be investigated for different materials 

and different lay-ups. 

Earlier developed model for elastic properties of damaged symmetric laminates 

was generalized for case when the intralaminar crack distribution is non-uniform. This 

model was applied to cross-ply laminates with cracks in 90-layers located in the middle 

or on the surface. The dependence of the damaged cross-ply laminate axial modulus (it 
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depends on COD only) on the non-uniformity parameter in a repeating element 

containing two cracks was analyzed numerically. The non-uniformity parameter is 

defined as the ratio of the smallest and the average spacing between cracks. COD values 

needed as an input in the model were calculated using FEM in generalized plane strain 

formulation and stiffness calculations were performed for GF/EP as well as CF/EP 

laminates with low and also with high crack density. 

An approximate “double-periodic” approach was proposed stating that the COD of a 

crack with different distances to the closest neighbors can be calculated as the average 

of two solutions for equidistant cracks. It was shown numerically for cross-ply 

laminates that in internal layers very accurate COD values for cracks with non-uniform 

spacing and elastic modulus values can be obtained using this approach. For cracks in 

surface layers this approach is accurate only for low crack densities. The applicability of 

the “double-periodic” approach to sliding displacement of non-uniformly distributed 

cracks has not been investigated. 

As perspectives, the dependence of the COD on the non-uniformity parameter can be 

investigated for more complex lay-ups. 

In chapter 4, methodology has been developed for approximate evaluation of all 

thermo-elastic constants of general symmetric laminates with cracked 90-layers. It is 

based on use of stress solutions from shear lag and Hashin’s models in a general 

framework where laminate macroscopic properties are expressed through average stress 

perturbation between two cracks. This methodology has been validated with FEM and 

experimental data.  

As expected all predicted curves approach to the ply-discount model predictions which 

assume almost zero transverse and shear properties of the damaged layer. The 
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predictions of the Hashin’s model are always conservative but may be close to 

experimental data if the layer is relatively thick and local delaminations occur. 

Comparing the shear lag model with FEM the accuracy of axial modulus determination 

is the same as the accuracy of thermal expansion coefficients. The shape function of the 

elastic property reduction from shear lag model can give a good agreement to FEM 

results if the shear lag parameter (thickness of the resin layer in our case) is used as a 

fitting parameter. For given material and lay-up all properties can be fitted with the 

same value of the parameter. It applies even for quasi-isotropic laminates if the ply 

thickness is the same. 

In this part, only transverse cracks in 90-layers are studied. As perspectives, the effect 

of delamination on the COD and on the degradation of the elastic properties can be 

investigated using FEM and it can be compared with analytical models (shear lag and 

Hashin´s models). 

In the last chapter of this thesis, the COD of intralaminar cracks in surface 90-

layers of cross-ply laminates with two different lay-ups was measured using Electronic 

Speckle Pattern Interferometry (ESPI) and analyzed using finite element method 

(FEM).  

It was found that the COD measured from the displacement field on the specimen 

surface does not show any enhancement close to specimen edges proving that the 

measurements on edges are representative for the bulk of the laminate. 

Crack opening profile measurement on specimen edges was performed and the obtained 

profile compared with calculations according to several FEM models. It was shown that 

the agreement of CODs is very good if in FEM the whole specimen is modeled with 

crack positions exactly as in the tested specimen. FEM calculations assuming uniform 

crack spacing in layers (the same spacing in the top and in the bottom damaged layer) 
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underestimate the COD. These results prove that linear elastic analysis and straight 

sharp crack assumption for this material is valid at least for cracks introduced below 1% 

applied strain. Since COD is related to the laminate elastic modulus FEM parametric 

analysis was performed to find the nonuniformity parameters affecting most the 

modulus. It was found that asymmetry in the damage with respect to the laminate 

midplane has larger effect on modulus than the nonuniform crack spacing in one layer. 

The shift in location between cracks in the top and bottom 90-layer is the dominating 

parameter. 

Using ESPI, the COD is measured for transverse cracks on the edge of the sample. As 

perspectives, the effect of delamination on the COD can be studied experimentally and 

some measurements using tomography can be done to investigate the COD inside the 

sample.  
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Appendix 
 
 
Appendix 1.   Homogenized stiffness of damaged laminate in 
global coordinates 
 
Using divergence theorem it is easy to show [45] that for stress states that satisfy 

equilibrium equations the average stress applied to external boundary is equal to volume 

averaged stress. This statement is correct under assumption that stresses at internal 

boundaries (cracks) are zero. For laminated composites with applied average stress 

{ }LAM
0σ  this equality can be written as  
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In (A1.1) the volume average is calculated expressing the integral over the laminate 

volume as a sum of volume integrals over N  layers. Upper index a is used to indicate 

volume averages. Using Hook’s law and averaging it over a layer we have for averages 

the same form as for arbitrary point 
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Substituting (A1.2) in (A1.1) and using the relationship between volume averaged strain 

in a layer and the displacements applied to external and internal boundaries [45,46] 
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we obtain 
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In (A1.4) { }β  is the Vakulenko-Kachanov tensor [46] written in Voigt notation. In 

Cartesian coordinates 

( )dSnunu
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S
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+= ∫ 2
11β         (A1.5) 

Integration in (A1.5) involves the total crack surface Sc in the layer, ui are displacements 

of the points on the crack surface, ni is outer normal to the crack surface, V is the 

volume of the layer. Obviously (A1.5) represents the effect on stiffness of the crack face 

displacements (opening and sliding). Since ijβ  and strain are tensors for both of them 

we have the same transformation expressions between local and global coordinates 

{ } [ ] { }k
T
kk T ββ =           (A1.6) 

Expression for  { }kβ  in local coordinates is given by (A2.9) in Appendix 2  

The laminate theory stress { }k0σ in the k-th layer in local coordinates can be expressed 

through the applied laminate stress as follows 
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Substituting (A2.9) with (A1.7) in (A1.6) and further in (A1.4) we obtain after 

arranging the result in form (3.5), the form of stiffness matrix of the damaged laminate 

given by (3.6). 
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Appendix 2  Incorporation of COD and CSD in Valulenko-

Kachanov tensor in local coordinates  

We consider a representative Volume Element (RVE) of a layer with M cracks. 

Schematic picture of a non-uniform crack distribution with varying spacing between 

cracks, ml , m=0,1,2…M is shown in Fig. 1. Index denoting k-th layer is omitted to 

simplify explanation. The cracked layer is considered in its local coordinates with 

indexes 1, 2 and 3 corresponding to longitudinal, transverse and thickness directions. 

For transverse cracks the coordinates of the normal vector to the two faces of crack 

surface are 

031 == nn       12 ±=n    (A2.1) 

If the crack density is high the stress perturbation zones of individual cracks overlap and 

the crack face displacements depend on the distance between cracks. Using the 

definition (A1.5) for ijβ  we see that the matrix contains only two non-zero elements: 

12β  and 22β  
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In (A2.2) t  is the cracked layer thickness, ( )zu m
1  and ( )zu m

2  are sliding and opening 

displacements of the m-th crack, symbol + or – denotes the particular crack face 

according to Fig. 1. 

 As in previous papers for uniform crack distribution [28,29] we introduce also here 

normalized  opening and sliding displacements of crack faces ( 20σ  and 120σ  are CLT 

stresses) 
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 Introducing average values of displacements of each crack surface over ply thickness 
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The average value of average displacements on both surfaces is 
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Using (A2.4) and (A2.5) the expressions for 12β and 22β  are 
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We indicate here that the displacements will be mostly affected by normalized distances 

to the two closest neighboring cracks. These expressions can be rewritten in terms of 

average crack density and average (over all cracks) displacements 

au112 ρβ −=      au222 2ρβ −=     (A2.7) 
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Normalization (A2.3) can be applied also to m
au1  and m

au2  using notation m
anu1 , m

anu2 for 

the result. Expressions for ijβ  in (A2.8) in result of normalization are slightly modified. 

It is easy to check that they can be presented in the following matrix form 
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In (A2.9) nρ  is normalized crack density in the layer defined by (3.4). 

 



 

 



 

 



 

157 
 

References 

1. Roeseler WG, Sarh B, Kismarton MU. Composite structures: the first 100 years. 

16th International Conference on Composite Materials. ICCM 16, July 2007, 

Japan.  

2. Varna J, Joffe R, Akshantala NV, Talreja R. Damage in composite laminates 

with off-axis plies. Composites Science and Technology 1999; 59 (14): 2139-

2147. 

3. Nairn J, Hu S. Matrix microcracking, In: Pipes RB, Talreja R, editors. 

Composites Materials. Series, Damage Mechanics of Composite Materials, 

Amsterdam: Elsevier 1994; 9: 187-243. 

4. Nairn J. Matrix microcracking in composites, In: Kelly A, Zweben C, Talreja R, 

Manson J-A, editors. Composite Materials, Polymer Matrix Composites, 

Amsterdam: Elsevier 2000; 2: 403-432. 

5. Talreja R. Damage characterization by internal variables, In: Pipes R.B, Talreja 

R, editors. Composites Materials. Series, Damage Mechanics of Composite 

Materials, Amsterdam: Elsevier 1994; 9: 53-78. 

6. Berthelot JM. Transverse cracking and delamination in cross-ply glass-fiber and 

carbon-fiber reinforced plastic laminates: static and fatigue loading. Applied 

Mechanics Review 2003; 56(1):111-147. 

7. Smith PA, Wood JR. Poisson’s ratio as a damage parameter in the static tensile 

loading of simple cross-ply laminates. Composites Science and Technology 

1990; 38: 85-93. 

8. Lim SG, Hong CS. Prediction of transverse cracking and stiffness reduction in 

cross-ply laminated composites. Journal of composite Materials 1989; 23: 695-

713. 

http://www.scopus.com/authid/detail.url?authorId=43861830300&amp;eid=2-s2.0-79960056192�
http://www.scopus.com/authid/detail.url?authorId=6603469421&amp;eid=2-s2.0-79960056192�
http://www.scopus.com/authid/detail.url?authorId=42461729700&amp;eid=2-s2.0-79960056192�
http://www.scopus.com/authid/detail.url?authorId=8708695700&amp;eid=2-s2.0-0033230067�
http://www.scopus.com/authid/detail.url?authorId=7101816758&amp;eid=2-s2.0-0033230067�
http://www.scopus.com/authid/detail.url?authorId=6602794382&amp;eid=2-s2.0-0033230067�
http://www.scopus.com/authid/detail.url?authorId=7006843846&amp;eid=2-s2.0-0033230067�


 

158 
 

9. Henaff-Gardin C, Lafarie-Frenot MC, Gamby D. Doubly periodic matrix 

cracking in composite laminates Part 1: General in-plane loading. Composite 

Structures 1996; 36:113-130. 

10. Zhang J, Fan J, Soutis C. Analysis of multiple matrix cracking in [±θm/90n]s 

composite laminates, Part I: In-plane stiffness properties, Composites 1992; 

23(5): 291-298. 

11. Hashin Z. Analysis of cracked laminates: A Variational Approach. Mechanics of 

Materials. North-Holland 1985; 4:121-136. 

12. Hashin Z. Analysis of Orthogonally Cracked Laminates under Tension, Journal 

of Applied Mechanics 1987; 54: 872-879. 

13. Varna J, Berglund LA. Multiple transverse cracking and stiffness reduction in 

cross-ply laminates. Journal of Composites Technology and Research 1991; 

13(2): 97-106. 

14. Varna J, Berglund LA. Thermo-Elastic properties of composite laminates with 

transverse cracks. Journal of Composites Technology and Research 1994; 

16(1):77-87. 

15. McCartney LN. Theory of stress transfer in 0-90-0 crossply laminate containing 

a parallel array of transverse cracks. Journal of the Mechanics and Physics of 

Solids 1992; 40: 27-68. 

16. McCartney LN. A recursive method of calculating stress transfer in multiple- ply 

cross-ply laminates subject to biaxial loading  1995; NPL report DMMA(A): 

150. 

17. Schoeppner GA, Pagano N. Stress fields and energy release rates in cross-ply 

laminates. International Journal of Solids and Structures 1998; 35(11):1025-

1055. 



 

159 
 

18. Joffe R, Krasnikovs A, Varna J. COD-based simulation of transverse cracking 

and stiffness reduction in [S/90n]s laminates. Composites Science and 

Technology 2001; 61: 637-656. 

19. Fan J, Zhang J. In-situ damage evolution and micro/macro transition for 

laminated composites. Composites Science and Technology 1993; 47: 107-118. 

20. Kashtalyan M, Soutis C. Stiffness degradation in cross-ply laminates damaged 

by transverse cracking and splitting. Composites: Part A 2000; 31: 335-351. 

21. Kashtalyan M, Soutis C. Mechanisms of internal damage and their effect on the 

behavior and properties of cross-ply composite laminates.  International Applied 

Mechanics 2002; 38(6): 641-657. 

22. Kashtalyan M, Soutis C. Analysis of composite laminates with intra- and 

interlaminar damage. Progress in Aerospace Sciences 2005; 41:152-173. 

23. Kashtalyan M, Soutis C. Stiffness and fracture analysis of laminated composites 

with off-axis ply matrix cracking. Composites: Part A 2007; 38: 1262-1269. 

24. Barbero EJ, Cortes DH. A mechanical model for transverse damage initiation, 

evolution, and stiffness reduction in laminated composites. Composites: Part B 

2010; 41:124-132. 

25. Vinogradov V, Hashin Z. Variational analysis of angle-ply laminates. 

Composites Science and Technology 2010; 70: 638-646. 

26. McCartney LN. Energy-based prediction of progressive ply cracking and 

strength of general symmetric laminates using a homogenization method. 

Composites: Part A 2005; 36:119-128. 

27. Barbero EJ, Sgambitterra G, Adumitroaie A, Martinez X, A discrete constitutive 

model for transverse and shear damage of symmetric laminates with arbitrary 

stacking sequence. Composite Structures 2011; 93:1021-1030. 



 

160 
 

28. Lundmark P, Varna J. Constitutive relationships for laminates with ply cracks in 

in-plane loading. International Journal of Damage Mechanics 2005; 14(3): 235-

261. 

29. Lundmark P, Varna J. Crack face sliding effect on stiffness of laminates with ply 

cracks. Composites Science and Technology 2006; 66:1444-1454. 

30. Zhang J, Herrmann KP. Stiffness degradation induced by multilayer matrix 

cracking in composite laminate. Composites:Part A 1999; 30 (5):683-706. 

31. Talreja R. A synergistic damage mechanics approach to durability of composite 

material systems, In: Cardon A, Fukuda H, Reifsnider K, editors. Progress in 

durability analysis of composite systems. Rotterdam: A.A. Balkema 1996; 117- 

129. 

32. Gudmundson P, Östlund S. First order analysis of stiffness reduction due to 

matrix cracking. Journal of Composite Materials 1992; 26:1009-1030. 

33. Gudmundson P, Zang W. A universal model for thermoelastic properties of 

macro cracked composite laminates. International Journal of Solids and 

Structures 1993; 30:3211-3231. 

34. Varna J, Berglund LA, Talreja R, Jakovics A. A study of the crack opening 

displacement of transverse cracks in cross ply laminates. International Journal 

of Damage Mechanics 1993; 2: 272–289. 

35. Jacquot P. Speckle Interferometry: A review of the principal methods in use for 

experimental mechanics applications. Strain 2008; 44:57-69. 

36. Farge L, Ayadi Z , Varna J. Optically measured full-field displacements on the 

edge of a cracked composite laminate. Composite: Part A 2008; 39:1245-1252. 



 

161 
 

37. Farge L, Varna J, Ayadi Z. Damage characterization of a cross-ply carbon 

fiber/epoxy laminate by an optical measurement of the displacement field. 

Composites Science and Technology 2010; 70: 94-101 

38. Lundmark P, Varna J. Stiffness reduction in laminates at high intralaminar crack 

density: effect of crack interaction. International Journal of Damage Mechanics 

2011; 20:279-297. 

39. Varna J, Krasnikovs A. Transverse cracks in cross-ply laminates. Part 2, 

Stiffness Degradation. Mechanics of Composite Materials 1998; 34(2): 153-170. 

40. McCartney LN, Schoeppner GA. Predicting the Effect of Non-uniform Ply 

Cracking on the Thermo-elastic Properties of Cross-ply Laminates. Composites 

Science and Technology 2000; 62: 1841-1856. 

41. Silberschmidt VV. Matrix Cracking in Cross-ply Laminates: Effect of 

Randomness. Composites: Part A 2005; 36: 129-135. 

42. Varna J, Krasnikovs A, Kumar R, Talreja R. A Synergistic Damage Mechanics 

Approach to Viscoelastic Response of Cracked Cross-ply Laminates. 

International Journal of Damage Mechanics 2004; 13: 301-334. 

43. Nairn JA, Hu S. The Formation and Effect of Outer-ply Microcracks in Cross-

ply Laminates: A Variational Approach.  Engineering Fracture Mechanics 

1992; 41(2): 203-221.   

44. Loukil MS, Hussain W, Kirti A, Pupurs A, Varna J. Thermoelastic constants of 

symmetric laminates with cracks in 90-layer: application of simple models. 

Plastics, Rubber and Composites, in press. 2012. 

45. Allen DH, Yoon C. Homogenization Techniques for Thermo-viscoelastic Solids 

Containing Cracks. International Journal of Solids and Structures 1998; 35: 

4035-4053. 



 

162 
 

46. Vakulenko AA, Kachanov ML. Continuum Model of Medium with Cracks, 

Mekhanika Tverdogo Tela. Mechanics of Solids 1971; 4:159-166. 

47. Highsmith AL, Reifsnider KL. Stiffness-reduction mechanisms in composite 

laminates. In: Damage in composite materials, ASTM STP 775. Philadelphia 

(PA): American Society for Testing and Materials 1982: 103-117. 

48. Han YM, Hahn HT. Ply cracking and property degradation of symmetric 

balanced laminates under general in-plane loading. Composites Science and 

Technology 1989; 35:377-397. 

49. Lim SG, Hong CS. Prediction of transverse cracking and stiffness reduction in 

cross-ply laminated composites. Journal of Composite Materials 1989; 23: 695-

713. 

50. Joffe R, Varna J. Analytical modeling of stiffness reduction in symmetric and 

balanced laminates due to cracks in 90° layers. Composites Science and 

Technology 1999; 59:1641-1652. 

51. Krasnikovs A, Varna J. Transverse cracks in cross-ply laminates. Part 1, Stress 

Analysis. Mechanics of Composite Materials 1997; 33(6):565-582. 

52. Varna J, Berglund LA. Two-Dimensional Transverse Cracking in [0m/90n]S 

Cross-Ply Laminates. European Journal of Mechanics A/Solids No5 1993; 12: 

699-723. 

53. Moore AJ, Tyrer JR. An electronic speckle pattern interferometer for complete 

in plane displacement measurement. Measurement Science and Technology 

1990; 1:1024–1030. 

54. Moore AJ, Tyrer JR. Two-dimensional strain measurement with ESPI. Optics 

and Lasers in Engineering 1996; 24:381-402. 



 

163 
 

55. Nakadate S, Saito H. Fringe scanning speckle interferometry. Applied Optics 

1985; 24(14):2172–2180. 

56. Avril S, Vautrin A, Surrel Y. Grid method: application to the characterization of 

cracks. Experimental Mechanics 2004; 44: 37–43. 

57. Surrel Y. Some metrological issues in optical full field techniques, 

interferometry XI: techniques and analysis. In: Creath K, Schmidt J, editors. 

Proceedings of SPIE 2002; 4777. 

58. Pipes RB, Pagano NJ. Interlaminar stresses in composite laminates under 

uniform axial extension. Journal of Composite Materials 1970; 4:538-548. 

59. Loukil MS, Varna J, Ayadi Z. Engineering expressions for thermo-elastic 

constants of laminates with high density of transverse cracks, Composite Part A: 

Applied Science and Manufacturing 2013; 48(1): 37-46. 

60. Loukil MS, Varna J, Ayadi Z. Applicability of solutions for periodic 

intralaminar crack distributions to non-uniformly damaged laminates. Journal of 

Composite Materials 2013; 47(3): 287-301. 

 

 



 

164 
 

Étude expérimentale et numérique de la fissuration intralaminaire dans les composites à 

hautes performances 

Titre en français : 

 

Résumé en français: 

 

Le mécanisme d’endommagement le plus facilement observable lors d’un essai de 

traction est la micro-fissuration des plis. Ces fissures sont parallèles à la direction des 

fibres et s’étendent sur toute l’épaisseur du pli. L’apparition et la croissance du nombre 

de ces fissures engendrent une réduction progressive de la rigidité globale du composite. 

Lorsque le composite est sollicité mécaniquement, les concentrations de contraintes en 

pointe de fissures peuvent favoriser la création d’une zone où le pli fissuré et le pli 

adjacent sont décollés (phénomène de délamination). Il est évident que l’apparition de 

cette nouvelle forme d’endommagement modifiera la dépendance de l’ouverture et du 

glissement  des lèvres des fissures avec le chargement appliqué. Il est donc nécessaire 

de trouver un moyen de mesure permettant l’estimation expérimentale des valeurs de 

l’ouverture moyenne et du glissement moyen des lèvres des fissures. 

L’objectif principal de cette thèse est de caractériser l’endommagement des matériaux 

composites (Fibre de carbone/époxy et fibre de verre/époxy) utilisés dans le domaine 

aéronautique. En utilisant l’interférométrie de speckle (ESPI), des mesures de plein 

champs de déplacements aux bords des échantillons et dans différentes couches du 

stratifié ainsi que des études par élément finis ont été effectuées dans le but de calculer 

l’ouverture et le glissement des lèvres des fissures. L’effet des propriétés élastiques des 

matériaux sur l’endommagement aussi bien que l’effet d’interaction entre les fissures 

ont été déterminés. Une discussion essais/calculs est enfin réalisée afin de juger la 

validité des hypothèses retenues. 

 

Mots-clefs en français : 

Matériaux composites, endommagement, calculs par éléments finis, Fissures 

intralaminaires, Interférométries de Speckle  
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Experimental and Numeriacal Studies of Intralaminar Cracking in High Performance 

Composites 

Titre en anglais : 

 

Résumé en anglais: 

 

The macroscopic failure of composite laminates subjected to tensile increasing load is 

preceded by initiation and evolution of several microdamage modes. The most common 

damage mode and the one examined in this thesis is intralaminar cracking in layers. Due 

to this kind of microdamage the laminate undergoes stiffness reduction when loaded in 

tension. The degradation of the elastic properties of these materials is caused by reduced 

stress in the damaged layer which is mainly due to two parameters: crack opening 

displacement (COD) and crack sliding displacement (CSD).  

The first objective of this thesis is to investigate the effect of crack interaction on COD 

using FEM and to describe the identified dependence on crack density in a simple and 

accurate form by introducing an interaction function dependent on crack density. The 

application of this function to more complex laminate lay-ups is demonstrated. All these 

calculations are performed assuming that cracks are equidistant.  

Using FEM, we assume linear elastic material with ideal crack geometry. Fiber bridging 

over the crack surface is possible which can affect COD and CSD. The only correct way 

to validate these assumptions is through experiments. 

The second objective is to measure these parameters for different laminate lay-ups in 

this way providing models with valuable information for validation of used assumptions 

and for defining limits of their application.  In particular, the displacement field on the 

edge of a [90/0]s and [903/0]s carbon fiber/epoxy laminates specimens with multiple 

intralaminar cracks in the surface layer is studied.  

 

Mots-clefs en anglais: 

Composite materials, Thermo-elastic properties, Transverse cracking, Finite element 

analysis, Speckle Interferometry  
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