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Université de Lorraine

Co-mentorship thesis with the Universidade Federal de Uberlândia - BR

A Thesis submitted for the degree of Doctor of the Université de Lorraine
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Abstract

In some circumstances, a person may be deprived of natural abilities, such as walking

and speaking, perhaps due to limb amputation, spinal cord injuries (SCI), or degener-

ative diseases. Assistive technology devices allows motor-impaired people to overcome

their limitations promoting greater independence. Particularly suitable in the case of

people with severe motor impairment, electrical biosignals have been successfully utilised

to operate alternative communication devices. For over half a century, information ex-

tracted from the electromyographic signal for the purpose of operating a given device

has not considered the information provided by the basic unit of the muscle: the mo-

tor unit. The objective of this study is to investigate how accessing information at

motor unit level would improve the operator’s performance during a given task. The

hypothesis is that the proposed methodology would allow generating more precise con-

trol commands, when compared to traditional approaches relying on global information

obtained by conventional electromyographic signal acquisition and processing. A system

to detect motor unit action potentials from the electromyographic signal was devised,

including the electrode design, and the performance evaluated by measuring the time

taken to perform several cursor control tasks. The specifications of the cursor control

task were extracted from a different study, which used the traditional electromyographic

signal-processing approach. Comparing the results from both studies proved that the

novel approach provides better control than the traditional one, being 27% faster in the

most difficult task.

Keywords: Electromyography, Assistive technology, Human-computer in-

teraction, Facial electromyography.
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Chapter 1

The use of electromyography in

assistive technology

Muscle activity is the main biological pathway for the human being to act upon the

environment around him. At first, one may argue that speech is more relevant, but even

this essential communication tool depends on the movements of facial muscles and the

diaphragm. Beyond communication, a person must move around the environment and

handle objects, obviously, using the skeletal muscle system1. Actually, besides brain

activity, it is hard to imagine another form of self-expression without involving muscle

activity.

In some circumstances, a person may be deprived of those abilities in various degrees,

perhaps due to limb amputation, spinal cord injuries (SCI), or degenerative diseases.

In these cases, assistive devices are relevant tools to aid individuals to improve their

functional capacities.

The idea of using muscle activity in assistive technology devices consists in decoding

such activity in order to execute specific actions, which differ from the original purpose

1The human body has three types of muscle tissue: cardiac, smooth and skeletal. The first two
are under control of the autonomous nervous system, and their activities are involuntary. The somatic
nervous system, in the other hand controls skeletal muscles, i.e. their contraction are voluntary.

1



of a given muscle. For instance, the contraction of the Frontalis muscle is related to

facial expressions, although it could be employed to control a device, such as a switch.

Before muscle activity may be used in this manner, it must be detected by means of

specific sensors (electrodes and circuit for signal conditioning). The detected signal,

named electromyographic (sEMG) signal, is then interpreted, generating commands to

be applied to assistive devices. If surface electrodes are used in the process, the signal

is named surface EMG (sEMG).

Muscle activity is not the only source of information available for assistive devices.

Brain activity, represented by electroencephalographic (EEG) signals are used in brain

computer interfaces (BCIs) [1] providing a channel of communication for subjects with

severe motor impairments. A suitable scenario for using EEG is the case of total locked-

in syndrome, in which the patient is aware and awake but cannot move or communicate

verbally due to complete paralysis. Other possible channel of communication is using eye

movements, registered by electrooculographic (EOG) signals [2] or cameras, as in gaze

based devices. Finally, in some circumstances, elaborated systems involving bioelectrical

activity and signal processing tools are not needed at all and low-tech solutions, such

as a push button may be employed to provide the subject with the desired channel of

interaction with the surrounding world.

This chapter presents a review on assistive devices operated by sEMG signals, fo-

cusing on augmentative and alternative communication (AAC) devices. This review

focuses mostly upon the use of these devices for controlling the movement of a cursor

on a computer screen, being this the task used in the verification of the hypothesis of

this thesis. Furthermore, the objectives of the study are summarized.
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Figure 1.1: Forms of Augmentative and Alternative Communication.

1.1 Assistive devices based on sEMG signals

One of the most well-known applications of the sEMG signal on assistive devices is the

control of prosthetic limbs. Pioneering work goes back in the 1950s [3] achieving simple

but reliable control for open and close actions of artificial hands. The necessary infor-

mation is extracted from the remaining muscles to operate the artificial limb. Prosthesis

control has grown in complexity to include targeted muscle reinnervation [4] and has

expanded in capacity to include finger control [5].

Beyond prosthetics limbs, sEMG signal processing is also present in AAC. The AAC

term covers any methods used to supplement or replace speech or writing for those

with impairments in the production or comprehension of spoken or written language

[6][7]. Primary classification divides AAC into unaided and aided devices 1.1. Unaided

systems do not require an external tool, and include facial expression, vocalizations,

gestures and sign languages. An AAC aid system is any device, either electronic (high-

tech) or non-electronic (low-tech), that is used to compose and transmit or to receive

messages. Therefore, AAC systems relying on sEMG signal processing are classified as

high-tech AAC devices.

AAC systems are designed for several conditions such as locked-in syndrom, Amy-

otrophic lateral sclerosis (ALS), Multiple sclerosis (MS) and Aphasia in various degrees,

3



so the ideal AAC device for a given subject depends on several factors, among them

the subject dexterity over muscle control. sEMG based devices can be subdivided into

three major groups:

• Switch-based control (SBC) device;

• mouse emulation;

• speech recognition.

An SBC device transmits binary signals to the assistive device, utilizing the technology

that has been applied for its conception. Such systems work only as a tool to scan

various possibilities and make a selection, with the major difficulty being then to decide

the scanning delay value [8]. Any muscle still under control are eligible candidates for

this kind of application.

Computer interfaces have been operated mainly by mouse and keyboard since the

1980s; therefore, mouse emulation is a natural task when it comes to communication

devices. Muscles used in rotation movement, as seen in a joystick, e.g., the neck muscles

used to rotate the head [9, 10, 11] and the arm muscles used to rotate the hand, provide

an intuitive way of controlling the cursor direction of displacement, since this movement

is omnidirectional. Facial muscles are also explored, though the trend is that the cursor

movement will be orthogonal as subjects find difficulty in giving two directions, e.g., UP

and LEFT, at the same time.

Speech recognition uses the activity of the facial muscles involved in the task. Denby

et al. [12] conducted an analysis of seven technologies for silent speech interfaces, i.e.

without acoustic signal. This group concluded that the sEMG-based system’s overall

rating was superior to the six other alternatives (electromagnetic articulography mark-

ers, ultrasound and optical imaging, non-audible murmur microphone, electromagnetic

or vibration sensors, electroencephalography sensors and BCI cortical), considering the

following criteria:
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• Works in silence: Can the device be operated silently?

• Works in noise: Is the operation of the device affected by background noise?

• Works for laryngectomy: Can the device be used by post-laryngectomy patients?

It may be useful for other pathologies as well, but laryngectomy is used as a

baseline.

• Non-invasive: Can the device be used in a natural fashion, without uncomfortable

or unsightly wires, electrodes, etc.?

• Ready for market: Is the device close to being marketed commercially? This also

takes into account in a natural way the current technological advancement of the

technique, responding, in essence, to the question,“How well is this technology

working as of today?”.

• Low cost: is the final product economical?

This axis also takes into account the current technological advancement of the tech-

nique, responding, in essence, to the question: how well is this technology working, as of

today? The answer will depend, among other factors, on whether any exotic technolo-

gies or procedures are required to make the device function, as well as cost, performance

in noisy environments, and invasiveness.

1.1.1 Switched-based control devices

Patients with conditions such as locked-in syndrome retain control of their eyes and cog-

nitive tasks. Therefore, an easy way to communicate is by answering yes/no questions.

This approach provides an output channel of communication with a low information-

transfer rate and low interactivity, demanding the care provider to have the necessary

skills to formulate the right questions.
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A subject able to carry out residual movements with his or her head, or at least one

limb, may use a pressure device. The same principle can be applied to sEMG signals

where the pressure action can be replaced by muscle contraction. Electromyography

has been considered previously as an assessment tool for patients with disorders of con-

sciousness, indicating its use as a channel of communication [13]. Using computational

solutions, one can generate binary signals, with ‘1’ being associated with muscle activity

and ‘0’ assigned otherwise.

One approach consists of composing messages with some kind of code, e.g., the Morse

code. Although this seems to be an unnatural mode of communication, the procedure

may be extremely valuable for subjects with severe motor impairments. Any biosignal

that can be interpreted as a two-state information source is a potential candidate for

the use of this code. From the Morse-based code, the subject can control devices and

communicate in several ways, depending upon the strategy adopted. Studies using

sources other than the sEMG signal have shown that applying the Morse code [14, 15]

can be a good option for AAC. Since maintaining a steady typing rate is difficult for

disabled subjects, modified forms of the code may be adopted [15].

Park et al. [16] developed a system utilizing movements of the Massetter muscle of

the chin. The signal acquired from these movements is transformed into dot or dash

symbols, depending upon the duration of the contraction, and the sequence is decoded

into characters that are fed into a voice synthesizer. This study includes a method for

fatigue adaptation, an important concern when using sEMG. The major caveat to this

system is that humans are not capable of chewing and pausing quickly; therefore, the

transfer information rate is low, although not reported in numbers.

The binary signal can also be used to operate a scanning device, e.g., a virtual

keyboard and some more complex interfaces. The Impulse® [17] system, one of the few

AAC commercial solutions based on the sEMG signal, uses this approach in a wireless

solution to offer computer access with a specific scanning interface. This system is not

6



available for purchase since April 2011.

When comparing the scanning and the code-based approaches, we can observe that

both are based in simple signal-processing techniques. The difference lies in the cognitive

effort required from the subject: the scanning approach transfers the complexity of the

message-generation process to the system interface; whereas, with code-based devices,

the subject has to learn the sequence of symbols necessary to compose each character

or command.

1.1.2 Cursor control

Since the 1980s, the mouse and keyboard have been the standard input devices for

computer operation. Then, the number of studies to develop devices replacing physical

keyboards with virtual ones to provide point-and-click functions is understandable. For

some studies, though the goal is to provide a hands-free alternative to healthy subjects,

the solution could be adapted for a subject with a disability.

Using muscles in the pointing task can be described as a three-step process:

1. Identification of the suitable muscles to be explored;

2. definition of types of control that can be obtained;

3. choice and processing of sEMG signals to generate the command.

In the case of subjects with severe motor disabilities, facial muscles are a common

option, as these muscles can be activated. This is true even in the case of subjects

suffering from a severe SCI.

Once the number of muscles available has been established, researchers can start

to set up the strategy to achieve proper cursor control. One simple strategy is to use

each muscle to define the cursor displacement in one direction. There are at least two

aspects that will define the system’s final capacity to control a cursor: the device type
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and the subject’s ability to control the muscles. If an analogical device is used, and

the subject has the dexterity necessary to control all four muscles at once, the cursor

control will be omnidirectional. If an SBC device is employed with the same subject,

the cursor can move in eight different directions. Finally, if the SBC device is operated

by someone with poor muscle control, it is likely that the cursor will move to only four

different directions. The most commonly used facial muscles in the pointing task are

the Corrugator, the left and right Frontalis, the left and right Temporalis and the left

and right Zygomaticus major. Traditional approaches use pairs of muscles to control

displacement over the XY axis. Others strategies for exploring the sEMG signal are

possible, such as 2-dimensional (2D) control from only one muscle [18]. In fact, in this

thesis the task proposed is to control the cursor using only the Frontalis muscle.

In addition to all the actions a mouse can perform, it is also capable of right- and

left-clicks. In [19] the left-click action and cursor movement (2D) were controlled by

sEMG signals from the Temporalis and Frontalis muscles. Additionally, the system is

provided with an ON/OFF switch that is controlled by the EEG signal. The mouse

functions were identified by applying a threshold to the amplitude signal, and later, by

performing spectral analysis over several frequency bands. The system was implemented

over a digital processing signal board, which was identified by the host as an ordinary

mouse. At first, only three channels for sEMG signals were necessary, but in [20] a fourth

electrode was used, improving the average of correct muscle movements classification

from 78.43% to 98.42%. Despite these good results for muscle movements classification,

the system took 16.3 s on average to move a cursor from the middle to the corner

of the screen, compared to 1-2s with a standard mouse. So, in [21, 22, 23] the same

approach was combined with a gaze-based system to create a hybrid system. While the

gaze offered the absolute position of the cursor, the sEMG signal provided incremental

displacement. As a consequence, the time to move a cursor from the middle to the

corner of the screen dropped from 16.3 s to 6.8 s.
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Another detailed study that considered multimodal approaches compared a standard

mouse and a hybrid device [24]. The cursor position was controlled by gaze and the

object selection (left-click) was activated by frowning. The two solutions were compared

using Fitts’ Law [25]: for small distances a standard mouse showed superior performance,

although there was no statistical difference among the devices over large distances.

In [26] the goal was also to provide a pointing device controlled by facial muscles.

A continuous wavelet transform measured the activation level of each muscle, providing

four direction displacements - associated with both sides of the Orbicular, Massetter

and Mentalis muscles. Left and right-click operations were associated with opposite

directions executed at the same time (up+down = right click and left+right = left

click). The use of the wavelet transform was justified by the shape similarity between

the wavelet mother and the motor unit action potentials (MUAPs, to be discussed in

Chapter 2). However, this strategy can be questioned, as the system performance was

not compared with traditional signal features, e.g. the Root-Mean Square (RMS) value.

The study also lacks information about electrodes dimensions and geometry, thus, it

is impossible to estimate the electrodes selectivity and therefore if MUAPs could be

extracted from the sEMG signal.

Using four muscles to control horizontal and vertical displacement seems a very

straightforward idea. Nevertheless, in a novel approach [18] the authors employed the

sEMG signal recorded from only one muscle, the Auricularis Superior, to control the

cursor position in the X and Y axis. The power levels of two different frequency bands

extracted from this signal were utilized. The strategy adopted is quite different from

the others described earlier, as the absence of muscle activity sets the cursor position to

coordinates (0,0) while the contraction moves the cursor. User training is mandatory,

because the subject should learn how the contractions affect the cursor position, and

also because different subjects present different bands of interest.

For subjects unable to control their upper limbs, using muscles located in the head
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may be the only option. However, a subject with a condition such as tetraplegia may a

manifest residual control of his or her neck, shoulders, and even arms.

Additionally, using facial muscles seems an unnatural way of controlling a cursor,

when compared to using standard mouse. As an example, diagonal movements tend

to be accomplished through horizontal and vertical movements [11] when using sEMG

signals as source of control. Head motion [27], on the other hand, could be compared

to a joystick operation.

In [28, 29], five different motions of the neck and shoulder could be recognized with

95% mean recognition rate and response time of about 0.17s. Two pairs of electrodes

were placed over the Sternocleidomastoid and the Trapezius muscles, on each side of the

body.

In [11] three methods offering pointing device control were compared: a standard

mouse, head-orientation using an accelerometer and the sEMG-based approach. The

Platysma, left Trapezius and the Frontalis muscles were utilized. Cursor speed was a

continuous variable, with a maximum value attributed to 70% of Maximum Voluntary

Contraction (MVC). As expected, the mouse was superior and the sEMG approach

was generally inferior to the head-orientation method, especially due to the difficulty of

performing diagonal movements.

In [30] the angle of the head was estimated through linear interpolation of the sEMG

signal extracted from the Sternocleidomastoid muscle. For small angle rotations, the

sEMG signal was too weak to offer any useful information. For this reason a camera

was used in its place and the angle was estimated by the relative position of the pupils.

In fact, if a subject presents good head and neck control, the camera-based solution

seems to be more appropriate, as the software is already available for download and

only requires an ordinary webcam.

Finally, the possibility exists of using arm movements to operate a virtual keyboard

and mouse. In [31], an omnidirectional pointing device is controlled by the sEMG
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signals recorded from the forearm. An artificial neural network (ANN) was used to

orient the cursor, while the muscular contraction level controlled the cursor velocity. A

recent study involving the Microsoft Corporation [32] presents a similar approach using

the sEMG signal in game interfaces and in busy-hands situations, which could also be

utilized for subjects presenting some level of disability. The implication of this research

by a company highly bound with the field of computing indicates the potential for use

of the sEMG signal in computing interfaces. However, solutions for subjects presenting

with good arm control are outside the scope of this thesis and, even in the case of

adopting an assistive device, an adapted mouse or joystick would be more appropriate

for this subject type.

An interesting method is found in [33], as three muscles in the forearm control a

2D cursor with variable speed. The first two muscles rotate the cursor, while the third

moves the cursor forward. This approach is similar to the one adopted in the protocol

described in Chapter 4.

One final observation concerns the system dimensionality. The above studies cover

only 2D cursor operation, qualifying these systems to work on traditional Operating

Systems (OS), which may not be suitable for motor impaired users. Scanning based

interfaces could be adapted to use 1D cursor control, sliding forward and backwards to

select options instead of scanning. The 1D approach is common for BCIs as referred by

Wolpaw [34].

Fitts’ Law

It was noticed that some studies lack a method to measure performance, therefore

impeding the comparison of different approaches. Fitts’ Law has been used to compare

different pointing devices [35] and has been used in several studies. Measurements of

precision while drawing over templates is also suggested [31].

Fitts’ law was proposed in 1954 [25] and it is named after his creator, Paul Fitts. It
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is a model of human movement that predicts the time to move to a target, depending

on the target distance and dimension, as seen in the following equations.

T = a+ b · ID (1.1)

ID = log2(1 +
D

W
) (1.2)

with D representing the distance, W representing the target dimension and ID repre-

senting the index of difficulty of the proposed task. The values of a and b are estimated

after testing different values of W and D. The original approach by Fitts is shown in

Figure 1.2 where the subjects move a stylus alternately back and forth between two

separate target regions, tapping targets at the end of each movement.

D

W

Figure 1.2: Original approach by Fitts where the subject should tap a target (Width=W)
distant D units from the other target.

Based on information theory concepts Fitts evaluated the human motor system using

tasks such as pin and discs transfers. It was only in the seventies that Card, English

and Burr [36] first used Fitts’ law to compare different pointing devices. Currently, the

ISO 9241-9 standard on the evaluation of pointing device uses the fundamentals of Fitts’

law.

An Index of Performance (IP) given in bits/time, can be defined to characterize how
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quickly pointing can be done. This is defined in two ways:

IP =
1

b
(1.3)

or

IP =
IDavg

MTavg
(1.4)

where IDavg is the ID mean for all tasks proposed and MTavg is the mean time measured

during movements. In this case, IP is also called throughput (TP).

Speed control

Efficient, natural cursor control depends on speed variability. When far from the target,

the cursor moves at higher speed than when the target is nearby. In studies aiming

to increase cursor motion efficiency, movement speeds were controlled voluntarily by

modulating muscle contractions [33]. Using the following non-linear formula, stronger

contractions move the cursor much more quickly than weak ones:

Speed = Speedmax ·
tanh((NMAV − 0.5) ∗ 5) + 1

2
(1.5)

where NMAV is the normalized mean absolute value and Speedmax is the maximum

speed, set to 1000 pixels per second. Both able-bodied and SCI subjects were capable

of using the devised system. However, the improved efficiency brought by modulated

speed values is still a matter of discussion, as the experiment results were not compared

with the static-speed option.

An alternative to estimating speed by the signal amplitude is presented in [19], in

which the system incorporates a three-level graded speed-control scheme. The speed was

increased after five consecutive commands indicating the same direction were detected.

As soon as the sequence of commands in the same direction was broken, the step-size
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for subsequent movements was reduced to a minimum. As in the previous study, no

comparisons were made between static and variable cursor speed.

Still, many studies adopt static values for cursor control velocity. This strategy is

supported by two factors: fatigue and cognitive effort. Muscle fatigue is an inevitable

factor when working with sEMG-based assistive devices, although it varies from subject

to subject and between sessions. However, muscle fatigue affects amplitude values found

in the sEMG signal. If the speed is modulated by the signal amplitude, then different

values are produced, even though the subject is exerting the same level of force.

The use of static values also minimizes the cognitive effort necessary for the subject to

perform the task. This is especially true if the dynamics of the original task performed

by the muscles involved do not resemble those for cursor control, as in the case of

facial muscles. The subjects effort is focused on controlling muscles in a fashion that is

completely different than the original.

1.1.3 Automatic speech recognition (ASR)

Since the late 1960s, efforts have been made to achieve a system for speech recognition

[34]. Several pieces of software are available in the market and modern OSs for personal

computers now offer built-in speech recognition. There are, however, a few drawbacks

to the use of typical ASR systems:

• the audible speech prohibits confidential conversation;

• it is not advised to use such systems during meetings or inside a library;

• the performance decays severely in adverse environments such as crowded places;

• some clinical conditions hinder voice communication.

There is a relation among the words pronounced and movements of articulatory facial

muscles. Thus, a feasible approach is to use the activation of those muscles to identify
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phonemes, and therefore words. This is not an easy task, as the act of speech employs

several facial muscles, such as the Mentalis, Depressor anguli oris, Massetter, Digastric,

Zygomaticus major, Levator anguli oris, Platysma, and Orbicularis oris muscles.

Studies on silent speech interfaces usually regard subjects with voice impairment,

such as total laryngectomy patients[37] or those working in situations where the ambi-

ent noise impedes communication (e.g. by fire fighters and pilots). Therefore, whether

the level of disability compromises the control over the muscles involved in the speech

process must be carefully analyzed. An example of this type of subject is a tetraplegic

patient using a ventilator system that is adjusted to accommodate cardiopulmonary

requirements but is not optimal for speech. Speech produced with typical ventilator

adjustments is often characterized by short phrases, long pauses between phrases, ab-

normal loudness, and poor voice quality [38]. In a study conducted by Denby et al. [12]

over silent speech interfaces, seven technologies were compared, and the sEMG-based

system had the highest overall evaluation.

In [39], hidden Markov Models (HMM) were used to map muscle activation into

phonemes. The features extracted from the sEMG signal were Mel-Frequency Cepstral

Coefficients (MFCC), as previous studies showed that discrete wavelet transform (DWT)

coefficients were superior but slightly different. Only three channels were used with

respect to the muscles Levator anguli oris, Zygomaticus major, and Depressor anguli

oris. The muscles used and the electrodes were defined heuristically. To evaluate the

system a limited vocabulary of 60 words was used and an accuracy of up to 85% was

achieved.

In [40] a multimodal ASR with the acoustic information and the sEMG signal al-

lowed a coupled Hidden Markov Model (CHMM) to recognize speech. This solution

is compared with two others: audio-only and sEMG-only. When different levels were

added to the signal, the audio-only approach was shown to be highly dependent on the

SNR, while the sEMG-only proposal was not affected. Five muscle channels were used:
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the Levator anguli oris, the Zygomaticus major, the Platysma, the Depressor anguli oris,

and the anterior belly of the Digastric. No criteria were indicated for choosing muscles

or the electrode position. The vocabulary used was extremely restricted, with only 10

words.

In [41] only vowels were used, as the shapes of the lips and the mouth cavity were

stationary. Three channels were used, with information recorded from the Mentalis,

Depressor anguli oris and Massetter muscles, since those are the most active muscles

during vowel pronunciation. An ANN using the back-propagation algorithm was used

to associate the RMS of the sEMG signal with the vowels. Other studies provide the

recognition of isolated words in a small vocabulary [42, 43, 44]. In [44], the aim was to

recognize speech of pilots that could be interpreted as commands, and electrodes were

embedded in a pilot oxygen mask. The error rate was very low, ranging from 0% to

10.4%, during a speech-recognition task using the numbers zero to nine.

The probability that electrodes are repositioned in the same place as the previous

session is very low. In [42], a normalization method found that among sessions, the

accuracy decreases by about 10%, yet, without the method, the accuracy decreased more

than 21%. Eight channels of information were extracted from the following muscles:

Levator angulis oris, the Zygomaticus major, the Platysma, the Depressor anguli oris,

the anterior belly of the Digastric and the tongue. The vocabulary consisted only of the

numbers 09.

Wand et al. [45] and Jou et al. [46] implemented continuous speech recognition using

an HMM algorithm. The vocabulary was phonetically balanced and consisted of 108

words. A total of six channels were used. When compared to features from frequency

and time-frequency domains, the Wavelet transform showed a slightly advantage.

In general, ASR systems show good results specially because the vocabulary used

during tests was usually extremely restricted. Yet, as with other categories of assistive-

technology devices, subjects with severe motor impairments may find even a limited
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control extremely useful. If 60 words could be associated to different actions, common

sense dictates that even this would be extremely helpful for daily activities.

Another issue is that the data used to test each system were obtained under highly

controlled situations, with the subjects being under supervision. During normal opera-

tion, the subjects will likely be less focused, the pronunciation might be less clear, and

the system may not respond very well.

As the goal is to associate phonemes with the activation of related muscles, it is

interesting to define some criteria for determining which muscles should be used, as

well the electrode positioning which would minimize crosstalk. Although not applied

to ASR, in [47] the assessment was conducted for better positioning of electrodes in

the forehead, so both electrodes could gather information from different muscles with

minimum interference.

1.2 The research objective

The previous section indicates the myriad of applications that are possible using sEMG

signals as the source of information for device control. Yet, those systems are not largely

disseminated specifically because off issues with lack of stability on the electrode-skin

interface and the need for skin preparation and properly electrode placement.

The typical sEMG signal used in those applications represents the ensemble of the

activity of several units in the muscle (see Chapter 2) by using large and non-selective

electrodes. Although useful, this sEMG signal hides the essential information present.

The objective of this study is to investigate if accessing information at motor unit

level would improve the operator’s performance during a given task.

The hypothesis is that the proposed methodology would allow generating more pre-

cise control commands, when compared to traditional approaches relying on global in-

formation obtained by conventional sEMG signal acquisition and processing.
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To test the hypothesis, a cursor-control approach is used, and the results using the

traditional and the proposed approach are compared.

1.3 Thesis structure

The chapters of this document are organized as follows:

• Chapter 2: aspects of the sEMG signal generation and acquisition are introduced,

including physiological factors.

• Chapter 3: the traditional approaches of the sEMG signal-processing are pre-

sented, as well the details on the methods used in this research. It also discusses

the possibilities of using motor action potentials to generate command signals.

• Chapter 4: the task proposed to verify the hypothesis is described, covering the

protocol and its analysis from the point of view of Fitts’ Law. Also, the experi-

mental protocol for sEMG signal acquisition and processing is presented.

• Chapter 5: the results found are compared to the results found using the traditional

approach, which corroborates the hypothesis.

• Chapter 6: the conclusions are presented and future works are discussed.

1.4 Publications

The following papers have been published as a result of the present work:

• Pinheiro Jr, C.G., Naves, E.L.M., Pino, P., Losson, E., Andrade, A.O., Bourhis,

G. “Alternative Communication Systems for people with severe motor disabilities:

a Survey”, BioMedical Engineering Online 10 , art. no. 31, 2011
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• Pinheiro, C.G., Andrade, A.O.“The simulation of click and double-click through

EMG signal”, Proceedings of the Annual International Conference of the IEEE

Engineering in Medicine and Biology Society, EMBS , art. no. 6346345, San

Diego - USA, pp. 1984-1987, 2012

• Pinheiro Jr, C.G., Andrade, A.O, Bourhis, G. “Myoelectric control system using

information at the motor unit level”, Proceedings of the XXIII CBEB, pp. 760-

762, Porto de Galinhas - Brazil, 2012
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Chapter 2

The electromyographic signal

generation and acquisition

The sEMG signal is the representation of muscle activity captured by surface electrodes

placed over the activated muscle. A sample of the traditional sEMG signal is shown in

Figure 2.1.

For those not familiar with sEMG signals, visual inspection shows no difference from

ordinary background noise. Further analysis indicates that the sEMG signal may be

modeled as a gaussian process with zero-mean value [48] and standard deviation modu-

lated by muscular force. Essentially, this kind of signal results from muscle contractions

and can be used in a series of applications, from biomechanics analysis to activation of

devices. The sEMG signal, however contains much more information than that shown

in the waveform as Figure 2.1 indicates. In fact, appropriate recording techniques un-

veil important information on how the central nervous system (CNS) operates during

specific motor tasks. The following sections present basic aspects of the sEMG signal

composition and recording.
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Figure 2.1: sEMG signal recorded at 10 kHz from the Frontalis muscle. By visual
inspection it was estimated that muscle activity begins at 0.2 s.

2.1 The motor unit

A motor unit (MU) consists of an alpha-motoneuron in the spinal cord and the muscle

fibers it innervates (Figure 2.2).

The alpha-motoneuron is the final point of summation for all descending and reflex

input. The net membrane current induced in this motoneuron by the various synaptic

innervation sites determines the discharge (firing) pattern of the MU and, thus, its

activity. The number of MUs per muscle in humans may range from about 100 for a

small hand muscle to 1000 or more for large limb muscles [49]. It has also been shown
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Figure 2.2: The motor unit is composed by the alpha-motoneuron and all the fibers
innervated by it. The motor end plate is the area where motor nerve fibers and muscle
fibers meet.

that different MUs vary greatly in force generating capacity, with a 100-fold or greater

difference in twitch force [50].

Muscle fibres vary in size and length between various muscles in the body and be-

tween individuals, considering gender, build and age. In a normal adult the mean

cross-sectional fibre areas are between 2500 µm2 (small woman) and 7500 µm2 (large

man), representing a variation in diameter of about 50 to 100 µm [51].

Based on physiological properties such as speed of contraction and sensitivity to

fatigue, there are three types of muscle units [52]: fast-twitch, fatigue-resistant (FR or

type IIa); fast-twitch, fatigable (FF or type IIb); and slow-twitch (S or type I), which

is the type most resistant to fatigue. Muscle fiber composition depends on the muscle

function. Antigravity muscles tend to be predominantly type I, while muscles fit to

rapid movements have similar proportions of the two fiber types.

In [53] facial muscles were classified based on the muscle fiber type found and three

groups emerged:

• phasic muscles comprised of over 80% type II fibers, such as the Orbicularis oculi,

the Nasalis and the Procerus;

• tonic muscles with more than 40% of type I fibers, such as the Frontalis and the
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Corrugator, which are involved in functions requiring sustained facial tonus;

• an intermediate group composed of muscles such as the Zygomaticus and Levator

anguli oris.

2.2 The action potential

The action potential (AP) is a localized event that occurs in excitable cells, notably in

neuron and muscle cells. The underlying dynamics of the action potential is described

briefly, and its general waveform is shown in Figure 2.3. An actual AP is presented in

Figure 2.4.
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Figure 2.3: Action potential

During the cell membrane resting state, the voltage between the intra and inter-cell

medium is about -70 mV and voltage-gated ion channels are closed. Under external

stimuli, those gates rapidly open as the membrane potential increases to a precisely

defined threshold value. This is the principle known as “all-or-none”: a stimulus below

the threshold is followed by proportional changes in the membrane voltage change, but

not the AP. On the other hand, suprathreshold stimuli will produce APs with similar

amplitude and duration.
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Figure 2.4: Actual motor unit action potential recorded by the equipment used in this
study. The signal was acquired from a tetraplegic subject over the Frontalis muscle and
sampled at 10 kHz.

When the channels open, they allow an inward flow of sodium ions. This current

depolarizes the membrane voltage. The process continues until all available ion channels

are open, resulting in a large rise in the membrane potential. The rapid influx of

sodium ions causes the polarity of the plasma membrane to reverse, and the ion channels

then rapidly close. As the sodium channels close, sodium ions can no longer enter the

neuron, and they are actively transported out of the plasma membrane. Potassium

channels are then activated, and there is an outward current of potassium ions, returning

the electrochemical gradient to the resting state. After an AP has occurred, there is

a transient negative shift, named the refractory period, which prevents the AP from

traveling in the reverse direction. The whole process occurs over a few milliseconds.

As neurons communicate with other cells by means of APs, the AP may be seen
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as the most basic bit of information in the human body. Also, APs are responsible for

activating internal cell processes. In fact, a neuronal AP is responsible for generating

the AP in muscle cells, which in turn stimulates muscle contraction.

The synaptic cleft at the neuromuscular junction separates the motor neuron axon

and the motor end plate-membrane. When an AP arrives at the axon terminal, vesicles

filled with the neurotransmitter acetylcholine (ACh) are released upon the muscle cell

membrane, or sarcolemma. Those neurotransmitters bind with receptors to open the

sodium ion gates, causing an AP in the muscle cell membrane, as explained previously.

Specifically in a muscle cell, the AP propagates down to the sarcoplasmic reticulum,

releasing calcium ions that are ultimately responsible for muscle contraction.

As stated before, the membrane potential rapidly returns to its steady state, but the

AP can be seen as a propagating wave along the membrane as described earlier. The

region where the AP takes place will be depolarized with respect to distant parts of the

cell. This difference in electrical potential is followed by a current flow inside the cell,

i.e., positive charges will move out from the region of depolarization, generating the AP

in other regions. The velocity at which the AP travels over the muscle fiber is termed

muscle fiber conduction velocity, and ranges from 2 to 6 m/s [54]. Several factors affects

this velocity, including temperature, muscle length and fiber type.

The size of the action potential, recorded from the surface of the muscle, and the size

of the twitch (force) will be proportional to the number of fibres within the contracting

motor unit. Within a single muscle there is a range of motor unit size, the number

and type of fibres in each depending on the function of the motoneuron. The fast

motoneurones support large motor units whereas slow motoneurones support small units.
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2.3 sEMG signal

The AP occurring on the muscle fiber is called muscle fiber AP (MFAP), and its proper-

ties depend on the physiological aspects of the fiber. Also, in terms of signal detection,

the electrode geometry (to be discussed later) and positioning plays an important role

on the signal waveform.

A single alpha-motoneuron is capable of innervating several muscle fibers, and this

functional unit of cells is called a MU. Therefore, an AP in the muscle fiber is termed a

motor unit AP (MUAP). The MUAP waveform is the sum of all MFAPs belonging to

the same MU. Then, the MUAP may be represented as

MUAP =

F∑
i=1

MFAPi(t− τ) (2.1)

where τ represents the temporal offset, which is affected by the conduction velocity and

the location of the neuromuscular junction. The variable F is the number of active

muscle fibers.

During a muscle contraction, in order for the force to be maintained or increased,

the active MU fires a series of sequential MUAPs, called MUAP train (MUAPT).

MUAPTj =
N∑
k=1

MUAPk(t− σk) (2.2)

where N is the number of active motor units and σk the time of firing of the k-th motor

unit.

The tissues separating the muscle cells and the electrode act as a volume-conducting

medium. Thus, finally, the sEMG signal can be defined as

sEMG =
M∑
j=1

MUAPTj + n(t) (2.3)

where n(t) is the background instrumentation noise and M is the number of MUs in
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the electrode range. The value of M is highly dependent on the electrode geometry

configuration and its position. Electrodes with a small detection surface area may record

the activity of a single MU. This may be appropriate for specific applications, such as

medical diagnostics. On the other hand, especially for surface electrodes, as electrode

surface area decreases, impedance and recorded background noise increases. Obviously,

MUAPs from different MUs are superposed in time. In cases of partially superposed

MUAPs, multiphase waveforms may be detected.

Figure 2.5 shows the activity of three motor units and the sum of those MUAPs

detected by the same electrode. MUAP superposition can be seen along the combined

signal. If the research objective is to discriminate between each MUs activity, which is

not true for this study, these superposed signals must be isolated.
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Figure 2.5: Activity of three motor units and the sum of those three signals when
registered by the same electrode.

2.4 Force control mechanisms

When a muscle must increase its force exerted, the CNS responds through two mech-

anisms of action: MU recruitment and rate coding. MU recruitment is regulated by

Henneman’s size principle [55] which dictates that small MU are recruited before larger

ones. Therefore, larger units are recruited according to the increase of force needed. An
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important point is that fine motor control is more easily reached with low contraction

levels, as the higher the force, larger the size of the next group of MUs recruited.

However, recruitment depends on the type of muscle, and larger muscles tend to

recruit all MU at 80% of the MVC [56]. Smaller muscles may use all motor units at

about 50% of the MVC and rely more on rate coding - the regulation of the MU firing

rate - for force modulation. Minimal and maximal values range from 5-10 impulses/s

and above 50 impulses/s, respectively, and are dependent of a series of physiological

factors (muscle type, size, age, etc.). As the force required increases, the firing rates

of previously recruited MUs also increase. Although the unit impulses/s is appropriate

from a physiological point of view, firing rate is commonly indicated using Hertz (Hz),

especially in texts from an engineering background. During constant isometric contrac-

tion the firing rate is quite regular and presents an approximately Gaussian distribution

with σ = 10-20% of the mean [57].

Figure 2.6 [58] presents an EMG signal decomposition in which these aspects of force

modulation are observed.

Henneman’s size principle is observed in the behaviour of the 34-th MU: this MU

has the largest MUAP, is the last to be recruited, and is the first to cease activity. Also,

faster firing rates are possible for smaller MUs (recruited first) than larger ones.

28



Figure 2.6: EMG decomposition. The level of contraction rises from rest up to 40%
of MVC. A total of 34 MUs enumerated in order of appearance and their MUAPs are
observed at left. It is possible to see that they are sorted also based on their amplitude,
reflecting the Henneman’s size principle. It is also possible to visualize the firing rate
for each MU (colored bars) and how MUs recruited first have higher firing rate than the
ones recruited last. Used with permission from the publisher.

2.5 Signal detection

The EMG signal detection is affected by a series of factors that starts in anatomical

and physiological aspects of the muscle observed and ends on technical details of the

equipment chosen for the task. As commented previously, the muscle fibers type and
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size are determinant in the action potential waveform and amplitude. But there are

many other issues of concern that influence the signal characteristics.

• Signal-to-noise ratio: this parameter describe the ratio of the wanted signal to

the noise, which can be considered as those electrical signals that are not part of

the EMG activity.

• Ambient noise: this noise originates from sources of electromagnetic radiation

(i.e. 60 Hz or 50 Hz). The ambient noise signal may have amplitude that is one to

three orders of magnitude greater than the EMG signal. While some equipments

allow the use of a notch-filter for noise removal, its use is not recommended as

part of the signal information is also removed.

• Anatomical considerations: the correct positioning of electrodes on the muscle

in analysis is essential. The choice of an incorrect electrode placement site may lead

to unexpected results. The SENIAM [59] project offers some recommendations for

electrode positioning.

• Cross-talk: this refers to the source of EMG signals residing at some distance

from the site in analysis, that is, the energy from one muscle group travels over

into the recording field of another muscle group.

• Tissue-filtering: when the sEMG signal is recorded, the amplitude and frequency

are affected by the intervening tissue between the electrodes and the muscle fiber,

as this tissue acts as a low-pass filter. This effect is responsible for MUAPs from

different motor units presenting similar waveform in the sEMG signal.

The signal collected depends on important factors which are discussed further: the

electrode geometry/positioning and the sampling rate.

30



2.5.1 Electrode geometry

Electromyographic signals may be detected via two possible types of electrodes: in-

dwelling and surface electrodes. Indwelling electrodes may be used for the analysis

of deep muscles and they allow for detection of signals from individual motor units.

However, they are invasive and needle movements during the examination may cause

great discomfort to user. Conversely, surface electrodes provide a safer, easier, and

non-invasive method of detecting the signal. However, they are more susceptible to the

cross-talk phenomenon, thus, it is more difficult to extract information about the or-

chestration of the muscle function. Since AAC devices must be operated several hours

a day, the following information is restricted to surface electrodes, and more precisely,

bipolar ones.

The electrode geometry determines the sEMG signal registered. Therefore two

aspects of electrode geometry should be analyzed: electrode surface area and inter-

electrode distance (IED). The number of signals from active MUs recorded in the sEMG

signal is directly proportional to the electrode area: the tissue between the muscle fibers

attenuates the MUAP; therefore, if the distance between the muscle fiber and the elec-

trode is too great, the amplitude of the MUAP will not exceed the background noise

and MU activity will not be detected. The electrode can be designed with larger surface

area so that the amount of tissue between the electrode and the muscle fiber is no longer

an obstacle as seen in Figure 2.7. Conversely, the caveat of decreasing electrode surface

area is that impedance increases, resulting in background noise contamination.

Muscle fiber in range Muscle fiber out of range

Figure 2.7: Effect of increasing the electrode surface area. If it is increased, further
muscle fiber will be in range.

31



The IED affects the electrode selectivity, which is the ability to record muscle activity

from the desired site instead of cross-talk from neighboring muscle fibers. In keeping the

IED as short as possible, the amplitude and frequency components from more distant

fibers are attenuated [60]. Typical values of IED when detecting MUAPs with surface

electrodes are usually within the range of 2-10 mm [61]. The surface EMG for non-

invasive assessment of muscles (SENIAM) [62] [59] project recommends IED≤20 mm.

Other features extracted from the sEMG signal are also affected by the IED. In [63],

a significant change in sEMG amplitude and in the signal power spectra was observed.

The electrode acts as a spatial filter, and short IED results signal of smaller amplitude

and higher frequency when compared with the signal resulting from a longer IED.

2.5.2 Sampling Rate

The appropriate choice of the sampling rate (SR) value depends on the Nyquist-Shannon’s

sampling theorem. This theorem states that in order to preserve the signal information,

the SR must be twice the value of the highest frequency found in the signal spectrum.

The energy levels of EMG signals mainly range between 0 and 500 Hz; therefore, SR

values around 1 kHz are common in the literature.

In this study, the SR must conform to a more important requirement: the need to

properly represent a two-phase wave in the time-domain. The length of the typical AP

is not a constant, as different studies present varying values. It is generally accepted

that an AP will be longer than 5 ms and shorter than 15 ms.

Although the focus of this project is on using sEMG signals for control purposes,

several principles are shared with EMG signal decomposition techniques, since both

must detect APs. For the task of EMG signal decomposition, values from 10 kHz to 25

kHz are used. Considering an extremely fast AP with a length of 5 ms, those values of

SR would provide 50 and 125 samples respectively.

Figure 2.8 shows the loss of visual information comparing two APs recorded at 10
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kHz and subsampled at 2.5 kHz and 625 Hz.

0 5 10

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

E
M

G
 (

m
V

)

t (ms)

SR = 10 kHz

0 5 10

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

SR = 2.5 kHz

t (ms)
0 5 10

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

SR = 625 Hz

t (ms)

Figure 2.8: Two distinct action potentials recorded at 10 kHz are shown at left. The
two following images show the same action potentials subsampled at 2.5 kHz and 625
Hz. The loss of information is clear in the last case.

In the end, the SR must be set with the intended application in mind. For offline

clustering analysis to estimate the number of MU present in an EMG signal, an SR of 25

kHz would provide much more information than an SR of only 10 kHz. For systems that

must operate in real-time, the amount of data to be processed must comply with signal-

processing unit limitations and must be kept as low as possible, without compromising

efficiency.

The EMG signal decomposition task is well described in [64], which recommends

an SR of 25 kHz as a compromise between oversampling and the minimal rate, the

latter being 10 kHz, which may demand interpolation. Studies found in the Journal

of Electromyography and Kinesiology between 2008 and 2010, which aimed to detect
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muscle activity at the MU level, used signal SR of 25 kHz [65] and 10 kHz [66]. In

[67], an SR of 2.048 kHz was used; however the objective was simply to detect the AP

occurrence to estimate firing rate and conduction velocity.

For studies not concerned with MU activity, the average SR was 1.484 kHz with the

minimum and maximum values being 500 Hz [68] and 3.5 kHz [69] respectively.

For the present study, at first, it was not decided if the MUAPs shape and duration

would compose the features to be extracted and the signal was sampled at 10 kHz. Later

trials have proved that using on 5 kHz would suffice for correctly detect the MUAPs.

Yet, in the end, the 10 kHz value was chosen, as the sEMG signal was stored and may

be used in future studies, such as EMG signal decomposition.
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Chapter 3

Myoelectric control-based devices

In the few decades, several myoelectrical control-based devices have been developed.

Almost all of these are of an assistive nature, such as prostheses [4, 70], wheelchairs

[71], basic communication devices [14, 16, 72, 15, 73], cursor-control devices [18, 74] and

generic On/Off devices. From all of these possibilities, prostheses are the only devices to

available in the consumer market, while the rest have not advanced beyond pilot studies.

One of the few AAC commercial solutions based on sEMG signal [17] was a scanning

based device and it was available until April 2011.

The steps commonly found in myoelectrical control-based devices are depicted in

Figure 3.1 and are explained in the following sections, with consideration of the typical

approaches found in the literature.

Later, the methods for MUAP detection are discussed and four methods are eval-

uated. It was found that the envelope detection method was suitable for this study.

Finally, how MUAP information may be explored to generate control signals is dis-

cussed.
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Figure 3.1: sEMG signal is acquired and epochs are extracted. Features are extracted
from epochs and feed a control decision system setting the command to the controlled
device.

3.1 sEMG acquisition

An assistive device should be designed for daily use, several hours a day; therefore, only

surface electrodes are suitable for this application. The SENIAM project [62] [59] found

that most studies detailing electrode configuration adopted Ag/AgCl electrodes of 1 cm

in diameter. The preferred IED found was 2 cm. As discussed in Chapter 2, the use

of this IED provides a sEMG signal composed of the activity of several MUs. The SR

does not vary by a large amount, and is commonly found around 1 kHz, as most of the

energy signal is assumed to be below 500 Hz.

3.2 Signal pre-processing

In some cases, the signal may be prepared for later processing. Usually this stage

involves some kind of noise reduction techniques. But simple operations such as half-

wave rectification and envelope estimation for later Mean-average-value extraction is

also considered as a pre-processing technique.

The present study consider MUAP detection to generate the commands. One way to

minimize MUAP superposition is using the low-pass differential filter (LPD) [75] which

has the advantage of being easy to implement both in hardware and software making
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LPD eligible for real-time applications. The filter is represented by the equation 3.1.

yk =
N∑

n=1

xk+n − xk−n (3.1)

But as the LPD filter is not an ideal filter, there will exist severe Gibbs phenomenon:

the leakage of energy frequency out of the filter pass-band. Under conditions of low

signal-to-noise ratio the relatively strong high frequency noise (background activity) may

be accentuated. Other possible approaches are based Wavelet de-noising and empiric

mode decomposition (EMD) [76]. An example of signal de-noising is shown in Figure

3.2. It is important to remember that the term ”signal denoising” is usually devoted to

the recovery of a digital signal that has been contaminated by additive white Gaussian

noise (AWGN).

A wavelet is a wave-like oscillation with an amplitude that starts out at zero, in-

creases, and then decreases back to zero. Unlike the sines used in Fourier transform for

decomposition of a signal, wavelets are generally much more concentrated in time. They

usually provide an analysis of the signal which is localized in both time and frequency,

whereas Fourier transform is localized only in frequency. As in the Fourier transform,

the Wavelet transform describes the signal in terms of coefficients and their functions

(version of the original wavelet): detail and approximation coefficients, the latter ones

representing ’low-frequency’ terms that usually contain important components of the

signal, and are less affected by the noise. The de-noise action occurs when detail coeffi-

cients are eliminated when smaller than a threshold.

As in the Fourier transform, the EMD method also attempts to represent the signal

by a series of functions called Intrinsic Mode Functions (IMFs) which do not have an

explicit equation but that must satisfy two criteria: in the whole time-series, the number

of extrema and the number of zero crossings must be either equal or differ at most by

one and at any point in the time-series, the mean value of the envelopes, one defined by
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Figure 3.2: Original sEMG signal (gray) and the de-noised signal (black) using the
empiric mode decomposition method. acquired and epochs are extracted. Features are
extracted from epochs and feed a control decision system setting the command to the
controlled device.

the local maxima (upper envelope) and the other by the local minima (lower envelope),

is zero. IMFs are thresholded and the signal is then reconstructed.

Beyond signal de-noising, signal whitening is used to decorrelate the signal, improv-

ing EMG-based motion classification [77][78]. Whitening orthogonalizes, in time, the

EMG samples, thus increasing the statistical bandwidth of the data to compensate for

the limited bandwidth of EMG. The whitened EMG have more degrees of freedom, and

therefore reduce the variance of the amplitude estimate.
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3.3 Data epoching

Out of the continuous flow of data coming from the signal acquisition system, an epoch

is extracted and processed to generate a command. At this point, the researcher must

make two decisions with respect to epoch length and epoch overlapping.

First, the epoch length should provide adequate available data for the extraction of

reliable information. Second, the system must comply with real-time constraints of the

required processing time, and the adjacent epoch length should be ≤300 ms. Because the

muscle activity is composed by the rest-contraction transition and steady intervals, the

epoch length is also a key factor when interpreting the EMG signal, specially for devices

using pattern-recognition classification, such as prosthesis control. Devices operating by

onset intervals will benefit from small-length epochs with higher temporal resolution.

Two approaches for data epoching stands out: adjacent as shown in Figure 3.3 and

overlapping epoching, shown in Figure 3.4.
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Figure 3.3: EMG signal with 200 ms adjacent epochs. The signal was sampled at 10 kHz
which is the rate the signal processing unit must work (10 thousand values per second).

Using adjacent epochs with W length, the system responds with a command every

W seconds, assuming the time required for signal-processing and decision-making is
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Figure 3.4: EMG signal with 200 ms overlapping epochs and 100 ms increment time
(50% overlap). The signal was sampled at 10 kHz, and with 50% overlapping, the signal
processing element must compute 20 thousand values per second.

constant. In the overlapping epoch technique, the next epoch overlaps the previous one

every (W-τ) seconds, but in this scenario, the system provides a command at every

τ seconds assuming the signal-processing and decision-making processes are able to

compute the data before the next epoch is available. If this is not the case, then τ must

be increased. As superposition increases, so does the commands redundancy and time

resolution. The effects of increasing τ is seen in Figure 3.5 in which the variance of each

epoch is estimated from an sEMG signal.

In [79], the stream of redundant commands is used in a post-processing method called

majority voting. This method utilizes the last and next m-decisions for a given point,

to generate a new command. The final decision of each point is based on the greatest

number of occurrences in 2m + 1 decision points. The value of m is determined by

signal-processing time and the acceptable delay.
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3.4 Feature extraction tools

The detected sEMG signal, as presented in Chapter 2, is composed by several MUAPs

superposed and contaminated by background noise. It is considered a complex and

non-stationary signal. A sample data feature computed over the epoch is a biased

approximation of the true value. Amplitude and related features are investigated in

time-domain analyses and frequency-domain is related to power spectrums features.

Between these are wavelet-extracted features in a time-scale domain.

Several time-domain features are used to estimate of amplitude. Mean absolute value

(MAV) and RMS are well-known options. While RMS is suitable for constant force and

non-fatiguing contraction, MAV is preferred when the signal is modeled as a Laplacian

process, and is usually associated with fatigue and low levels of contraction [80].

Several time-domain features can be combined, as in [81] where the epoch is de-

scribed as a three-dimensional (3D) vector, composed of the MAV, the non-normalized

autocorrelation function of the signal and the absolute value of the standard deviation.

Time-domain features are the straight forward approach to analyze the signal as

amplitude increases during a contraction. But frequency-domain features also suffer

changes during contraction as the power spectral density (PSD) shifts to the left when

compared to the background noise PSD.

The PSD is defined as the Fourier transform of the signal autocorrelation function.

Two features extracted from the PSD provide information about the signal changing

over time: mean frequency (MNF; shown in Figure 3.6) and median frequency (MDF).

MNF is an average frequency calculated as the sum of product of the EMG power

spectrum and the frequency divided by the total sum of the power spectrum. The

definition of MNF is given by Eq. 3.2.

MNF =

∑M
i=1 fiPi∑M
i=1 Pi

(3.2)
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where fj is the frequency value of EMG power spectrum at the frequency bin j, Pj is

the EMG power spectrum at the frequency bin j, and M is the length of frequency bin.

MDF is a frequency at which the EMG power spectrum is divided into two regions

with equal amplitude and its definition is given by Eq. 3.3.

MDF∑
i=1

Pi =

M∑
i=MDF

Pi =
1

2

M∑
i=1

Pi (3.3)

Fourier transform is based on the assumption that the signal is stationary, but even

in a state of constant contraction, this is not the case, as the firing rate of active MUs

varies slightly over time. However, during low-level muscle contractions (20-30% MVC)

the EMG signal is assumed to be wide-sense stationary. For higher-level contractions,

the signal can be assumed stationary for 500-1500 ms intervals [82]. In [83] an epoch

length of 250-500 ms for non-stationary conditions is reported as suitable for achieving

less variance and bias in estimation; however, epoch lengths shorter than 125 ms lead

to high variance and bias and should be avoided.
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Figure 3.6: The sEMG signal (a) was sampled at 10 kHz and presents areas of muscle
contraction (Area I) and rest (Area II). The PSD was estimated and the MNF calculated
for each 500 ms epochs representing muscle contraction (b) and muscle resting (c).
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3.5 Classification

The myoelectrical control system processes the collection of features extracted from all

the muscles involved in the task, to generate the command that is sent to the operating

device. The classification task is based in three categories:

• pattern recognition;

• on-set intervals;

• state-machine.

Applications such as prosthesis control may need to classify the feature set as one

of many possibilities: grasping, opening the hand, etc. The recorded sEMG signal

undergoes alterations over the course of the day caused by several factors, such as

changes in electrode position, fatigue, and weakening of the electrode-skin interface by

sweat or evaporated conducting gel. A signal classifier should be able to cope with such

varying patterns optimally and should prevent over-fitting. It is important to make

a clear difference between signal non stationarities caused by technical problems on

one side, and by a modification of the user behavior on the other side. A number of

factors could be listed as technical: the electrode structure and placement, fiber type

composition in the muscle, amount of tissue between surface of the muscle and the

electrode and changes in the skin-electrode interface. It is possible to predict and model

the change of those parameters [84], but not the level of involvement of the user in the

task or his/her fatigue which leads to a series of modifications in the signal: number of

active motor units, firing rate of those MUs, etc.

Classification should be adequately fast, in order to meet real-time constraints. A

suitable classifier must be efficient in identifying novel patterns; online training can main-

tain the stability of classification performance throughout long-term operation. Pattern
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recognition belongs to the greater scientific field of machine learning, and includes neural

networks, fuzzy logic and probabilistic models such as HMMs.

Simpler devices require detection only when the muscle is active. Onset-based sys-

tems are substantially more simple than pattern recognition solutions and are, therefore,

less prone to error. The performance of an onset-detection method is mainly evaluated

by the bias and variance of the estimated onset and offset time, as well as sensitivity to

signal-to-noise ratio (SNR).

The single-threshold method is the essential approach. In this method, rectified raw

signals are compared with thresholds that are obtained based on the mean power of

background noise.

This method is very fast and simple in implementation, but too sensitive for SNR.

This method is better suited to ON/OFF detection, rather than detection of slowly

increasing muscle activities. An improved single-threshold method is based on a time-

enveloped signal, rather than on the instant value. For example, the MAV of a low-pass

filtered signal is compared with a threshold that relates to background noise. Due to the

time delay in computing, filters cause bias in estimated onset time. An improved single-

threshold method is not well-suited to standardization, since its performance depends

primarily on signal envelope and threshold estimation methods.

In the double-threshold method proposed in [48] single-threshold detection is applied

to a fixed number of consecutive values of an auxiliary variable, and onset is detected

when at least a certain number of them cross the threshold. Therefore, the false-alarm

probability and detection probability, as well as time resolution, can be adjusted in-

dependently. Because a double-threshold method involves more parameters to tune,

including the acceptable error, it is superior to a single-threshold method. A double-

threshold method also yields a higher detection probability for a fixed value of false-alarm

probability than a single-threshold method, and in addition, subjects can adapt the link

between the two mentioned probabilities with a higher degree of freedom. Onset-based
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methods demand a post-processor cascaded to the detector to reject transitions shorter

than an acceptable interval.

Finite-state machines (FSMs) or extended FSMs (EFSMs), output pre-defined com-

mands based on the sequences of input signals. They are composed of a finite number

of states, transitions between those states, and commands. States often represent pre-

defined actions, and transition roles are associated with raw signal or signal features.

This method allows the operation of a device with more commands than the number

of muscles involved in the task. In [85] a wheelchair was controlled using the Frontalis

muscle that provided two commands: single-click and double-click. The devised FSM

was enough to issue four different commands: LEFT, RIGHT, STRAIGHT and HALT.

The proposed task in this study, which is depicted in the next chapter, also uses an FSM

for cursor control.

3.6 MUAP detection

In this study, the source of information explored for system control is the sEMG signal,

and more precisely, the MUAPs that compose that signal. This means that onset and

offset intervals must be detected to discriminate MUAPs from background noise.

Traditional methods on processing sEMG signal do not detect individual MUAPs,

differently from the task known as EMG decomposition. The approach consists of sepa-

rating the EMG signal into the constituent MUAPTs. Through the EMG decomposition

one can detect neuromuscular disorders and investigate the state of muscles and nerves.

The more accurate the decomposition is, the more applicability it finds in distinct ar-

eas, for instance, such results may be employed in biofeedback applications and muscle

fatigue monitoring. The EMG decomposition can be divided into four stages:

• MUAP detection;

• MUAP clustering;
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• superposition solving;

• assign each MUAP to the appropriate MU.

The present study can explore the techniques on signal acquisition and MUAP de-

tection but the remaining steps are not necessary to the goal of this study.

Several techniques have been developed throughout the years of research of EMG

decomposition. Four MUAP detection methods were selected for comparison, which use

the: (i) the envelope amplitude [86]; (ii) the signal amplitude [87][88]; the signal variance

[89] and (iv) a combination of both slope and amplitude thresholds [90]. The first one

was developed by members of our researching group and presented good potential. The

three others were represented their respective group (based on the feature observed).

Modifications were made in the original algorithms to suit signal processing for the

proposed task.

The method described in [86] uses the signal envelope amplitude to find the regions

of activity (RA), which may contain one or more MUAPs. Using the signal envelope,

only one threshold must be used as only positive values are found in the signal envelope.

An easy approach to obtain the signal envelope is to use low-pass and curve-fitting tech-

niques filtering techniques or by using the Hilbert transform to compute the analytic

signal. The latter has the lack of parameters as main advantage but demands higher

computational power than using the low-pass filtering approach. Since the test would

use a modern laptop, this was not a concern. However, a embedded implementation of

this solution may require a digital signal processor instead of simple and inexpensive

microcontroller. From the signal envelope, local minima and maxima points are esti-

mated in order to reduce the number of candidate points to be searched by the peak

detector. As a consequence, the processing time is also reduced, which may be relevant

for the analysis of either long or oversampled time-series. Another benefit is that noise

activity may be eliminated.
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The role of the peak detector is to identify extrema points which are above or below

a threshold. Once a location of a maximum to is found, the mean of the samples within

a small time window, ho = to + u, is estimated, and only if the mean is above the

pre-defined threshold, to, will be selected as the beginning of an RA. In this system,

u is set to 1 ms. Such a procedure may avoid the selection of spurious activities (e.g.,

noise). The end of an RA is detected when a minimum tf is found. tf is considered

to be valid only if the mean of the window ho = to − u is below the threshold. The

threshold, th, is estimated as th = k ×Wnoise, where Wnoise is a window of noise

selected from the signal being analyzed and k is a user-defined constant, which controls

the threshold level. A typical value for k, justified by Chebyshev’s theorem, is 5, which

means, in practice, that any sample within the range has 96% chance of really being

noise. Therefore, to use this method, one has to set only the value of u which will affect

the running time, but not the envelope itself. A segment of the EMG signal and the

RAs detected using the signal envelope are shown in Fig. 3.7.
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Figure 3.7: Regions of activity detected using the signal envelope.

In [89], the variance of the signal is used to find the RAs. A window with length, N ,

is passed along the EMG signal. If the variance inside the window exceeds a detection

threshold thrd, a new segment is detected. By searching backwards and forwards from

this index until the variance drops below a delimiting threshold thrl, the beginning and
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end of the segment is obtained.

Estimation of thrd is carried out from the amplitude density function of the nor-

malized variance signal. A local maximum in the density function represents a set of

MUAPs with the given variance. From this, thrd is defined as the first local minimum

searched, when starting from the origin where the smallest MUAPs are assumed to be

distinguished from the noise. The segment-delimiting threshold thrl is estimated from:

thrl = 0.35× thrd+ 0.65× blmv, where blmv denotes the mean of the baseline variance,

which is calculated by pre-segmenting the EMG signal with thrl = thrd/2. As in the

previous method, one has to set only the value of window length N . As seen in Fig.

3.8 the variance obtained using a sliding window acts as an filter and the response is

affected by the window length. Using window of 10 ms in length, the two first MUAPs

are seen as one. If the window is 5 ms, those two MUAPs could be detected correctly,

depending on the threshold.

0 50 100
−2

−1

0

1

2

3

E
M

G
 (

m
V

)

t (ms)

RAs detected using window=10 ms

0 50 100
0

0.2

0.4

0.6

0.8

1

V
ar

ia
nc

e

0 50 100
−2

−1

0

1

2

3

E
M

G
 (

m
V

)

t (ms)

RAs detected using window=5 ms

0 50 100
0

0.2

0.4

0.6

0.8

1

V
ar

ia
nc

e

Figure 3.8: Regions of activity detected using variance. The information extracted from
the signal is affected by the size of the sliding window.

Both amplitude and slope are used in [90] to detect the RAs. An initial threshold

is set as B1 =
∑n

i=1|Vi|
n where Vi is a series of extrema in the [0.5V RMS − V RMS ] range,

being V RMS the root-mean-square value of the entire signal. The slope threshold is

represented by a minimum amplitude variation of B1 within a 1 ms sliding time window

preventing discarding zero crossings where MUAPs show rapid transitions. Waveforms
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representing MUAPs are removed from the signal and after this first step, if the average

magnitude of the remaining local extrema exceeds the ensuing RMS value by a factor

2, the residual signal is segmented again with threshold B2 = 2V RMS . A two-threshold

approach optimizes segmentation results for complex signals, focusing on separating

large MUAPs that only interfere at their extremities while detecting small MUAPs that

would otherwise be overlooked. Again, only the sliding window must bet set. In Fig. 3.9

RAs are detected correctly as during depolarization and repolarization, small amplitude

samples are considered as part of the MUAPs because of the slope.
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Figure 3.9: Regions of activity detected using amplitude and slope. During depolariza-
tion and repolarization, small amplitude are considered as part of the MUAPs because
of the slope.

Finally, it is possible to use the amplitude of the raw signal to detect the RAs, as

it is done in [87] and [88]. The absolute value of every sample above a threshold is

considered as part of a MUAP. After samples are evaluated a post-processor is needed

to fill gaps and to refuse noise represented by short MUAPs candidates. In Fig. 3.10

RAs are detected considering only the signal amplitude, but undesirable gaps must be

corrected using a postprocessor to eliminate gaps smaller than a threshold, e.g. 2 ms.

MUAP detection tools are to be evaluated in two ways. The first is to use a qualified

professional to analyze the signal and compare it to the output given by the automated

system. The second option is to work with synthetic data, so the intervals, number of
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MUs and MUAPs are known a priori. The main advantage of the second approach is

having nearly infinite data set variations for evaluation and a nearly real-time response.

The result of the comparison is shown in Chapter 4.
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Figure 3.10: Regions of activity detected using amplitude. Gaps are created during
MUAPs in cases of small amplitude samples. Those imperfections must be corrected
using a postprocessor that will fill gaps smaller than a threshold, e.g. 2 ms.
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3.7 Using MUAP as source of information

Before resolving the kind of command it is possible to generate from MUAP detection,

it is necessary to remember what the acquired signal represents.

The MUAPs registered in the skin surface change as they propagate through the

conductor volume, which acts as a filter. During contraction, activity from deep muscle

fibers is not registered and, if the objective is to decode the neural drive (neuronal

output) to muscles, the information will be incomplete. In fact, this lack of information

is not exclusive to surface electrodes. Single channel intramuscular EMG measurement

does not offer representative information on the MU population behaviour due to the

electrodes high selectivity [91].

Binary control signals are easily obtained, as a single MUAP detected is enough to

classify one epoch as containing EMG activity. As discussed earlier, this kind of signal,

though simple, is highly useful when used with FSM. This class of applications demands

only one channel.

Progressive signals are more complex to obtain and demand high-density surface

electrodes so the EMG signal can be decomposed, and so that posterior activity from

MUs can be used to infer the neural drive to the muscle. Complete information is not

necessary, as the spread of common synaptic input to motor neurons is observed from

the analysis of multiple muscles in complex tasks [92].
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Chapter 4

Experiment and Results

This study was designed, though not exclusively, to provide solutions in the AAC field.

For this reason, it was natural to employ the cursor control task to evaluate the pro-

posed method of EMG signal-processing and interpretation. This task is a common

target for several studies in the last 20 years, as the mouse has become the major de-

vice operating human computer interfaces. At this point, it must be highlighted that

traditional computer interfaces found in commercial and public OS were not designed

for impaired users, and in cases of severe motor limitations, a more suitable interface

should be considered. Yet, even for those personalized solutions, the four- directions

displacement method offers an interesting tool. Additionally, a previous work developed

by our research group provided cursor control using traditional EMG signal processing

[81]. For an adequate comparison between the traditional and the novel method on in-

terpreting the sEMG signal, the decision was to choose the identical task as performed

in [81]. The timeline for both studies is shown in Figure 4.1.

In the following sections, the methodology and materials used in the trials is pre-

sented. Later, the end results - the subject’s elapsed time of executing the task, error on

selecting targets, and target over-shooting - are analyzed. Finally, the results obtained in

this study are compared to the results found using a traditional sEMG signal-processing
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Figure 4.1: Timeline for both studies compared in this document. The first study using
traditional sEMG processing and interpretation, resulted in a system called Muscle
Academy and it was developed in 2010 with results available in 2011. At the beginning
of 2011, the software for the present study was finalized and trials were carried out in
2012. The results from both experiments are compared in 2013.

approach, in order to validate the hypothesis that accessing MUAPs the user is capable

of superior performance on a given task.

4.1 The proposed task

The interface designed to evaluate the cursor control task is presented in Figure 4.2 and

it was first developed by Andrade [81]. The system was coded in C/C++ language using

Visual Studio 2008. Four colored targets were placed 15 cm apart and two perpendicular

dashed lines were placed to offer the user some level of assistance.

The degree of difficulty varied according to 3 different values for the square edges: [2,

1 and 0.5 cm], corresponding to what from now on will be referred as protocols 1, 2 and

3 respectively. Evaluating the task design under Fitts’ Law (equation 1.2), the index

of difficulty increased almost linearly with IDs = 3.19, 4 and 4.95 bits, respectively.

Another variable presented by the sequence of targets: clockwise, anti-clockwise and

random.

The cursor control is performed by the operator using only one muscle. All sub-

jects operated the system using the Frontalis muscle. The four-direction commands are
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Figure 4.2: Interface screenshot. The image at the left shows the guidelines and targets
size using protocols 1, 2 and 3. The image at the right shows the distance between
center’s targets, which was set to 15 cm.

created using an EFSM, depicted in its simplified form in Figure 4.3.

1

2

3

4

1-STAND_BY
2-ROTATE
3-CLICK
4-MOVE

Figure 4.3: Simplified representation of the state machine. At state 1, the cursor stands
by. The state 2 evokes the rotation procedure, rotating the cursor icon 90 clockwise.
The state 3 evokes the click event and state 4 displace the cursor towards the direction
indicated by the cursor.

Contractions smaller than 300 ms rotates the cursor 90 degrees clockwise. If the

contraction is longer than 300 ms, the cursor moves towards the direction pointed by

the cursor. The target acquisition, i.e. the click event over the target, occurs after 1
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s of muscle inactivity. This poses a problem known as the Midas touch, also present

in gaze-based devices, causing undesired object selection and requiring more attention

from the subject to avoid those errors. A simple solution for this problem is the addition

of a secondary channel to perform the click event. For the present study, the Temporalis

was also considered but technical difficulties did not allow the use of this muscle as

the SNR was too low and the signal processing did not provide acceptable results. A

second alternative considered was to use two fast contractions from the Frontalis to

represent the click event. Earlier trials using this same muscle proved it could work [93]

but it was also observed that too many fast contractions in the Frontalis could cause

extreme fatigue. The full EFSM, including the threshold times, is found in Figure 4.4

and perform under three different situations:

• Rotation: starting at state ‘1’ the transition to state ‘1a’ happens when the con-

traction is first detected. The state remains at ‘1a’ while the counter (TC) is

smaller than 300 ms (TH1). While in ‘1a’, if the contraction stops, then the

rotation occurs, the counter TR is incremented and the state becames ‘3a’;

• Click: after the end of a contraction, the EFSM is at state ‘3a’. After the counter

(TR) is greater than 1 s (TH2), meaning 1 s without contraction, a mouse Click

is generated and the EFSM returns to state ‘1’. If a contraction occurs before 1 s

of inactivity, the EFSM performs the action described in the previous item, as if

it was starting from state ‘1’. If the SNR is low small pauses are noticed by the

user;

• Cursor movement: if the contraction is longer than or equal to 300 ms the cursor

moves towards the direction shown in the cursor and the EFSM goes from ‘1a’ to

‘4’ and it will remain like this while there is a contraction detected. When the

contraction stops, the state becames ‘3a’ and the course of action as described in

the previous item is taken.
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Figure 4.4: The EFSM above controls the emulated mouse events. Two counters are
employed: TC and TR referring to contraction and relaxing, respectively. Those two
counters are compared to two preset thresholds: THC and THR with values of 300 ms
and 1 s. This EFSM is fed by the output of the sEMG signal processing, where input 0
refers to no activity and 1 to muscle contraction.

An example of the state-transition during two contractions is shown in Fig. 4.5. It

should be clear now that both states 2 and 3 are transitory and represent the rotate

and click events, respectively. The EFSM would move the cursor (state 4), rotate the

cursor (transition from state 1a to 3a) and create the click event (transition from state

3a to 1).
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Figure 4.5: A signal with a long (approximately 1 s) and a short contraction (approxi-
mately 200 ms). Above the graph, the numbers represent the state of the EFSM. The
signal is interpreted as a cursor movement and a rotation. The click occurs only after the
short contraction as the interval between both contractions is shorter than 1 s. States
2 and 3 are transitory and represent the rotate and click events, respectively.

The system offered the subject two kinds of feedback: visual - as the current target

blinks as it waits the mouse click - and auditive - a beep immediately after the target is

acquired. A different sound is executed when the final target in one round is clicked.

4.2 Subject recruiting

The results presented here were produced by testing 12 subjects. The subject demo-

graphics are shown in Table 4.1. The subject included 10 able-bodied men and one

woman with age of (31±9.11) years old. The 12th subjects was a 35 years old tetraplegic

unable to operate a traditional mouse. One could argue that the number of motor im-

paired subjects tested should be higher for this kind of application, but a system using

muscle activity as source of control is practical for anyone capable of controlling the

target muscle properly, regardless of the subject’s overall mobility. In total, 21 subjects
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were volunteers for this study: 14 able-bodied and 7 subjects with disability. From the

able-bodied group, three of them were not capable of operating the system correctly.

In the motor-impaired group, five of them were not able to carry on the task using the

Frontalis muscle, and one could not take part after the first session for personal rea-

sons. Only the results gathered from the 12 users that went through all sessions were

considered.

Number of Subjects 11 (10 male ; 1 female)

Age (years) 30±8

Number of Subjects 1 (male)

Age (years) 35

Handicap Tetraplegia caused by SCI

Able-bodied

Disabled

Table 4.1: Summary statistics of subject demographics.

4.3 EMG acquisition and processing

The Frontalis muscle was used to control the cursor. Located in the head, this muscle

is still under control, even by severely impaired subjects such as tetraplegic patients.

This muscle is not involved in imperative tasks like speech and mastication. Also, it

is a muscle composed of many type I, fatigue-resistant muscle fibers. Therefore, it is a

muscle suitable for using AAC devices several hours a day.

The Frontalis is not attached to any bone, and has proximal and distal attachments

at the galea aponeurotica and the skin around the eyebrows, respectively. For most of

the subjects, better signals where obtained when the electrode was placed horizontally 3

cm above the eyebrow, corresponding to the muscle belly, as suggested by the SENIAM

project [62] [59]. Nevertheless, in the first session, the optimal electrode placement

was obtained by trial and error. At this point, the first complication of this proposed
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approach was found: this electrode placement is considerably more difficult than that

of traditional large electrodes, and small displacements over the skin greatly affect the

amplitude of the sEMG signal. The Frontalis is a fairly isolated facial muscle, and

activities such as chewing, speaking, and blinking did not affect the signal measured.

Head movement was not also an issue, as the cable and electrode was always well fixed.

The Corrugator muscle, which is responsible for frowning, was the only problem.

(a)                                                                                                  (b)

Figure 4.6: The electrode was placed over the Frontalis muscle belly, at about 3 cm
above the eyebrow (a). The wire was fixed using a elastic band. (b)

Preliminary tests employed three different versions of electrodes. All of them were

mounted over rigid surfaces, were made of silver and had small inter-electrode distance.

However, the two first versions had prominent tips which inflicted pain specially for

muscles such as the Frontalis, extremely thin and presenting a hard surface underneath.

The final design is shown in Figure 4.8. Concentric electrodes show higher spatial

selectivity with respect to the traditional detection systems and reduce the problem of

electrode location since they are invariant to rotations [94]. Other problem solved by

this design was the pain inflicted by earlier designs (using tips) as the force used during
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Figure 4.7: Two first designed electrodes, with thin tips.

the electrode placement and throughout the sessions is distributed accordingly over the

circular surface formed by the electrode and its base. The detected sEMG signal is

amplified by an active preamplifier with gain of 1000.
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Figure 4.8: Concentric electrode with small inter-electrode distance offering high selec-
tivity.

The signal was acquired and digitized. At first, whether the MUAPs shape and

duration would include the features to be extracted was unknown, and the signal was

sampled at 10 kHz. Later trials have proven that using an SR of only 5 kHz would

suffice for the adequate detection of MUAPs. The 10 kHz value was chosen in the end,

and the EMG signal was stored for possible use in future studies, such as EMG signal

decomposition.
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4.3.1 MUAP detection

Four MUAP detection methods were selected based for comparison were presented in

Chapter 3. In [86], the signal envelope is obtained by Hilbert transform, which avoids

the necessity to set the low-pass filter usually needed for finding the signal envelope.

The envelope amplitude is then compared to a threshold. The default parameter values

were chosen.

In [87], the absolute value of each sample’s amplitude is compared with a threshold.

A post-processor is used to avoid fast transitions between intervals of EMG activity and

background noise.

In [89], the variance from signal epochs is extracted to detect EMG activity. After

one epoch is considered to contain MUAPs, the original window slides sample by sample

to detect onset and offset intervals of activity. The approach to estimate the threshold

was not designed for online analysis as it is the case for the proposed task in this

study. Thus, a different method to estimate thrd was chosen: thrd = k × blmv but

this time blmv representing the mean variance extracted from the sEMG signal without

contraction. The value of k for this method had the best results when set at 20 and the

following results were obtained with this value. The sliding window length was set to

10 ms.

In [90], the amplitude and interval’s slope are compared to thresholds to detect

MUAPs in the signal. Two modifications were made. First, as in [89] the threshold

estimation was not suitable for online analysis as information from the whole signal was

necessary. Therefore, the threshold was estimated as in [95]. Second, only the first step

was performed. However, the essence of using both amplitude and slope information

remain.

The method using the raw signal information depends mainly on the choice of the

threshold. Again the choice was done as in [95]. Secondly, the acceptable gap was 2ms,

i.e. intervals smaller than this value are interpreted as a flaw and the intervals are united
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to represent one or more MUAPs.

The four methods were evaluated using synthetic EMG data based on [95], a data-

driven EMG model using real MUAPs. MU firing rate is not constant and follows a

gaussian distribution. Usually, the ratio between the standard deviation and the mean

of the distribution ranges from 0.1 to 0.25. The mean firing rate varies, depending on the

muscle anatomy, the force exerted, and fatigue, but for the muscle the original MUAPs

were extracted (the first dorsal interosseous), values from 5 to 20 Hz are to be found

during low-level contractions. Each MU firing behaviour was set randomly. The SNR

was set to 20 dB. The signal length was set to 15 s, and the SR to 10 kHz. Samples of

the synthetic EMG signal obtained using three and five MUs are shown in Figure 4.9.

The synthetic data parameters allowed EMG signals composed of 2-10 MUs to be used.

For each configuration, a hundred files were created.

Epoching in each data file used adjacent windows of 100 ms and the methods were

evaluated according to four criteria:

• specificity, as related to false positives (the number of samples with background

noise but reported as EMG activity) and true negatives (the number of samples

with silence recognized as such);

• sensitivity, as related to false negatives (the number of samples with EMG activity

but reported as background noise) and true positives (the number of samples

representing EMG activity and recognized as such);

• the percentage of MUAPs found;

• the time required for processing the epoch compared to its length.

Figure 4.10 shows the results of these experiments. All methods are elective for

real-time implementation, although the variance method peaked at 28% of the epoch

duration and it was systematically slower than the three other options. As the code was
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Figure 4.9: Synthetic EMG signal composed by 3 (a) and 5 (b) motor units activity.

executed with a interpreted language in Matlab, it is expected that it runs faster using

compiled language.

For some epochs the amplitude and slope method indicated more MUAPs than the

actual figure, while envelope and variance methods kept this number low. The latter is

expected as MUAPs superposition will cause two or more MUAPs to be detected as one.

The advantage of the envelope method over the other three lies in the former’s specificity

and sensitivity. After this comparison was carried out, a broader analysis of 12 methods

[96] also determined that the envelope method obtained by Hilbert transform performed

better than the other methods. The envelope estimated using Hilbert transform (as

defined in the Matlab documentation) was implemented in C, and the code is presented

in the Appendix A. Given the good performance the method created in [86] was chosen
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Figure 4.10: MUAP detection methods compared. 1 - Amplitude, 2 - Envelope ampli-
tude, 3 - Variance, 4 - Amplitude and slope

to detect MUAPs. The original algorithm objective was solely to detect areas of activity

and to extract candidate MUAPs for further analysis. In the present study, candidate

MUAPs less than 4 ms in length were rejected and considered as background noise.

Therefore the feature extracted is the signal envelope and its amplitude is compared

against a threshold to detect the MUAPs. The MUAP presence or absence is translated

into the binary command control, being ’1’ when a MUAP is detected and ’0’ otherwise.

This command is extracted at 50 ms intervals and is used to feed the EFSM described

earlier to emulate mouse events (Figure 4.11). Because skin conditions change over time,

and the electrode position over the muscle is not fixed, the threshold was estimated

at the beginning of each session. The standard deviation estimated from 5 s without

muscle contraction was multiplied by a constant, set at each session for adequate system
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operation.

Feature extraction

Emulated Event

EMG Signal

50 ms

State Machine

Figure 4.11: The system overview. The sEMG signal is acquired and feature extraction
occurs at each 50 ms. The features feed a state machine which in turn emulates mouse
events.

In the previous chapter the low-pass differential (LPD) filter was presented as one

simple tool to minimize MUAP superposition which could improve the accuracy of the

number of MUAPs present in the signal. Unfortunately, at earlier stages in this project,

the equipment used had a SNR too low and the LPD did not perform well and its use

was discarded. Wavelet de-noise was considered but the final implementation was in

the limit for real-time operation. Therefore, no pre-processing was performed prior the

signal epoching.

A screenshot from the control module is shown in Figure 4.12 and a 5 s span of

the signal recorded is displayed in the left graph. In the center, the last 100 MUAPs

are displayed, with the average MUAP highlighted. The right graph demonstrates the

binary commands estimated from the signal recorded. In this Figure, three small pulses

caused by raising the eyebrow were correctly detected as one 200 ms and two 250 ms

EMG activity intervals. For the current system, this would be interpreted as three

consecutive rotate commands.

As discussed earlier, the Frontalis is a muscle that activates all available MUs with

slow contractions (around 40% MVC). In general, MUAP superposition occurred even

for fast contractions and were common for sustained contractions (>300 ms). Despite

that behaviour, some subjects provided good quality signal information, as demonstrated

in Figure 4.13. Even for circumstances of high MU activity, the MUAPs could be
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Figure 4.12: The control module composed by graphs of the signal acquired, the MUAPs
detected and the binary commands generated.

detected, as shown in Figure 4.12.

Although this study sought higher accuracy control by accessing MUAPs, the second

drawback to this approach became apparent: if a single MUAP is capable of stimulating

a command, then subjects presenting even the least bit of involuntary muscle activity

will not be able to operate the system correctly. This situation occurred among two

subjects evaluated, one able-bodied subject, and one tetraplegic patient diagnosed with

a neurodegenerative disorder. Unfortunately, the latter presented the best SNR of all of

the subjects evaluated, and he was capable of successfully operating the system for about

30 seconds–long enough to acquire the first two targets, but his performance decayed

rapidly after this short period of time due to involuntary muscle activity detected by

the system. Figure 4.14 shows an epoch of the sEMG signal recorded from that subject,

in which two fast contractions had small amplitude MUAPs between them. Several

adjustments were made, to no avail, to mask the small amplitude MUAPs without

affecting the detection of voluntary contraction.
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Figure 4.13: Epochs of sEMG signals recorded during trials. A long contraction (a),
and a short contraction (b) from the same user.
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Figure 4.14: Epochs of sEMG signals recorded from a candidate. Between two short
contractions (a), several MUAPs caused by involuntary muscle activity were detected
(b). The zoomed area has at least three detectable MUAPs.
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4.4 Protocol

Each subject was evaluated in five sessions in five different days. At the beginning of

each session, the subject’s skin was cleaned with an abrasive paste to remove dead skin

cells, reducing skin impedance. The same procedure was applied to the wrist where the

reference electrode was attached. The bipolar electrode was attached to the skin using

adhesive tape and an elastic band. No conductive gel was used in case the low IED

would cause a short-circuit.

The subject was required to keep the Frontalis muscle still so the background noise

could be estimated. After this, a series of long and short contractions was performed, and

an appropriate value for the system sensibility was set in the interface control module.

In the first session only, the subject was allowed one round (acquire 5 targets) for

understanding the cursor control dynamics. At each session the subject performed a

total of 45 rounds determined by following three protocols (square dimensions), three

directions (clockwise, counter-clockwise and random) and five repetitions of each com-

bination using the following sequence:

f o r each pro to co l in { pro to co l 1 , p ro to co l 2 , p ro to co l 3}

f o r each d i r e c t i o n in { c lockwise , counter−c lockwise , random}

execute f i v e rounds

4.5 Results

The data gathered from the 12 subjects allowed analysis over three aspects off the cursor

control task: time taken to move between targets; performance based the number of

errors on selecting targets; and the cursor path adopted by the subject.
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4.5.1 Time

The main endpoint to be evaluated in this project was the time taken to perform the

task. More precisely, the variable chosen was the time between acquiring two consecutive

targets. The first target was not considered as the origin point was the center of the

screen. For each of the five sessions, there are 60 time values per protocol. The analysis

was based on the mean of the time taken between targets and the confidence interval

estimated by means of the Bootstrap [97], presented in Table 4.3.
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Figure 4.15: Learning curve represented by mean time for each one of the three different
protocols using the novel method. Error bars represent the 95% confidence interval.
Each point was estimated from the data of the 12 subjects in each session/protocol.

The curve of subject improvement is shown in Figure 4.15. It interesting to notice

that the performance for protocol 3 in the last session is, in average, superior to the

one registered for the protocol 1 in the first session. Also, from the figure 4.15 is

possible to identify that in session 1, the performance for protocol 1 and 2 are quite

similar. Actually, the non-parametric MannWhitneyWilcoxon test tells that for each
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session, this was the only occasion where no statistically difference was found between

the measured time of the three protocols (P1/P2, P2/P3 and P2/P3). The results from

this test are shown in 4.2.

Protocols 1/2 Protocols 1/3 Protocols 2/3

1 0 ; 0,88125 1; 0,00004 1; 0,00001

2 1; 0,00000 1; 0,00000 1; 0,00000

3 1; 0,00000 1; 0,00000 1; 0,00000

4 1; 0,00406 1; 0,00000 1; 0,00000

5 1; 0,00000 1; 0,00000 1; 0,00000

Session

Mann–Whitney–Wilcoxon test result

(H; p)

Table 4.2: In each of the five sessions the protocols 1, 2 and 3 are compared using the
Mann–Whitney–Wilcoxon test. If H=1, it means the null hypothesis was rejected.

In each session, it is possible to notice that the task do not follow the linear equation

given by Fitts’ law. This is clear for the first two sessions. But, using linear regression

with the data found in the last session the correlation found was 0.987 with a=7.15 s

and b=0.73 s/bit.

The Principal Component Analysis (PCA) [98] was used in order to visualize clus-

tering in the group of 12 subjects. PCA is mathematically defined as an orthogonal

linear transformation that transforms the data to a new coordinate system such that

the greatest variance by any projection of the data comes to lie on the first coordinate

(called the first principal component), the second greatest variance on the second coor-

dinate, and so on. Using only the first two components allows visualization onto a 2D

plane.

For the clustering analysis, each subject was represented by a 3D feature vector given

by the mean time for each protocol, found in Table 4.3, e.g. the subject 1 is described

by the values (10.05,10.52,11.09) in the overall. PCA was applied to data considering all

subjects, and the two most relevant principal components (PCs) were selected based on
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the data variability explained by each of them. The scores of each PC were estimated

and plotted against each other. The mean time taken to complete the three protocols

was measured in three different ways: at the first session only, at the last session, and

for the overall performance over the five sessions (Figure 4.16). In Figure 4.16 the lines

are the contour plot of the 2D gaussian surface estimated from the scores of PC1 and

PC2.

A second approach to visualize clustering of the subjects is represented by dendro-

grams in Figure 4.17. The distance between subjects was estimated using the Euclidean

metric and the linkage used the unweighted average distance method. As using PCA,

the users were compared by considering the mean time for the three protocols in three

different ways: at the first session only, at the last session, and for the overall perfor-

mance over the five sessions. For each figure, the subjects were represented by labels

(s1,s2,...,s12). Both graphs present similar information, reinforcing the possible groups

that could be made from the subjects participating in the trials.

The graphs found in Figure 4.16 should be analyzed together. For instance, in Figure

4.16c subjects 8 and 10 are close to each other, and from Table 4.3 we find the difference

of the mean time for protocols 1, 2, and 3 to be 20, 380, and 10 ms, respectively. The

similar mean, however, hides the difference of performance verified in the first session, in

which subject 8 was, on average, 2 s slower than subject 10 for the three protocols, even

in the easiest one. Subject 8 also had inferior performance than subject 10 in protocol

three, which was the most difficult. This difference is observed also in Figure 4.16a

which represents the performance in the first session. In Figure 4.16b which represents

the performance in the final session, when the assumptions are made that all subjects are

experienced and minor strategy errors are suppressed, it is possible to see that subjects

8 and 10 are further from each other than in the overall sessions. Therefore, even though

these two subjects are positioned closely in the clustering created by the overall mean

time, it is invalid to conclude that subjects 8 and 10 demonstrated similar concentration
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Figure 4.16: PCA analysis for: (a) the first session only, (b) the last session only and (c)
the five sessions overall. Subject 12 is tetraplegic and the subject 3 participated in both
trials (traditional and novel method).The lines are the contour plot of the 2D gaussian
surface estimated from the scores of PC1 and PC2 and the last line represents the 95%
interval.
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Figure 4.17: Dendrogram for: (a) the first session only, (b) the last session only and (c)
the five sessions overall. Subject 12 is tetraplegic and the subject 3 participated in both
trials (traditional and novel method).
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levels and motor responses. These variations throughout the sessions are also observed

between subjects 1 and 9, for example.

It is interesting to observe also the behaviour of subject 12, a tetraplegic patient

who is unable to operate a traditional mouse properly. In Figure 4.16a and Figure

4.16c, he is isolated, along with subject 5, and both could be considered as outliers. In

fact, considering the mean time for all sessions, subject 12 had the worst performance

of all, especially in the first session, and this outlier classification is justified by the fact

he, in particular, presented odd strategies for acquiring targets in protocol three. In

cases of overshooting, he preferred to take distance from the target before moving the

cursor towards it again, instead of trying small displacements. Additionally, instead

of using only the Frontalis and raise the eyebrow the subject also projected his eyes

out causing fatigue and pain. In the last session, however, he was capable of exceeding

the performance levels of subjects 9 and 11, and he was able to control the muscles

properly, without causing pain. This confusion in muscle control was also observed in

an able-bodied subject who was not able to continue trials after the first session. He also

overused his eye muscles, and the pain was too great to perform the trial for protocol

three. It is important to note that the poor performance of subject 12 was not connected

in any way to his disability.

Thus, it is interesting to observe that even though the mean time is important

in the overall analysis, the method of learning must be taken into account as well.

This is especially true if one assumes that by the last session, small flaws in strategy

will be corrected, and the degree of muscular control will represent the main factor in

performance differences between subjects.

4.5.2 Path, Overshooting and Errors

The path covered by the cursor is usually analyzed for the cursor control task. Since only

vertical and horizontal movements are allowed, the path divides the workspace in box
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shapes as seen in Figure 4.18. A 2D matrix was used to represent the interface’s pixel

and the elements were incremented if the cursor was over the correspondent pixel at a

given moment. As the cursor position recording worked at 10 samples per second, the

intermediary pixel’s position between two consecutive recorded pixels had their elements

in the 2D matrix incremented. The raw data did not allow a proper visualization as

the lines were too thin, so the images were created by smoothing the path using a 2D

5-span moving average filter.

In the previous section, the strategy adopted by each subject was discussed. The

12 subjects chose a similar strategy, utilizing the guidelines mainly in protocol three.

One subject in particular chose a unique strategy, using the guideline whenever possible.

Another path was used only when there was a flaw in the commands estimated by the

system. The path used by this subject can be seen in Figure 4.18b.

Target overshooting (Figure 4.19) is other way of evaluating cursor control tasks.

The data gathered shows that, as expected, overshooting occurs much more frequently

in protocol 3.

Finally the number of click evoked with the cursor outside the target is found in

Figure 4.20. It is clear that protocol 3 has higher error probability, possibly because of

the Midas touch issue that demands attention from the user while he is executing the

harder task in the trials. In the end, however, all three protocols have similar behaviour.

The peak at session three was caused by one subject in particular, which contaminated

the mean.

4.5.3 Improvements over the traditional method

The previous subsections presented the results extracted from the cursor control task

using muscle activity, which is not a novelty. In this section, in order to verify the

impact of accessing MU activity, the present results are compared to a previous study

[81] using traditional sEMG signal acquisition and processing. Both studies share the
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Protocol 1 Protocol 2 Protocol 3

(b)

(a)

(c)

Figure 4.18: Cursor positions during five sessions for (a) the fastest user; (b) a user that
even for large targets (Protocols 1 and 2) the guidelines were the preferred path and
(c) the slowest user. Lighter points in the image represents positions occupied by the
cursor more often.
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Figure 4.19: Average overshooting per target for each one of the three different protocols
using the novel method. Error bars represent the 95% confidence interval. Each point
was estimated from the data of the 12 subjects in each session/protocol.

same task, interface and protocols. The previous study, however, uses two facial muscles:

the Frontalis and the Temporalis. The extracted sEMG signal epochs duration was set

to 100 ms. For the present study, the Temporalis was also considered but technical

difficulties did not allow the use of such muscle as the SNR was too low and the signal

processing did not provide acceptable results. Preserving the type of muscle used in

both experiments allow a direct comparison of results, what would be impossible, if the

muscle chosen was one capable of fine movements, such as those found in the hand.

Each epoch is represented by a 3D array, estimated by means of equations 4.1, 4.2

and 4.3
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Figure 4.20: Average incorrect click events per target for each one of the three different
protocols using the novel method. Error bars represent the 95% confidence interval.
Each point was estimated from the data of the 12 subjects in each session/protocol.

MAV =
1

N

N−1∑
i=0

|si| (4.1)

AutoCorrAbs =
N−m−1∑

i=0

|si||si+m| (4.2)

StdAbs =

√√√√ 1

N

N−1∑
i=0

(|si| − |s|)2 (4.3)

where MAV is the Mean Absolute Value, which is a feature that captures the over-

all trend of the signal amplitude; AutoCorrAbs is the non-normalized autocorrelation
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function of the signal. If m in Eq. 4.2 is a small value (e.g., 2 as employed) then Eq. 4.2

provides us with a manner to capture changes in the signal amplitude with simultane-

ous attenuation of noise activity because of the effect of the multiplying factor |si||si+m|

which yields a smaller amplitude value when both |si| and |si+m| are less than 1. StdAbs

is a statistical measure (i.e., the standard deviation) of the absolute value of s, which is

also related to changes in the signal amplitude.

No facial movement generate a STANDBY event, which emulates a still mouse cursor.

A continuous teeth clenching generates one of the following events: DOWN, LEFT or

RIGHT. Each of these events corresponds to the emulation of the continuous movement

of the mouse cursor respectively downwards, to the left or right. The generation of one

of these events is dependent on the current direction of a cursor which is in the shape

of an arrow. A teeth clenching followed by muscle relaxation yields the event SINGLE-

CLICK, which emulates the single click event sent by a mouse. A continuous eyebrow

raise will generate an UP event, which emulates the continuous upward movement of the

mouse cursor. An eyebrow lift followed by muscle relaxation will generate a ROTATE

event, which rotates the arrow shaped cursor to one of the following directions: right,

left or down. A general side-by-side comparison for both experiments is presented in

Table 4.4.

In the previous study [81], 11 subjects were involved, being one suffering from

Duchenne muscular dystrophy who had no movement of the lower and upper limbs

and could barely support his back. In the present study, a similar proportion was ob-

tained as there was one tetraplegic caused by SCI and 11 able-bodied subjects. The

subject 3 was the only that participated in both studies.

The mean time using the traditional approach is shown in Figure 4.21, and can be

compared to the data in Figure 4.15 for the novel method. The figures from both graphs

is shown in Figure 4.22.

For protocols 1 (target edge = 2 cm) and 2 (target edge = 1 cm), the system using

83



Session 1 Session 2 Session 3 Session 4 Session 5

10

15

20

25

30

t (
s)

Learning Curve

 

 
Protocol 1
Protocol 2
Protocol 3

Figure 4.21: Learning curve represented by mean time for each one of the three differ-
ent protocols using traditional sEMG signal processing. Error bars represent the 95%
confidence interval.

the traditional approach outperformed the system using the novel method, as the former

uses muscle activity, while the latter uses a dwell time of 1 s for emulating the mouse

click. The important data here, however, is at protocol 3 (target edge = 0.5 cm), which

presents the highest ID according to Fitts’ Law. With this level of difficulty, it is clear

that using information extracted from MU provided much more precise control.

Also, Figure 4.23 shows, for both approaches, just how much the subject performance

deteriorates when ID increases. The mean time from protocol 2 and 3 are compared to

the mean time values found for protocols with ID immediately below, e.g. protocol 2 is

compared to protocol 1 and protocol 3 to protocol 2.
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Figure 4.22: Mean time compared for the traditional and novel method on each one of
the three different protocols. Error bars represent the 95% confidence interval.
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Figure 4.23: Mean time increasing for protocol 2 compared to protocol 1 and protocol
3 compared to protocol 2. Error bars represent the 95% confidence interval.

In Figure 4.24, the improvement on the mean time between the first and last sessions

is shown for both methods. The novel method shows almost identical learning for the

three protocols, reinforcing the observation that no significant difference exists between

protocols when the task is performed with the novel method (Figure 4.15). The tradi-

tional method, on the other hand, required more of the subjects’ capabilities of learning

motor control for protocol 3, as the mean improvement was 46.1%.

The original experiment [81] focused on designing a system capable of operating

a cursor and analyzing learning, so the only data collected was the time taken to ac-

quire the targets. Therefore, with the current available data, no comparison is possible

regarding selection errors and overshooting.
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Figure 4.24: Learning for each protocol between the first and the last session. Error
bars represent the 95% confidence interval.
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Protocol 1 Protocol 2 Protocol 3 Protocol 1 Protocol 2 Protocol 3 Protocol 1 Protocol 2 Protocol 3

12.99 12.03 13.74 11.24 11.26 12.53 12.12 11.46 13.80

[12.03 14.18] [11.39 12.77] [12.41 16.31] [10.58 12.01] [10.85 11.79] [11.77 13.41] [11.22 13.34] [10.91 12.35] [12.89 15.18]

9.56 9.99 11.08 9.45 10.03 11.41 10.78 12.55 13.88

[9.26 10.01] [9.63 10.51] [10.6 11.82] [8.87 9.84] [9.72 10.39] [10.89 12.04] [10.34 11.4] [12.01 13.35] [12.74 15.7]

10.10 10.75 10.36 10.19 10.06 11.36 10.55 10.69 12.66

[9.61 10.78] [10.23 11.47] [9.86 11.13] [9.83 10.67] [9.75 10.39] [10.8 12.15] [10.18 10.98] [10.42 11.04] [11.69 14.43]

9.71 10.52 10.45 9.69 9.85 10.36 10.06 10.74 10.54

[9.31 10.24] [10.04 11.38] [10 10.95] [9.34 10.09] [9.54 10.2] [9.95 10.83] [9.47 10.52] [10.35 11.12] [9.96 11.11]

8.31 9.33 9.67 8.73 9.26 10.04 10.13 10.33 11.09

[7.76 8.67] [9.06 9.75] [9.34 10.56] [8.27 9.05] [9.04 9.47] [9.72 10.43] [9.75 10.64] [9.75 10.67] [10.64 11.88]

10.13 10.52 11.06 9.86 10.09 11.14 10.73 11.15 12.39

[9.59 10.78] [10.07 11.18] [10.44 12.15] [9.38 10.33] [9.78 10.45] [10.63 11.77] [10.19 11.38] [10.69 11.71] [11.58 13.66]

Protocol 1 Protocol 2 Protocol 3 Protocol 1 Protocol 2 Protocol 3 Protocol 1 Protocol 2 Protocol 3

10.52 11.00 11.67 17.69 21.60 14.17 11.81 10.75 11.88

[9.88 10.93] [10.73 11.39] [11.21 12.49] [16.21 19.64] [18.69 24.38] [13.21 15.48] [11.15 12.75] [10.23 11.73] [11.08 12.9]

9.73 10.53 12.63 11.54 11.30 13.48 10.69 11.33 14.47

[9.09 10.18] [10.27 10.9] [12.08 13.32] [10.9 12.63] [10.8 11.93] [12.6 15.1] [10.15 11.86] [10.85 11.89] [13.6 15.37]

9.28 10.08 12.37 10.49 10.79 11.62 10.28 10.33 10.95

[8.74 9.57] [9.84 10.31] [11.76 13.18] [10.08 11.02] [10.36 11.32] [10.99 12.54] [9.99 10.85] [10.05 10.69] [10.49 11.64]

11.03 10.06 10.66 9.09 9.66 11.18 9.99 10.30 10.63

[10.52 11.7] [9.83 10.35] [10.31 11.13] [8.92 9.3] [9.33 10.11] [10.63 12] [9.69 10.33] [9.97 10.65] [9.99 11.39]

9.33 9.61 10.35 9.06 9.51 10.19 10.00 10.59 11.40

[9.14 9.51] [9.43 9.77] [10 10.75] [8.85 9.34] [9.26 9.97] [9.76 10.69] [9.67 10.49] [10.27 10.99] [10.86 12.08]

9.98 10.26 11.54 11.57 12.57 12.13 10.55 10.66 11.87

[9.47 10.38] [10.02 10.54] [11.07 12.17] [10.99 12.39] [11.69 13.54] [11.44 13.16] [10.13 11.26] [10.27 11.19] [11.2 12.68]

Protocol 1 Protocol 2 Protocol 3 Protocol 1 Protocol 2 Protocol 3 Protocol 1 Protocol 2 Protocol 3

12.86 11.61 12.47 12.59 12.34 15.04 11.50 12.40 15.11

[12.1 13.79] [11.09 12.19] [11.64 13.6] [11.7 14.2] [11.76 13.11] [13.57 17.41] [10.94 12.22] [11.77 13.22] [14.02 16.54]

9.37 9.37 10.64 9.74 10.52 11.53 11.73 12.95 16.61

[9.06 9.69] [9.09 9.71] [10.21 11.22] [9.42 10.29] [10.07 11.18] [10.99 12.32] [11.17 12.42] [12.14 13.86] [15.37 18.26]

10.56 10.32 10.29 9.90 10.81 10.73 13.25 14.99 16.20

[10 11.08] [9.88 10.95] [9.87 10.88] [9.49 10.47] [10.34 11.39] [10.29 11.34] [12.52 14.08] [14.16 16.23] [14.65 18.17]

8.95 9.57 9.97 10.11 10.78 11.27 11.46 11.63 13.63

[8.72 9.28] [9.29 9.91] [9.56 10.39] [9.63 10.88] [10.23 11.58] [10.55 12.52] [11.01 12.09] [11.11 12.32] [12.67 14.73]

8.61 9.30 9.78 8.57 9.63 10.33 11.13 10.47 11.61

[8.16 8.97] [9.02 9.65] [9.45 10.15] [8.12 8.97] [9.31 10.06] [9.83 11.34] [10.53 12.08] [10.06 11.38] [11.08 12.38]

10.07 10.03 10.63 10.18 10.82 11.78 11.81 12.49 14.63

[9.61 10.56] [9.67 10.48] [10.15 11.25] [9.67 10.96] [10.34 11.46] [11.05 12.99] [11.23 12.58] [11.85 13.4] [13.56 16.02]

Protocol 1 Protocol 2 Protocol 3 Protocol 1 Protocol 2 Protocol 3 Protocol 1 Protocol 2 Protocol 3

10.79 10.73 11.75 15.19 17.53 14.71 16.42 14.56 24.28

[10.17 11.36] [10.39 11.12] [11.25 12.37] [13.66 17.11] [15.23 21.22] [13.62 16.03] [14.95 18.14] [13.48 16.02] [20.97 30.13]

10.20 10.83 13.68 11.08 11.66 16.13 14.10 12.74 16.27

[9.58 11.04] [10.53 11.24] [13.03 14.52] [10.6 11.7] [11.07 12.43] [14.86 17.91] [12.88 15.33] [12 13.67] [14.55 18.97]

9.99 10.29 11.69 11.99 12.49 14.14 11.71 11.32 11.98

[9.73 10.51] [10.01 10.58] [11.19 12.44] [11.33 12.8] [11.7 13.26] [13 16.05] [11.04 12.89] [10.66 12.37] [11.49 12.64]

10.29 10.25 10.74 9.87 10.29 10.84 11.00 10.53 12.56

[9.94 10.66] [9.96 10.55] [10.16 11.38] [9.53 10.54] [9.83 11.45] [10.38 11.47] [10.47 12.45] [10.23 11.11] [11.81 13.69]

9.55 10.10 11.01 10.32 10.86 12.56 10.49 10.33 11.65

[9.32 9.86] [9.86 10.44] [10.63 11.55] [9.88 10.91] [10.37 11.51] [11.7 13.76] [10.15 10.97] [9.99 10.9] [11.12 12.47]

10.16 10.44 11.77 11.69 12.57 13.68 12.74 11.90 15.35

[9.75 10.69] [10.15 10.79] [11.25 12.45] [11 12.61] [11.64 13.97] [12.71 15.04] [11.9 13.96] [11.27 12.81] [13.99 17.58]

* Subject was tested with traditional and the novel method

** Tetraplegic Subject

3

4

5

Mean

SessionSession
Subject 10 Subject 11 Subject 12**

2

1

2

3

4

5

Mean

5

Mean

Session
Subject 7 Subject 8 Subject 9

Subject 5 Subject 6

1

2

3

4

3

4

5

Mean

Session
Subject 4

Session
Subject 1 Subject 2 Subject 3*

1

2

Table 4.3: Mean time and its 95% confidence interval based on BootStrap
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Criteria
Previous study using traditional 

EMG signal processing
Present Study

Number of channels 2 1

Muscles Frontalis  and Temporalis Frontalis

Clicking Fast teeth clenching 1 second without muscle activity

Features extracted from epoch

Mean absolute value, non-

normalized autocorrelation and 

the standard deviation of the 

absolute value.

MUAP presence detected from the

signal envelope, which amplitude is

compared against a threshold.

Signal interpretation

The three dimensional feature 

array is higher than a threshold, 

the epoch  is considered as muscle 

activity.

The envelope amplitude is 

compared to a threshold. An 

interval longer than 4 ms above the 

threshold is interpreted as 

containing a MUAP.

Epoch length 100 ms 50 ms

Sampling rate 1 kHz 10 kHz

Threshold The threshold is estimated from a 5 s interval of non-contraction.

Table 4.4: Comparing experiments using traditional sEMG signal-processing and the
novel method.
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Chapter 5

Conclusions

This chapter focus on discussing the findings of the present work focusing on the pros

and cons of the system proposed in this study. Finally, future works based on the current

system are discussed.

5.1 Discussion

For over half a century, information extracted from a sEMG signal for the purpose of

operating a given device has not considered the information provided by the basic unit

of the muscle: the MU. In this study, the activity from a single MU can represent

the activity of a muscle to generating commands to control the cursor in a traditional

OS. The purpose of this study was to demonstrate that this kind of information would

provide better control signal when compared to the traditional approach on EMG signal-

processing.

During planning and execution of this thesis, several methods were investigated,

to ensure that the signal could be properly acquired and processed. An investigation

into the design of a electrode capable of detecting MUAPs led to the concentric ring

electrode, designed by Adriano O. Andrade. An investigation on methods for signal
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segmentation (MUAPs detection) indicated that the method developed by Andrade et

al. [99] using envelope of the signal estimated by the Hilbert transform, was superior to

other three alternatives. This same conclusion was made in the work by Siqueira [96]

comparing another 8 methods found in the literature.

The strategy adopted to verify the hypothesis was to test the novel approach on

the cursor control task, which was utilized in a different study using the traditional

approach of EMG signal-processing. Comparing these results would be the ultimate test

to validate the hypothesis. Furthermore, this same task of cursor control is being tested

by our research group more thoroughly with different variations, but with the same

essentials, so a base of knowledge can be firmly built. However, the use of cursor control

to operate a traditional OS by motor-impaired subjects is not a consensus, and neither is

the proposal in this study. Alternative tactics should be considered first, especially scan-

based solutions, using virtual keyboards for commands/speech generation or systems

based on pictures and symbols [8], which are easy to learn and helpful in cases of

standard communication strategy [100].

The comparison, based on the difficulty of the task estimated by Fitts’s Law, indi-

cated that the control signal generated by the novel method provided better precision

than that generated by the traditional approach. The difference of performance is clear

when considering the results for protocol 3, in which traditional EMG signal-processing

techniques required the subject to exert much more effort than for protocols 1 and 2.

For the novel method, in contrast, the performances followed a nearly linear progression,

as expected from the ID by Fitts’s Law used in the design of the task. This means that

when motor control was needed the most, the novel method was capable of translating

efficiently the motor activity into commands.

The proposed method, on the other hand presented some drawbacks. The electrode

placement was a sensitive stage of the system setup prior to operation, as small displace-

ments could make the sEMG signal indistinguishable from background noise. On the
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other hand, the conductive gel was not used, and the system operated well in sessions

nearly one hour in length. Sometimes, for aesthetic reasons, systems exploring bioelec-

tric signals, which are bulky, are not adopted. However, this may change in the years to

come, with progress being made in the generation of flexible electrodes [101] less than 40

µmeters thick that could be used for several days. Once this kind of technology reaches

the market, it is possible that assistive devices based on sEMG signals will evolve from

laboratory prototypes to real commercial products.

Another problem found was the presence of small MUAPs caused by involuntary

activities: these could not be ignored, because it was impossible to change the system

sensibility without affecting responses to voluntary activity. In these cases, the subject

was discarded from the experiment. Finally, similar to involuntary contractions, motion

artifacts present after a long contraction were interpreted by the system as a valid small

pulse, causing a rotation. This issue was not addressed since it was noticed only after

several subjects had already finished the trials and all subjects should be submitted to

the same system. This behaviour was present in only some subjects, in different degrees

of intensity, but not in all sessions. Later, a simple solution was devised, which was

rendering the system insensitive to new inputs for 100 ms after the muscle activity had

ended.

In short, the proposed approach succeeded, as it has provided better control by

detecting information at the MU level, instead of detecting muscle activity using large

groups of MU activity. However, improvements must be made, specially in the electrode

design, allowing the novel method to be widely adopted.

5.2 Future works

At the present stage of the system development, the results strongly indicate that access-

ing muscle activity at the motor unit level provides better control in the cursor control
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task. However, the electrode used in the present study does not allow further investiga-

tion on physiological aspects of muscle activity during the task. For example: different

groups of MUs are used during short and long contractions? This question can only be

answered by using an array of electrodes, an approach already under development by

our research group.

Array of electrodes present at least two characteristics that the present system could

take advantage of. First, the support for spatial filtering combining the signals from

several electrodes. For example, in [102] myoelectric prosthesis control was accomplished

using the sequential forward searching (SFS) method, an iterative searching procedure

that selects the subset of sEMG signals that provides the highest classification accuracy.

The use of spatial filter can also be explored to minimize the crosstalk effect [103],

that occurred with some subjects when contracting the Corrugator muscle. Finally,

surface EMG decomposition [104][105] uses spatial filtering techniques to decreasing

the number of sources significantly contributing to the interference signal. From the

EMG signal decomposition, progressive control signals could be generated. Although

the full information from the neural drive will probably not be available, it is not really

necessary, as the spread of common synaptic input to motor neurons is observed from

the analysis of multiple muscles in complex tasks [92].

Second, array of electrodes allows extraction of some information, such as the con-

duction velocity (CV), which are not available when using a single channel electrode.

According to Schwartz:2010 [106] the CV can be an indication of fatigue and it could

be interpreted by an advanced system of fatigue detection capable of decreasing the

number of symbols/states necessary for its operation to cope with the user capability.

The cursor control system could be operated by discrete commands if the user is not

tired and fall back to the binary control mode when fatigue is detected.

Even without using an array of electrodes, the kind of signal generated is also a point

of improvement. In this work, binary command control is generated, but a discrete signal
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seems feasible. In fact, an intermediate step in this work contemplated this matter, but

its development was suspended, as the focus was on comparing the novel approach with

the traditional one, which used binary control commands. The solution was based on

Henneman’s size principle: smaller motor units are recruited first. The peak amplitude

of the largest detected MUAP was then used to determine the command control. In

the ideal situation, considering three easily distinguished groups of MUAPs, the signal

could generate four levels of commands (0,1,2 and 3). If the clustering was not useful,

the command control would be estimated by quantizing the MUAP amplitude.

As stated before, using sEMG signals to control a cursor in an usual OS is possible,

but it is probably not the best solution for alternative communication. The next step

for the method evaluated in this work could be controlling different interfaces for AAC.

Further the same approach could be tested in other fields of assistive technology such

as prosthesis and house appliances control.

Finally, it must be reinforced that, not only for the task discussed in this text, the key

point to allow myoelectric-based control devices to reach the market is the development

of electrodes capable of been worn several hours a day or even a few consecutive days

without the necessity of replacement and adjustment. Studies such as the one developed

by Kim et al.[101] are a huge step toward this end.
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Appendix A - Hilbert transform

algorithm

The Hilbert transform returns a complex helical sequence, called the analytical signal,

from a real data sequence. The imaginary part is a version of the original real sequence

with a 90 phase shift.

In detail, Hilbert uses a four-step algorithm:

1. It calculates the FFT of the input sequence, storing the result in a vector x.

2. It creates a vector h whose elements h(i) have the values:

• 1 for i = 1, (n/2)+1

• 2 for i = 2, 3, ... , (n/2)

• 0 for i = (n/2)+2, ... , n

3. It calculates the element-wise product of x and h.

4. It calculates the inverse FFT of the sequence obtained in step 3 and returns the

first n elements of the result.

Next, there is the C code created to estimate the signal envelope using Hilbert

transform. The FFT was calculated by the Fastest Fourier Transform in the West

(FFTW) library.
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void c a l c h i l b e r t e n v e l o p e ( double bu f f [ ] ,

double h i l e n v [ ] ,

unsigned long l ength ){

unsigned long i ;

double ∗h = new double [ l ength ] ;

f f tw complex ∗ in ;

f f tw complex ∗out ;

f f t w p l a n p ;

in = ( f f tw complex ∗) f f t w m a l l o c ( s i z e o f ( f f tw complex ) ∗ l ength ) ;

out = ( f f tw complex ∗) f f t w m a l l o c ( s i z e o f ( f f tw complex ) ∗ l ength ) ;

f o r ( i =0; i<l ength ; i++)

in [ i ] [ 0 ] = bu f f [ i ] ;

// Step 1 : c a l c u l a t e s the FFT (FFTWFORWARD)

// o f the input sequence

p = f f t w p l a n d f t 1 d ( length , in , out ,

FFTWFORWARD, FFTW ESTIMATE) ;

f f t w e x e c u t e (p ) ;

// Step 2 : s e t vec to r h

//1 f o r i = 0 , (n/2)

h [0 ]=h [ l ength /2]=1;

//0 f o r i = (n/2)+1 , . . . , n−1

f o r ( i=1+length /2 ; i<l ength ; i++)

h [ i ]=0;

//2 f o r i = 1 , 2 , . . . , (n/2)−1
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f o r ( i =1; i<l ength /2 ; i++)

h [ i ]=2;

// c a l c u l a t e s the element−wise product o f x and h .

f o r ( i =0; i<l ength ; i ++){

out [ i ] [ 0 ] ∗=h [ i ] ;

out [ i ] [ 1 ] ∗=h [ i ] ;

}

// c a l c u l a t e s the i n v e r s e FFT (FFTWBACKWARD)

p = f f t w p l a n d f t 1 d ( length , out , in ,

FFTWBACKWARD, FFTW ESTIMATE) ;

f f t w e x e c u t e (p ) ;

f f t w d e s t r o y p l a n (p ) ;

// c a l c u l a t e s the enve lope

f o r ( i =0; i<l ength ; i++)

h i l e n v [ i ] = Math : : Sqrt (Math : : Pow( in [ i ] [ 0 ] , 2 ) +

Math : : Pow( in [ i ] [ 1 ] , 2 ) ) / l ength ;

f f t w f r e e ( in ) ;

f f t w f r e e ( out ) ;

d e l e t e [ ] h ;

}
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