

AVERTISSEMENT

Ce document est le fruit d'un long travail approuvé par le jury de
soutenance et mis à disposition de l'ensemble de la
communauté universitaire élargie.

Il est soumis à la propriété intellectuelle de l'auteur. Ceci
implique une obligation de citation et de référencement lors de
l’utilisation de ce document.

D'autre part, toute contrefaçon, plagiat, reproduction illicite
encourt une poursuite pénale.

Contact : ddoc-theses-contact@univ-lorraine.fr

LIENS

Code de la Propriété Intellectuelle. articles L 122. 4
Code de la Propriété Intellectuelle. articles L 335.2- L 335.10
http://www.cfcopies.com/V2/leg/leg_droi.php
http://www.culture.gouv.fr/culture/infos-pratiques/droits/protection.htm

UFR mathématiques et informatique École doctorale IAEM Lorraine

Département de formation doctorale en informatique

Modèles de Contrôle d’Accès pour Les
Applications Collaboratives

THÈSE

présentée et soutenue publiquement le 26 Novembre 2012

pour l’obtention du

Doctorat de l’université Nancy 2

(spécialité informatique)

par

Asma CHERIF

Composition du jury

Président : Kamel SMAILI Pr. Université de Lorraine

Rapporteurs : Frédéric CUPPENS Pr. ENST Bretagne
Achour MOSTEFAOUI Pr. Université de Nantes

Examinateurs : Ladjel BELLATRECHE Pr. LIAS/ISAE ENSMA Poitiers
Sophie CHABRIDON Mcf. Télécom Sud Paris

Directeurs de thèse : Abdessamad IMINE Mcf. Université de Lorraine
Michaël RUSINOWITCH Dr. Inria Nancy Grand Est

Laboratoire Lorrain de Recherche en Informatique et ses Applications — UMR 7503

Mis en page avec la classe thloria.

Acknowledgments

I would like to express my gratitude to my supervisor Abdessamad Imine, whose expertise and patience,
added considerably to my graduate experience. I really appreciate his knowledge and skills especially his
assistance in writing my thesis report. This thesis could not have been written without Dr. Abdessamad
Imine who not only served as my supervisor but also encouraged and challenged me throughout my
thesis.

A very special thanks goes out to my thesis director, Michaël Rusinowitch, without whose motivation
and encouragement I would not have finished my graduate career in computer science research. It was
though his understanding and kindness that I succeed to completed this work. He and Dr. Abdessamad
Imine, guided me through the dissertation process, never accepting less than my best efforts. I thank
them all.

I would like to thank Prof. Achour Moustefaoui and Prof. Frédéric Cuppens for taking effort and
time out from their busy schedule to serve as my external readers. Finally, I also would like to thank the
other members of my committee for accepting reading and monitoring my work: Prof. Kamel Smaili,
Prof. Ladjel Bellatreche and Dr. Sophie Chabridon.

I would also like to thank the members of Cassis research team, past and present, for their help
and friendship. I would also like to thank the members of Score research team. Especial thanks go to
Dr. Claudia Ignat for her advices and relevant remarks. I would like to thank Dr. Stéphane Weiss who
responded to my questions when needed.

I would like to acknowledge and extend my heartfelt gratitude to all computer science department
of Nancy 2, faculty members and staff especially Prof. Kamel Smaili and Prof. Odile Thiery for their
advices and support.

Many thanks to my friends in Loria, particularly, Hanen Maghrebi and Ben Slimane Jamila for our
exchanges of knowledge and skills, which really helped enrich the experience. I would also like to thank
Charlène Khun, Asma Kerkeni and Asma Ben Abacha for their support and help.

Finally, I would like to acknowledge and extend my heartfelt gratitude to all my family, most espe-
cially my mother for the support she provided me through my entire life, words alone cannot express
what I owe her. I must also express my deepest thanks to my husband, Aymen, without whose love,
encouragement and support, I would not have finished this thesis.

i

ii

To my mother, my husband and my children.

iii

iv

Contents

Chapter 1
General Introduction 1

1.1 Motivations . 1

1.2 General Context . 3

1.3 Access Control Issues and Requirements in Distributed Collaborative Editors 4

1.4 Undoability in Distributed Collaborative Editors . 7

1.5 Contributions . 9

1.6 Thesis organization . 10

Chapter 2
State of the Art

2.1 Collaborative Editors . 13

2.1.1 Real Time Collaborative Editors . 15

2.1.2 Overview on the Operational Transformation (OT) Approach 15

2.2 Access Control for Collaborative Editors . 19

2.2.1 Access Control Issues and Requirements in Collaborative Applications 19

2.2.2 Classes of Access Control Policies . 20

2.2.3 Access Control in Database Area . 31

2.2.4 Access Control for P2P Systems . 31

2.2.5 Comparing Existing Solutions . 33

2.3 Conclusion . 34

Chapter 3
Our Generic Access Control Model

3.1 Coordination Model . 38

3.1.1 Shared Data Object . 38

3.1.2 Shared Policy Object . 39

3.1.3 Single and Multi-Administrator Approaches . 40

3.2 Concurrency and Security Issues . 43

v

Contents

3.2.1 Out-of-order Execution of Cooperative and Administrative Operations 43

3.2.2 Joint Issue . 47

3.2.3 Remote Check and Unnecessary Undo . 49

3.3 A Generic Security Model . 53

3.4 Distributed Garbage Collection for Administrative Logs 55

3.4.1 Garbage Collection Issues . 55

3.5 Conclusion . 57

Chapter 4
Concurrency Control Algorithms and Correctness Proof

4.1 Concurrency Control Algorithms . 59

4.1.1 Cooperative Requests . 60

4.1.2 Administrative Requests . 60

4.1.3 Causality Between Cooperative and Administrative Requests 61

4.1.4 Control Procedures . 62

4.1.5 Check Procedures . 64

4.1.6 Administrative Procedures . 66

4.1.7 Asymptotic Time Complexities . 69

4.1.8 Illustrative Example . 71

4.2 Correctness Proof . 73

4.2.1 General Principles . 73

4.2.2 The Correctness Criteria . 74

4.3 Conclusion . 77

Chapter 5
On the Undoability Problem in Distributed Collaborative Editors

5.1 Notations . 80

5.2 Undo Approach . 80

5.2.1 Principle . 81

5.2.2 Undo Effect . 81

5.2.3 Undo Properties . 82

5.2.4 Illustrative Examples . 83

5.3 Related Work . 86

5.3.1 Proposed Undo Solutions for Single-user Editors 86

5.3.2 Undo Solutions for Collaborative Editors . 87

5.4 Conclusion . 90

vi

Chapter 6
A Necessary and Sufficient Condition for Undoability

6.1 Formal Problem Statement . 92

6.2 Necessary and Sufficient Condition for Undoability . 93

6.2.1 CCO Properties . 93

6.2.2 CSP Model . 97

6.2.3 Necessary and Sufficient Condition for Undoability 102

6.2.4 Discussion . 103

6.3 Our Generic Undo Framework . 105

6.3.1 The Hide Relation . 106

6.3.2 Transformation Rules . 108

6.3.3 Illustrative Example . 110

6.3.4 Asymptotic Time Complexity of the Undo Command 111

6.4 Conclusion . 112

Chapter 7
Experimental Study and Performance Measurements

7.1 Coordination Framework . 114

7.1.1 OPTIC Characteristics . 114

7.1.2 Garbage Collector for Cooperative Logs . 116

7.2 Developement Frameworks . 116

7.2.1 JXTA . 116

7.2.2 NetBeans . 117

7.2.3 Grid’5000 . 117

7.3 Experimental Results for the Coordination Layer . 118

7.3.1 Metrics . 119

7.3.2 Performances of the Desktop Application . 119

7.3.3 Performances of the Mobile Devices Application 121

7.4 Experimental Results for the Security Layer . 125

7.4.1 P2PAgenda Prototype . 126

7.4.2 Processing Time for Checking Local and Remote Requests 126

7.4.3 Response Time Variation with Peers Number 128

7.4.4 Access Control Overhead . 129

7.5 Conclusion . 130

vii

Contents

Chapter 8
General Conclusion

8.1 Summary . 131

8.1.1 Why RCE Require Access Control? . 131

8.1.2 Access Control Requirements and Issues . 132

8.1.3 Undoing Operations in RCE . 132

8.2 Summary of the Contributions . 133

8.3 Directions for Future Work . 134

Appendix A
Correctness Proof of the Undo Approach

A.1 Hide Relation Properties . 141

A.2 Inverse properties Preservation . 142

A.3 Transformation Properties Preservation . 143

A.3.1 TP1 Preservation . 143

A.3.2 TP2 Preservation . 143

Appendix B
A Distributed Garbage Collector for Cooperative Logs

B.1 The Coordination Framework OPTIC . 178

B.2 Garbage Collection Issues . 180

B.3 Garbage Collection Algorithm . 181

B.4 Illustrative Examples . 184

Bibliography 187

viii

Chapter 1

General Introduction

Contents

1.1 Motivations . 1
1.2 General Context . 3
1.3 Access Control Issues and Requirements in Distributed Collaborative Editors . . 4
1.4 Undoability in Distributed Collaborative Editors 7
1.5 Contributions . 9
1.6 Thesis organization . 10

1.1 Motivations

The project summarized in this thesis aims at developing techniques to support access control in dis-
tributed collaborative editors. The ever-increasing role of Computer Supported Cooperative Work
(CSCW) in academic, industry and society comforts the expansion of data sharing and raises grow-
ing concerns about the security of these shared data. The last technological advances have allowed for a
distributed storage of the shared data which open up opportunities to communicate and cooperate on a
given task while being geographically dispersed. With more and more data shared between many users,
controlling access to this data has emerged as one of the main challenges of computer security. Conse-
quently, access control in collaborative applications is increasingly attracting the attention of researcher
intrigued by the multidisciplinary aspect and reach of such applications. Indeed, CSCW can be deployed
on a wide range of applications such as collaborative editing, data sharing, video conferencing, workflow
management, and so on. One major issue when considering security in collaborative applications is the
management of a dynamic environment where the security policy may evolve over time, and of course,
the shared document may be frequently updated. Moreover, an access control model has to satisfy the
collaborative applications requirements namely, the distribution and the high local responsiveness. How-
ever, maintaining security policy while meeting these requirements is really a hard task since, policy view
may be different from one site to another which may lead to security holes, not to mention convergence
issues. Indeed, if security policy can be temporarily inconsistent, any given action may be authorized at
one site and yet denied at another. This is troublesome since it may lead to permanent divergent state of
the shared document.

Collaborative Editors. Collaborative editing systems are famous applications allowing people dis-
tributed in time and space to work together on shared documents in order to perform a given task. These
systems are more and more used since they have many benefits such as shorting the production time

1

Chapter 1. General Introduction

of the final document, improving the final result by reducing errors, getting different viewpoints and
skills [67, 103, 113]. Collaborative editors are especially used by committees producing reports and sci-
entists collaborating on a research project [67]. The most famous collaborative editor is Google Docs
which enables many users in different locations to collaborate simultaneously on the same document.

Access Control. Access control specifies mechanisms to enforce a security policy that regulates the
actions a user can perform. For instance, the read, write and execute permissions associated with Unix
files represent a typical example of access rights allowing users and programs to securely share resources
of the same system. Most modern operating systems define sets of permissions that are variations or
extensions of these three basic types of access. It is worth to mention that privacy and security issues are
the foremost arguments for controlling access to data. Access control especially aims at preventing the
dissemination of sensitive information which may threat the security of both individuals and companies.

Many researches were conducted towards formalizing access control since year 1971, shortly after
the commercialization of time sharing systems. The access matrix model [38, 42, 57], represents the
policy for user authentication, and has several implementations such as access control lists (ACL) and
capability lists (CL). It is used to describe which users have access to what objects. This model provides
the basic framework to describe protection systems [89]. However, it does not specify the exact nature
of the subjects, objects or access rights [89]. Another important model for access control is the Role
Based Access Control (RBAC) [84, 112] model where a role-based policy is a policy that regulates
access control of users to resources or objects in the system according to the organizational activities and
responsibilities of each user in the system. RBAC is appropriate to business activities since it naturally
maps to an organization’s structure [80].

Few researches have addressed access control issues in collaborative applications. A collaborative
environment has to manage the frequent changing of access rights by users. Unfortunately, Access Con-
trol Lists (ACL) and Capability Lists (CL) do not suit very well dynamic change of permissions [107].
As a matter of fact, the administrator of collaborative environments often sets stricter permissions, as
multiple users with different levels of privileges will try to access shared resources [89].

Approaches based on RBAC [84] overcome some problems with dynamic change of rights thanks to
the session notion [52]. However, the "session" concept also prevents a dynamic reassignment of roles
since roles cannot be changed within a single session. To solve this problem, Spatial Access Control
(SAC) has been proposed [17] where instead of splitting users into groups as in RBAC, SAC divides the
collaborative environment into abstract spaces. However, this needs prior knowledge of the practice used
in the collaborative system. Moreover, this solution requires locking data-structures since every access
needs to check the underlying access data-structures which reduces collaborative work performance.

Other works addressed security in peer-to-peer (P2P) environments (e.g. [11]). Some of them rely on
eXtensible Access Control Markup Language (XACML) policies [24, 25] to specify the access restric-
tions on the data offered by the peers for hierarchical P2P networks. However, none of these solutions
considers existing access control components and collaborative applications residing on the peers [93].

In database area, some works propose a replicated access control [13, 79, 116]. For maintaining
authorization consistency, these works generally rely on concurrency control techniques that are suit-
able for database systems such as explicit locking or transaction processing which are inappropriate for
Real Time Collaborative Editors (RCE) [32]. For instance, [79] proposes an access control model for
replicated databases. However, authorizations are timestamped and hence the solution does not scale.

Bouganim et al. [16] proposed a client-based evaluator of access control rules for regulating access
to XML documents based on the access control model of Samarati [26] and [15]. However, this evaluator
only concerns passive users that only have the right to read shared documents and can not update them.
The approach of Wobber et al. [115] dealt with security issues in weakly consistent state-based replicated
systems. The proposed authorization policy allows only for positive rights, i.e no explicit access denial

2

1.2. General Context

is supported. Although delegation is allowed, the revocation is limited in order to avoid ambiguity. Fur-
thermore, policy enforcement relies on a trust anchor for all collaborating items. The crash of this single
root would create security problems and blocks the collaboration unless it delegates all his capabilities
to another user.

1.2 General Context

A collaborative system provides a set of shared textual or graphical objects that may be accessed by users
at any time. According to the communication type offered by a CSCW system, two kinds of systems are
known:

• Synchronous systems which allow users to cooperate in a real time fashion. In fact, updates of
the shared objects are carried out and broadcast immediately to other users. Collaborative editors
represent a typical example of these systems since they provide interactivity between users [32,78,
94, 102]. Indeed, each user edits his local document then sends his modifications to other users in
order to see immediately the effect of his updates on their copies of the shared document.

• Asynchronous systems which enable users to collaborate at different times [9]. Thus, users con-
tributions may be observed with a delay. Versions management tools such as CVS [18] and file
synchronizers such as Unison [72] support asynchronous communications. For instance, a file
synchronizer allows users to edit a shared file at different times then merge their changes later in
order to get the same final view of the shared file.

In our work, we focus on real-time collaborative editors which are distributed systems based on
the interaction of several users trying to edit simultaneously shared documents, such as articles, wiki
pages and program source code. To improve availability of data, each user has a local copy of the
shared documents. In general, the collaboration is performed as follows: each user’s updates are locally
executed in a non blocking manner and then are propagated to the other sites in order to be executed
on remote copies. Although being distributed applications, RCE are specific in the sense that they must
consider human factors. So, they are characterized by the following requirements [48]:

• High local responsiveness: the system has to be as responsive as a single-user editor [32,99,100];

• High concurrency: the users must be able to concurrently and freely modify any part of the shared
document at any time [32, 99];

• Consistency: the users must eventually be able to see a converged view of all copies [32, 99];

• Decentralized coordination: all concurrent updates must be synchronized in a decentralized fash-
ion in order to avoid a single point of failure;

• Scalability: a group must be dynamic in the sense that users may join or leave the group at any
time [48].

It is very difficult to meet these requirements when deploying RCE in networks with high com-
munication latencies (e.g. Internet). Due to replication and arbitrary exchange of updates, consistency
maintenance in a scalable and decentralized manner is a challenging problem. Traditional concurrency
control techniques, such as (pessimistic/optimistic) locking and serialization, turned out to be ineffective
because they may ensure consistency at the expense of responsiveness and loss of updates [32, 58, 99].

To maintain consistency, while maintaining concurrency, an Operational Transformation (OT) ap-
proach has been proposed in [32,98]. Another approach was proposed in [3], it is based on Commutative

3

Chapter 1. General Introduction

Replicated Data Type (CRDT). For such data type, convergence is obtained for free [3]. The main issue
here is how to uniquely identify the shared document’s elements in order to enforce a natural commuta-
tivity between concurrent updates.

In our thesis, we focus on OT-based RCE since OT is application-independent and used in many col-
laborative editors including Joint Emacs [78] (a groupware based on Emacs text editor), CoWord [100]
and CoPowerPoint [100] and a file synchronizer [66] distributed with the LibreSource Community1 and
Google Wave 2. OT also has been proposed as a consistency model for replicated mobile computing [40].

To deal with concurrent operations, OT uses an algorithm, called inclusive transformation [98] and
denoted by function IT , to merge these operations regardless reception order. Let op1 and op2 be two
concurrent operations. Intuitively, IT (op1, op2) transforms op1 against op2 in order to include the effect
of op2 in op1. The transformed form of op1 is then executed after op2. For instance, consider the
scenario presented in Figure 1.1 where two users work on a shared document. Just to simplify, we
consider that the document is represented by a sequence of characters. These characters are addressed
from 1 to the end of the document. Initially, both copies hold the string “efecte”. User 1 executes
operation op1 = Ins(2, f, 1) to insert the character ‘f’ at position 2. Concurrently, user 2 performs
op2 = Del(6, 2) to delete the character ‘e’ at position 6. At site 1, op2 needs to be transformed in order
to include the effect of op1: op′2 = IT ((Del(6, 2), Ins(2, f, 1)) = Del(7, 2). The deletion position of
op2 is incremented because op1 has inserted a character at position 1, which is before the the position of
the character deleted by op2.

site 1
“efecte”

site 2
“efecte”

op1 = Ins(2, f, 1)

**

op2 = Del(6, 2)

tt
“effecte” “efect”

IT (op2, op1) = Del(7, 2) IT (op1, op2) = Ins(2, f, 1)

“effect” “effect”

Figure 1.1: Serialization of concurrent update with OT approach

1.3 Access Control Issues and Requirements in Distributed Collaborative
Editors

Access Control represents an essential part of any information sharing system. In particular, coordi-
nating access to shared information is currently a hot topic in CSCW. As more and more people are
working together in a collaborative manner in order to edit the same shared document, across wide areas,
it becomes increasingly important to provide collaborative editing applications with flexible yet simple
access mechanisms to keep shared information secure. Indeed, collaborative applications provide infor-
mation and resources characterized by different degrees of sensitivity such as customer data in a financial
application or patient data in a healthcare application.

However, it is really hard to balance the competing goals of collaboration and security. Indeed
interaction in collaborative applications is aimed at making shared documents available to all who need

1http://dev.libresource.org
2http://www.waveprotocol.org/whitepapers/operational-transform

4

http://dev.libresource.org
http://www.waveprotocol.org/whitepapers/operational-transform

1.3. Access Control Issues and Requirements in Distributed Collaborative Editors

it (by replicating the shared document), whereas access control seeks to ensure this availability only to
users with proper authorization.

The major latency problem in access control for collaborative editors is due to the use of a shared
data-structure containing access rights that is stored on a central server as shown in Figure 1.2 where
we consider N users collaborating to edit the same document using a collaborative editing system that
satisfies the requirements mentioned in Section 1.2. We assume that each user holds a replica of the
shared document and has the ability to alter the state of his replica with respect to an access control
policy. In Figure 1.2, the security policy is enforced at site i, so controlling access consists in locking
the security data-structure stored at site i and verifying whether this access is valid. Subsequently, high
responsiveness is lost because every update must be granted by some authorization coming from the
central server, namely user i.

Figure 1.2: Access Control Problematic.

To overcome the latency problem, we propose an access control model based on replicating the
access data-structure on every site. Thus, a user will own two copies: the shared document and the
access data-structure (see Figure 1.3). It is clear that this replication enables users to gain performance
since when they want to manipulate (read or update) the shared document, this manipulation will be
granted or denied by controlling only the local copy of the access data-structure.

However, moving access control from the central server to every collaborating site leads to several is-
sues. Indeed, unlike traditional single-user models, collaborative applications have to allow for dynamic
change of access rights, as some users can join and leave the group in an ad-hoc manner. Likewise, there
are many situations where access control rules are user specific and difficult to predict [16].

Combining dynamic access control with consistent replication is a challenging task if the resulting
system is to support consistency of the shared document. Indeed, the shared document’s updates and the
access data-structure’s updates are applied in different orders at different user sites. The absence of safe
coordination between these different updates may cause security holes (i.e. permitting illegal updates
or rejecting legal updates on the shared document). Without a careful design, permanently divergent

5

Chapter 1. General Introduction

document’s state may be produced.

Figure 1.3: Replicating Access Control Policy.

Consequently, providing an access control model for collaborative editing solutions is a hard task
since it must meet the following requirements:

• Unlike traditional systems where access control has been explored, access decisions in a collabora-
tive application have to consider dynamic policy changes that are concurrent to document updates.

• All requirements of RCE (as previously mentioned) should be preserved. For instance, a security
layer atop RCE must incur significantly less overhead to maintain the high local responsiveness.

• The security layer has to be generic and appropriate for existing collaborative editors regardless
the underlying coordination algorithm.

• A significant requirement of the security architecture for emerging applications is that security
policy is enforced in all sites.

First Goal: The main objective of the thesis is to propose a generic model for
access control in real-time distributed collaborative editors. To deal with dynamic
policies and preserve all RCE’s requirements, we propose an optimistic approach
that tolerates momentary violation of access rights but then ensures the copies to be
restored in valid states with respect to the stabilized access control policy.

This thesis is part of a larger effort from the community to develop an optimistic access control
for real time collaborative editors relying on replicating the access control policy. To the best of our
knowledge, our work is the first that addresses the frequent and dynamic updates of both replicated
access control policy and shared documents.

6

1.4. Undoability in Distributed Collaborative Editors

1.4 Undoability in Distributed Collaborative Editors

Undoing operations is an indispensable feature in interactive applications [68,90]. It is a standard feature
in most single-user interactive applications and is becoming more and more available in collaborative
applications [5, 12, 22, 28, 74, 77, 78, 96, 97, 101]. In particular, it represents a very useful mechanism for
collaborative editors since it allows for error recovery by providing the ability to restore a correct state
of the shared data after erroneous operations.

Providing an undo feature for collaborative editing applications decreases the gap between single-
user and multi-user collaborative editors since the former allow users to undo operations.

A history has to be maintained at every collaborating site for supporting undo. Then a user can select
the operation to be undone from the history buffer. Selective undo allows users to undo the effect of an
isolated action selected from all past actions [12] by reordering operations in the history. Hence, undo is
generally combined with OT approach as it allows to rearrange operations [97, 99]. However supporting
undo in collaborative applications is a challenging problem because of the interleaving between updates
performed by multiple users in a collaborative computing environment [22, 74, 97].

To better illustrate the complexity of undo, consider the scenario of Figure 1.4 where we suppose
that two users collaborate to edit the same sequence of characters initially equal to "undo last operation".
User 1 alters the document’s state by executing the operation op1 = Del(6, ”last”) which deletes the
word last at the position 6. Concurrently, user 2, inserts the word "any" to get the state "undo anylast
operation". The OT principle consists in integrating the effect of concurrent operations at remote sites.
Thus, operation op1 is transformed to op′1 = Del(9, ”last”) at site 2 as for op2, it is transformed to
op′2 = op2 at site 1. Clearly, both sites 1 and 2 converge to the state "undo any operation".

To simplify, suppose that undo request is generated to undo the last operation. Unfortunately, last
operation is not the same at all sites, since operations are not always stored in execution order, then
considering the undo request as an error recovery for the last operation would produce divergence. Ob-
viously, undoing the last operation at site 1 undoes op′2 while it undoes op′1 at site 2 (see Figure 1.4).
Additional issues are encountered when the undo request interleaves with other document updates.

site 1
“undo last operation”

site 2
“undo last operation”

op1 = Del(6, ”last”)

((

op2 = Ins(6, ”any”)

vv

“undo operation” “undo anylast operation”

op′2 = Ins(6, ”any”) op′1 = Del(6, ”last”)

“undo any operation” “undo any operation”

send undo request // receive undo request

“undo operation” “undo anylast operation”

Figure 1.4: Undo last operation produces divergence.

Accordingly, the correct way to manage undo in collaborative applications is to select the operation
to be undone. Hence, instead of undoing the last operation as illustrated in Figure 1.4, an undo(op)
operation is executed and broadcast to other sites (see Figure 1.5) where op2 is undone at site 2 but its
new form op′2 is undone at site 1. The challenging task in selective undo, is to maintain convergence by
producing the same final state after undoing two different forms of the same operation.

7

Chapter 1. General Introduction

site 1
“undo last operation”

site 2
“undo last operation”

op1 = Del(6, ”last”)

))

op2 = Ins(6, ”any”)

uu
op′2 = Ins(6, ”any”) op′1 = Del(6, ”last”)

“undo any operation” “undo any operation”

undo op′2 undo op2
oo

undo(op′2) undo(op′1)

“undo anylast operation”

undo(op2)

“undo last operation”

redo(op1)

“undo operation” “undo operation”

Figure 1.5: Undo/Redo approach.

An intuitive solution would be to undo all the operations in the inverse chronological order, i.e from
the last to the wanted operation as it is proposed in [77]. So, considering the same example presented in
Figure 1.4, undoing op2 at site 2 would require to undo op′1, op2 then, redo op1. As shown in Figure 1.5,
both sites converge to the same final state "undo last operation".

However, the undo/redo scheme is expensive since it requires to perform many steps to achieve undo.
Moreover, it does not allow undo in all cases. In fact, an operation may not be undoable if another later
operation performed by the same user has not been undone.

Another solution consists in generating the inverse of the operation to be undone then transform it
against the following operations in the history so as to take into account the effect of all operations that
follows in the log using OT approach. However, combining OT and undo approaches while ensuring
data convergence is difficult as there are many properties to be preserved for both OT and undo. To be
correct, OT functions must fulfil two transformation properties namely, TP1 and TP2 [74,78]. Also, an
undo command has to fulfil some inverse properties IP1, IP2 and IP3 [36, 74, 97, 101]. Consequently,
undoing operations may itself lead to divergence cases called undo puzzles [97] due to the violation of
one of these properties.

Significant researches have been made to address OT-based selective undo [74, 77, 97, 101]. Even
though various undo solutions have been proposed over the recent years, either they do not allow to
undo any operation at any time e.g [77] or have exponential complexity such as AnyUndo and COT
algorithms [97,101] which is not of relevance in distributed collaborative applications since they require
high responsiveness.

Furthermore, verifying correctness of an existing undo solution is error-prone due to the absence of
formal guidelines for undo. Providing such guidelines is a hard task, since there are many constraints to
be considered. That is why some approaches resort to avoid some constraints at the expense of perfor-

8

1.5. Contributions

mance degradation [101].
Accordingly, undo in collaborative applications remains an open and challenging issue. Providing an

undo solution for collaborative applications has to take into account three main issues:

• Formalizing the correctness criteria of an undo solution.

• Designing an undo algorithm and prove its correctness.

• Ensuring efficiency of the undo algorithm.

Second Goal: The second objective of the thesis is to provide a theoretical study
of the undoability problem in the context of collaborative applications. This study
enables us to design a generic and safe undo solution appropriate for collaborative
editing applications.

1.5 Contributions

The main contributions of this thesis are as follows:

Access Control. We survey existing access control solutions and present the access control requirements
in the context of real-time collaborative editors. This study would be useful for future investigation in
this area. Based on the previous study, we discuss the main security and convergence issues arising
when adding an access control layer to a collaborative writing framework. The main contribution of this
dissertation is an optimistic and decentralized access control model that overcomes these issues [21,49].
Furthermore, our access control model is generic and enables programmers to separate the access control
layer from the coordination layer, thereby greatly simplifying algorithmic development of the access
control on the top of a given coordination framework and enabling to reuse the access control for different
collaborative applications.

We also propose a garbage collection mechanism in order to improve the performance of our so-
lution [64] since our access control model is based on logging access permissions. Consequently, our
model can be easily deployed on mobile devices.

The design goals of any access control model in RCE are:

• Simplifying the editing and management of access control permissions;

• Separating access control data structures and coordination algorithms;

• Being easily extensible and reusable.

Our access control model achieves these goals through its careful separation between access control
and coordination layers. All algorithms were implemented on the top of the collaboration framework
OPTIC [47, 48] to demonstrate the feasibility of our model. Additionally, we provide performance mea-
surements of the above algorithms to highlight the efficiency of our solution. To the best of our knowl-
edge, these measurements are the first demonstration of access control implementation for decentralized
collaborative editors.

Undoability for Collaborative Applications. A significant part of this work was dedicated to the un-
doability problem in distributed collaborative applications since undo represents a main feature of our
optimistic access control model.

On the one hand, we addressed the principles of undoability in collaborative applications from a
theoretical point of view. We show that designing an undoable object is a combinatorial problem and

9

Chapter 1. General Introduction

propose a novel approach to analyse this problem based on constraint programming. As a main result, we
define a necessary and sufficient condition for undoing replicated objects based on operational transfor-
mation approach with respect to inverse and transformation properties..We showed that it is impossible
to achieve correct undoability unless the updates performed on the shared object commute. Although it
is an impossibility result, it is interesting for OT-based object developers as well as researchers working
on undoability for collaborative applications.

On the other hand, we propose an enhanced set of operations in order to achieve undoability in a rea-
sonable time. Our solution has a linear complexity and thus is appropriate for collaborative applications.
Moreover, it could be integrated in any existing collaborative editing algorithm.

Publications. The results of this thesis have been partially published in fourth conference papers:

• Our access control model was first introduced in [49]3. This paper also discusses the access control
requirements for RCE and proposes an optimistic approach to regulate access in a collaborative
application. However, the paper only considers a mandatory access control policy.

• An extension of the previous paper was presented in [21]4. This paper proposes a multi-
administrator access control and investigates the generic aspect of the access control layer to meet
a large variety of collaborative editing solutions.

• Since our model was implemented on the top of the OPTIC framework based on log usage [47,48],
we investigate a garbage collection scheme in [64]5. This paper presents the issues raised by the
garbage collection in a collaborative application and our solutions to address these issues as well
as an implementation of the solution on mobile devices.

• Our first contribution to the undoability problem for collaborative editors appeared in [20]6. This
papers proposes a new semantic for idle operations in order to achieve undoability.

1.6 Thesis organization

The remainder of this thesis is structured as follows.
In Chapter 2, we present the state of the art of collaborative editing as well as their requirements .

We also give an overview on existing access control models and compare them.
In Chapter 3, we propose our generic and optimistic access control model for distributed collabora-

tive editors. In this chapter, we stress the security and convergence issues that motivated our conceptual
choices.

In Chapter 4, we detail our algorithms and prove the correctness of our access control model. Ex-
perimental study is given in Chapter 7 to demonstrate the feasibility of our access control model and
show its good performance and scalability.

The second part of this dissertation is dedicated to the undoability problem in collaborative applica-
tions as a main feature of our access control model and is organized as follows:

3Abdessamad Imine, Asma Cherif and Michaël Rusinowitch : A Flexible Access Control Model for Distributed Collabora-
tive Editors. SDM 2009: 89-106.

4Asma Cherif, Abdessamad Imine and Michaël Rusinowitch: Optimistic Access Control for Collaborative Editing Systems.
ACM Symposium on Applied Computing SAC 2011.

5Moulay Driss Mechaoui, Asma Cherif, Abdessamad Imine and Fatima Bendella: Log Garbage Collector-based Real Time
Collaborative Editor for Mobile Devices. CollaborateCom 2010.

6Asma Cherif, Abdessamad Imine : Undo-Based Access Control for Distributed Collaborative Editors. CDVE 2009: 101-
108.

10

1.6. Thesis organization

In Chapter 5, we present the undoability challenges as well as existing solutions and their limits.
Then, a theoretical study of the undoability problem is provided in Chapter 6 in order to well understand
the undoability problem and provide guidelines of the undo command. In this chapter, we formalised the
undoability problem as a Constraint Satisfaction Problem [108] and a provide a necessary and sufficient
condition to achieve undoability. Moreover, we presented our solution to overcome this impossibility
result. It consists in a generic framework for undoing operations in OT-based collaborative frameworks.

Finally, Chapter 8 discuss our achievements and provide directions that could be conducted in the
future.

To more illustrate the organization of our thesis we present different chapters in Figure 1.6.

Figure 1.6: Thesis Organizatin.

11

Chapter 1. General Introduction

12

Chapter 2

State of the Art

Contents

2.1 Collaborative Editors . 13
2.1.1 Real Time Collaborative Editors . 15

2.1.2 Overview on the Operational Transformation (OT) Approach 15

2.2 Access Control for Collaborative Editors . 19
2.2.1 Access Control Issues and Requirements in Collaborative Applications 19

2.2.2 Classes of Access Control Policies . 20

2.2.3 Access Control in Database Area . 31

2.2.4 Access Control for P2P Systems . 31

2.2.5 Comparing Existing Solutions . 33

2.3 Conclusion . 34

Collaborative editors are very important applications since they allow many dispersed users to col-
laboratively edit the same shared document. However editing the same document collaboratively is
a complex [46] and dynamic group process in which many considerations and issues must be ad-
dressed [61]. Such applications necessitate a careful design and a good attention since they allow for
a human-computer-human interaction. Adding an access control layer on the top of any collaborative
editing solution is a hard task. In fact, the access control must respect the requirements of such applica-
tions without additional overhead in order to allow for the high responsiveness required by collaborative
editors. Moreover, consistency of the shared document must be preserved. Accordingly, security mea-
surements must not lead to divergence cases and provide the same view of the shared document for all
users. Furthermore, the security model must be designed in a decentralized fashion.

In this chapter we begin by giving an overview on collaborative editors in Section 2.1 in order to
illustrate the requirements of such systems. Then we discuss the access control solutions in Section 2.2.
We present the most popular solutions and discuss their limitations in order to well define an access
control layer for collaborative editors that fulfil the requirements discussed below.

2.1 Collaborative Editors

Most usually, collaborative editing is applied to textual documents such as wikis or programmatic source
code such as version control. Generally, these applications allow for recording changes in order to
see who contributed what changes. The most famous collaborative editing framework is Google Docs.

13

Chapter 2. State of the Art

It provides collaborative both synchronous and asynchronous editing functionalities based on revision
control. Also, Wikipedia represents a large scale collaborative editing project.

The advantages of collaborative writing are:

• provide projects that are richer and more complex than those produced by individuals which is
very useful for academic as well as commercial communities.

• improve learning experiences and the process of reviewing documents.

There are two kinds of collaborative editors (see Figure 2.1): (i) real-time collaborative editors (RCE)
are a class of distributed systems based on the interaction of several users trying to edit simultaneously
shared documents (ii) and non-real-time collaborative editors which do not allow editing of the same
document at the same time, thus being similar to revision control systems.

Figure 2.1: Different kinds of collaborative editors

Real-time collaborative editors are based on two kinds of collaborative editing algorithms: central-
ized and decentralized algorithms.

Centralized algorithms. Editors based on these algorithms require the presence of a central server to
coordinate between updates performed on the shared document. For instance, Google Docs, SOCT4
algorithm [109], GOT [99] as well as COT [101] rely on client-server architecture in order to get a global
and unique order of execution, hence do not scale well.

Decentralized algorithms. The second approach allows concurrent requests to be executed in any or-
der, but does not allow necessarily for an arbitrary number of users. For example in adOPTed [78],
SOCT2 [95], GOTO [98], and SDT [58], the use of state vectors is necessary to detect causality relation-
ship between different updates. Consequently, these solutions do not scale well and it would be difficult
to adapt them for a P2P context. To the best of our knowledge, the first coordination algorithm allowing
for an arbitrary number of users is OPTIC [47, 48] thanks to the use of semantic dependency in order to
coordinate concurrent updates.

In our thesis, we focus on real time collaborative editors regardless the algorithm used to coordinate
different updates. However, we aim at providing a decentralised access control model in order to reach
the high responsiveness as well as scalability requirements. In the following, we are interested in these
requirements.

14

2.1. Collaborative Editors

2.1.1 Real Time Collaborative Editors

Real-time Collaborative Editors (RCE) are special class of distributed applications that allow users to col-
laboratively edit a shared document. These applications allow for a human-computer-human interaction
which necessitates a careful design.

Although being distributed applications, RCE are specific in the sense that they must consider human
factors [48]. So, they are characterized by the following requirements:

1. High local responsiveness: the system has to be as responsive as its single-user editors [32,99,100].
The response to the local user’s actions must be quick, even though collaborating users may reside
on different machines connected via the Internet with a long and non-deterministic communica-
tion latency. High responsiveness is very important because it presents a main indicator of the
good quality of a collaborative system. Moreover, poor responsiveness decreases the system’s
effectiveness in supporting collaborative work.

2. High concurrency: the users must be able to concurrently and freely modify any part of the shared
document at any time [32, 99] in order to facilitate the flow of information among collaborating
users.

3. Consistency: the users must eventually be able to see a converged view of all copies [32, 99].
Maintaining consistency is the major challenge since it is hard to manage the multiple streams of
concurrent activities performed by multiple users which may lead to conflicting scenarios [48].

4. Decentralized coordination: all concurrent updates must be synchronized in a decentralized fash-
ion in order to avoid a single point of failure.

5. Scalability: a group must be dynamic in the sense that users may join or leave the group at any
time [48].

It is very difficult to meet these requirements when deploying RCE in networks with high com-
munication latencies (e.g. Internet). Due to replication and arbitrary exchange of updates, consistency
maintenance in a scalable and decentralized manner is a challenging problem. Traditional concurrency
control techniques, such as (pessimistic/optimistic) locking and serialization, turned out to be ineffective
because they may ensure consistency at the expense of responsiveness and loss of updates [32,48,58,99].

Since collaborative editors allow multiple users to concurrently edit the same shared document, di-
vergence cases may be encountered. Consistency maintenance in the face of concurrent accesses and
updates to shared document is one of the main issues in the design of collaborative editing systems.
Operational transformation (OT) is a technique originally invented to ensure consistency and avoid di-
vergence occurring when many users edit concurrently the same document.

2.1.2 Overview on the Operational Transformation (OT) Approach

OT is an optimistic replication technique originally invented to allow many users (or sites) to concurrently
modify the shared data and next to synchronize their divergent replicas in order to obtain the same data.

This approach is considered as the efficient and safe method for consistency maintenance in the
literature of collaborative editors. Indeed, it is aimed at ensuring copies convergence even though the
users’s updates are executed in any order on different copies.

After two decades of research, this technique has extended its capabilities and expanded its ap-
plications to include group undo, locking, conflict resolution, operation notification and compression,
group-awareness, HTML/XML and tree-structured document editing, collaborative office productivity
tools, application-sharing, and collaborative computer-aided media design tools. Recently, OT has been

15

Chapter 2. State of the Art

adopted as a core technique behind the collaboration features in Google Wave and Google Docs, which
are taking OT to a new range of web-based applications7.

OT approach requires that every site stores all executed operations in a buffer also called a log. It is
known that collaborative editors manipulate shared objects that own a linear data-structure [32, 98, 100]
(e.g. a list). This list is a sequence of elements from some data type, such as a character, a paragraph, a
page, an XML node, etc. In [100], it has been shown that this linear structure can be easily extended to
a range of multimedia documents, such as MicroSoft Word and PowerPoint documents [48].

Two primitive operations are generally used to modify the shared document:

• Ins(p, e, s) to insert the element e at position p;

• Del(p, s) to delete the element at position p.

The parameter s is the identity of the site issuing the operation. Every site has a unique identity. The
set of site identities is assumed totally ordered.

To deal with concurrent operations, OT uses an algorithm, called inclusive transformation [98] and
denoted by function IT , to merge these operations regardless reception order. Let op1 and op2 be two
concurrent operations. Intuitively, IT (op1, op2) transforms op1 against op2 in order to include the effect
of op2 in op1. The transformed form of op1 is then executed after op2. For instance, here are two
transformation cases given in the IT algorithm proposed by Ressel et al. [78]:

1: IT (Ins(p1, e1, s1), Ins(p2, e2, s2)):
2: if (p1 < p2 or (p1 = p2 and s1 < s2)) then
3: return Ins(p1, e1, s1)
4: else
5: return Ins(p1 + 1, e1, s1)
6: end if

7: IT (Ins(p1, e1, s1), Del(p2, s2)):
8: if (p1 > p2) then
9:

10: return Ins(p1 − 1, e1, s1)
11: else
12: return Ins(p1, e1, s1)
13: end if

Algorithm 1: Inclusive transformation of two insertions [78].

The site identities are used to tie-break conflict situations (e.g. two concurrent operations inserting
elements at the same position).

To illustrate the importance of the OT approach, consider the scenario in Figure 2.2.(a) where two
users work on a shared document represented by a sequence of characters. These characters are addressed
from 1 to the end of the document. Initially, both copies hold the string “efecte”. User 1 executes
operation op1 = Ins(2, f, 1) to insert the character ‘f’ at position 2. Concurrently, user 2 performs
op2 = Del(6, 2) to delete the character ‘e’ at position 6. When op1 is received and executed on site 2,
it produces the expected string “effect”. But, at site 1, op2 does not take into account that op1 has been
executed before it and it produces the string “effece”. The result at site 1 is different from the result of
site 2 and it apparently violates the intention of op2 since the last character ‘e’, which was intended to be
deleted, is still present in the final string. It should be pointed out that even if a serialization protocol [32]

7http://en.wikipedia.org/wiki/Operational_transformation

16

2.1. Collaborative Editors

was used to require that all sites execute op1 and op2 in the same order (i.e. a global order on concurrent
operations) to obtain an identical result effece, this identical result is still inconsistent with the original
intention of op2.

In Figure 2.2.(b), we illustrate the effect of IT on the previous example. At site 1, op2 needs to be
transformed in order to include the effects of op1: op′2 = IT ((Del(6, 2), Ins(2, f, 1)) = Del(7, 2). The
deletion position of op2 is incremented because op1 has inserted a character at position 1, which is before
the character deleted by op2.

site 1
“efecte”

site 2
“efecte”

op1 = Ins(2, f, 1)

''

op2 = Del(6, 2)

ww
“effecte” “efect”

Del(6, 2) Ins(2, f, 1)

“effece” “effect”

(a) Incorrect integration.

site 1
“efecte”

site 2
“efecte”

op1 = Ins(2, f, 1)

**

op2 = Del(6, 2)

tt
“effecte” “efect”

IT (op2, op1) = Del(7, 2) IT (op1, op2) = Ins(2, f, 1)

“effect” “effect”

(b) Correct integration.

Figure 2.2: Serialization of concurrent updates

Many collaborative applications are based on the OT approach such as Joint Emacs [78] (a group-
ware based on text editor Emacs), CoWord [100] (a collaborative Microsoft word processor) and CoPow-
erPoint [100] (a real-time collaborative multimedia slides creation and presentation system) and a file
synchronizer [66] distributed with the industrial collaborative development environment LibreSource
Community8. OT also has been proposed as a consistency model for replicated mobile computing [40].

2.1.2.1 OT Properties

Using an IT algorithm requires to satisfy two properties TP1 and TP2 in order to ensure conver-
gence [78].

For all op, op1 and op2 pairwise concurrent operations with op′1 = IT (op1, op2) and op′2 =
IT (op2, op1), it must be that:

[op1 ; op′2] ≡ [op2 ; op′1],

i.e. sequences [op1 ; op′2] and [op2 ; op′1] are equivalent and have the same effect on the docu-
ment.

Definition 2.1.1 (TP1).

Property TP1 defines a state identity and ensures that if op1 and op2 are concurrent, the effect of
executing op1 before op2 is the same as executing op2 before op1. This property is necessary but not
sufficient when the number of sites is greater than two.

8http://dev.libresource.org

17

http://dev.libresource.org

Chapter 2. State of the Art

For all op, op1 and op2 pairwise concurrent operations with op′1 = IT (op1, op2) and op′2 =
IT (op2, op1), it must be that:

IT (IT (op, op1), op
′
2) = IT (IT (op, op2), op

′
1)

Definition 2.1.2 (TP2).

Property TP2 defines an operation identity and ensures that transforming op along equivalent and
different operation sequences will give the same operation.

Properties TP1 and TP2 are sufficient to ensure the convergence for any number of concurrent
operations which can be executed in arbitrary order [62, 78]. Accordingly, by these properties, it is
not necessary to enforce a global total order between concurrent operations because data divergence can
always be repaired by operational transformation.

To better understand our work, all examples given in the following use characters as elements to be
inserted/deleted.

2.1.2.2 Integration Algorithms

In OT-based coordination frameworks, every site is equipped with two main components: the integration
algorithm and the transformation algorithm. The first algorithm is responsible for receiving, broadcasting
and executing operations. It is independent of the collaborative objects semantics. Several integration
algorithms were proposed in the literature of collaborative editors, such as dOPT [32], adOPTed [78],
SOCT2,4 [95, 109], GOTO [98], OPTIC [48], and COT [101]. Each of these integration algorithms
uses a set of transformation algorithms for serializing concurrent operations defined on the same state.
In contrast to integration algorithms, transformation algorithms depends on the semantics of the shared
objects.

Every site generates document updates, executes them on its local copy of the shared document,
then stores them in a local history also called log. When a site receives a remote operation let op, the
integration algorithm proceeds as follows:

• Find all operations in the local log that are concurrent to op.

• Integrate op against all concurrent operations using the transformation functions.

• Execute the integrated form of op at the current document state.

• Store the integrated form of op in the local log.

Thus, integration algorithms allow for building the local logs while preserving the causal relation
between different document updates. Obviously, logs are different from one site to another but they are
equivalent thanks to properties TP1 and TP2.

Given a coordination framework equipped with integration and transformation algorithms, our ob-
jective is to build on the top of this coordination layer, an access control model to ensure the security
of the shared documents. In the following, we investigate the requirements of access control models in
collaborative editors. Then, we survey existing models proposed for collaborative applications.

18

2.2. Access Control for Collaborative Editors

2.2 Access Control for Collaborative Editors

Protecting data and resources is one of the most important requirements of any information manage-
ment system. Indeed, it ensures (i) confidentiality: protecting data from unauthorized disclosure and
(ii) integrity: protecting data from unauthorized or improper modifications.

To enforce protection, every access to the data must be controlled. Moreover, only authorized ac-
cesses can be allowed. To develop an access control system, we need to define the regulation of the
access to the data as well as the functions to be executed in order to implement these regulations in a
computer machine. In general, the development process of access control systems relies on the concepts
cited below [81]:

1. Security policy defines the rules of the access control, for instance saying that a site s has the right
to modify the shared document is a rule.

2. Security mechanism defines the functions that will be executed on the computer machine. These
functions illustrate the access control policy defined by the security policy and formalized by the
security model.

It should be pointed out that defining a security policy model is not a trivial task [81]. It is a subtle and
challenging task. Indeed, designing a security model relies on interpreting real world security policies
which are often ambiguous and complex in a unambiguous and simple way in order to be executed on a
computer machine [81]. Moreover, a security policy depends on the nature of the application in which it
will be enforced and must take into consideration malicious behaviour.

Controlling access is more and more complex in collaborative applications since they have special
requirements. In the following, we detail these requirements and show how they complicate the access
control task.

2.2.1 Access Control Issues and Requirements in Collaborative Applications

There are many issues faced when trying to apply an access control model for a collaborative application.
First of all, it is difficult to balance the competing goals of collaboration and security [107]. In fact,
collaboration aims at allowing many users to access to shared resources by building useful connection
among users, tools and information. However, security aims at ensuring confidentiality and integrity
of shared information. Several requirements must be addressed in order to ensure security for such
systems where the behavior of users is unpredictable and interactions between users and resources are
unexpected. Consequently, protecting resources in a collaborative application needs to address many
requirements not raised by normal single-user applications.

Moreover, collaborative systems contain resources with different degree of sensitivity. For instance,
some resources could be top secret such as military documents or information of a patient in a healthcare
application while other resources are just confidential such as academic emails. Thus, it is difficult to
manage access control for different resources at the same time.

Furthermore, some policies require real time updates which means that the policy is changed while
it is in effect. However updating the policy while it is deployed may inevitably lead to security holes.
To further illustrate this issue, suppose that in a financial company, the user Bob has the right to update
a given resource but concurrently the policy is updated to revoke this right. Since the policy update is
not enforced immediately, Bob may perform updates while policy is changing which obviously lead to
policy violation and may introduce financial loss to the company.

Another important issue that must be kept in mind is that policy enforcement should be managed
in a distributed fashion. Meanwhile, inconsistencies as well as security breaches or unavailability of

19

Chapter 2. State of the Art

resources due to latencies introduced by the remote check of access rights must be avoided in order to
respect the real time aspect of the collaboration while enforcing the security of the shared resources.

Finally, access control introduces additional processing time which must be very low in a collabo-
rative application. High responsiveness must be taken into account to meet human factor requirements
that become more important during collaborations since the user is responsible of the group progress in
contrary of a single-user application.

Several research studies addressed the requirements for access control in collaborative systems [4,
30, 35, 53, 107]. In the following, we state the main requirements that must be taken into account before
the design of an access control model for any collaborative application:

1. Distribution: access control must be enforced in a distributed system. Thus it must meet the
requirements of such a system. Otherwise, the full potential of the distributed application will be
limited.

2. Generic: the model for access control should meet a large variety of cooperative applications. It
should be generic with the minimal changes from one application to another in order to be deployed
on different applications easily.

3. Transparency and flexibility: the access control must be transparent for users having correct access
rights. The management of access rules has to be as flexible as possible without constraining the
application on which it is deployed.

4. High level specification: helps to concentrate on access layer independently from the collaboration
complexity of the underlying coordination layer.

5. Dynamic: since collaborative applications are designed for dynamic groups, access control must
take into account the dynamic aspect of the collaboration and allows dynamic change of the policy
in order to meet the frequent changes of access rights.

6. Good performance: we stress the fact that access control must be kept with low overhead to meet
the real-time aspect of communications.

7. Scalability: it should be possible for the access control model to be deployed in a large scale in
order to support a large number of users and operations in a collaborative application as well as
the churn (i.e users can join and leave the application in an ad-hoc manner).

In the following, we illustrate different access control classes that have been proposed in the literature
also investigating their limitations with regards to the requirements mentioned before.

2.2.2 Classes of Access Control Policies

In this section, we present the main access control classes [81, 107]:

1. Discretionary (DAC): in this class the policy is based on authorizations to define access control
rules stating what user is allowed to do what action.

2. Mandatory (MAC): Mandatory policies control access based on regulations defined by a central
authority.

3. Role-based (RBAC): users are divided up into different roles and accesses are granted according
to the rules defining what actions are allowed to a given role.

20

2.2. Access Control for Collaborative Editors

4. Task-based (TBAC): this model incorporates contextual information into access rules in order to
better recognize the context in which security access arises.

5. Team-based (TMAC): this approach considers that the appropriate way to group users is based on
the notion of team instead of roles since, work inside organizations is managed in teams.

6. Spatial: this model suites environments that can be represented in terms of regions. The access
into regions is based on credentials.

7. Context-aware: this model is also an extension of the RBAC model in order to export its usage for
context-aware applications.

2.2.2.1 Discretionary Access Control (DAC)

Discretionary policies define access control on the basis of access right requestor identity. Access rules
are specified to assign access rights to requestors. Then, accesses are granted or denied based on these
access rules. In this security model, users can have the right to delegate their access control capabilities
where from the name discretionary.

DAC policy is characterized by its flexibility and is widely used in many sectors. The most famous
discretionary model that was proposed in the literature is the access matrix model. This model is based on
the subject-object distinction which represents the key concept in this model [82]. It was first proposed
in [57] and allows for describing discretionary access control in operating system context. Then, the
model was refined by Graham [38]. The formalization of the access matrix model called HRU model
was proposed by Harisson, Ruzo and Ullman [42].

Three kinds of entities are defined: (i) Objects: which represent the resources to be protected such
as files in file systems or shared documents in collaborative editors; (ii) Subjects: are the users of the
objects to be protected; (iii) Access rights: are the operations to be executed by subjects on the protected
objects.

An access matrix is a matrix containing subjects in rows and objects in column. Each entry of the
matrix denotes the rights a subject has on a given object. To check an access rule, an action is granted to
a user if and only if his access matrix entry contains the appropriate rights allowing action performance.

Figure 2.3, represents an example of the access control model with a small set of subjects ({Alice,
Bob, Carl}) having the possibility to own, read, write and execute rights on four files. This matrix
specifies for example, that Alice has the right to read and write the file number 2.

Figure 2.3: Example of Access Matrix Model

21

Chapter 2. State of the Art

ACLs are by far the most common approach for implementing DAC policies; [45]. An ACL asso-
ciates the permitted operation to an object and specifies all the subjects that can access the object. That
is, each entry in the list specifies access rights given to a subject. From another point of view, this im-
plementation stores the matrix by columns [80]. An example of the ACL implementation is given in
Figure 2.4 showing the ACLs corresponding to the access matrix of Figure 2.3.

Figure 2.4: Access Control Lists (ACL)

ACLs are used in many commercial operating systems such as Microsoft Windows 2000, 2003,
and XP. UNIX (and UNIX variants such as LINUX and FreeBSD) also support the implementation of
ACLs [45].

Among the collaborative frameworks that use ACLs, we cite:

1. RTCAL: RTCAL (Real-Time CALendaring) [39] is a collaborative application that allows users
to collaboratively schedule meeting times. RTCAL is based on two kinds of data: private and
public. Each user has access to a shared and a private column. The first one displays whether
the time slot is free for all users or not. The second one shows details of any appointment of that
user at that time. In this approach there are two kinds of commands: application commands and
conference-control commands. The former manipulate the calendar where only the controller has
the ability to enter these commands at any time. The latter are performed by participants in order
to pass control, enter and leave the conference. Note that there is a special role (chairperson) that
has the authority to end the conference and determine who is the current controller.

2. Grove Outline Editor: Like RTCAL, GROVE (GRoup Outline Viewing Editor) [32], is an almost
WYSWIS group outline editor. However, it allows for fine-grained access control. Grove repre-
sents a simple outline-only editor for small groups and works as a tightly-coupled synchronous
editor. GROVE outline is based on a recursive structure consisting of structured items. It is based
on three important concepts: (i) View: each user has access to a view which is a subset of Grove
that may be private (only visible locally), public (visible by all), or shared (by invitation only).
This is specified by the user when starting a Grove session. Private and shared views may be
dynamically forked from existing shared and public views.(ii) Viewer: a viewer is a window that
displays an outline view. (iii) Viewport: Each user displays a view of the outline in a viewport.

22

2.2. Access Control for Collaborative Editors

All changes made by a user are immediately transmitted to the collaborators. It is also possible
for many users to change an item simultaneously. Grove ensures that they see these changes in the
same logical order in an optimistic way (transformation functions) without centralization or aborts
usage. Moreover, it does not support locking, and relies on social protocol to prevent conflicts.
However, accidental deletion may occur enough which makes Undo necessary.

3. Diva [91]: is a prototype virtual office environment replacement for the ubiquitous graphical user
interface (GUI) desktop that provides integrated support for awareness of coworkers, tools for
performing shared tasks, and facilities to support communication, in both the synchronous and
asynchronous modes of work. To manage access control, DIVA provides availability states for
rooms. Consequently, users have the control over both their availability and the awareness infor-
mation about others. The model includes access lists to give users control over the use of rooms
and documents.

Another approach to implement access control matrix are Capability lists (CL). This approach is dual
to ACL approach and stores the matrix by rows. It associate a list with appropriate access on object for
each subject in the matrix. Figure 2.5 shows the CLs corresponding to the access matrix of Figure 2.3.

Figure 2.5: Capability Lists (CL)

In the following, we state the shortcomings of this model and its implementation.
Although it represents a good abstraction of access control, the matrix model has some weaknesses:

• Inappropriate to complex access policies: indeed sophisticated policies such that policies that
regulate access based on competency or conflict-of-interest rules are difficult to describe with
access matrix because they generally associate credentials to subject when granting or revoking
actions [107].

• Static access rules: ACLs and CLs are not adequate to implement dynamic changes of access rights
which represents a mean feature of a collaborative application where rules may change at any time
of the collaboration according to the behavior of users [107]. Moreover, with ACLs, it is easy to
revoke all access rights of an object by deleting the corresponding list. However, determining all
granted access to a given user is very difficult to achieve since it needs to examine all ACLs in
the system. Consequently, revoking all rights of a subject is very expensive [80, 107]. The dual
problem is faced in the case of CL, it is very difficult to revoke all accesses on a given object.

• ACLs are platform-dependent since different systems have their own format of ACL, which is
inconvenient, subject to error, slow, and makes it difficult to identify or model the overall “policy”
that is enforced by the system [44, 45].

23

Chapter 2. State of the Art

• In some collaborative applications, ownership must not be at the discretion of the user in which
case the system must own resources. However, ACLs as well as CLs are mostly appropriate to file
systems and do not allow to define access rights on some attributes of a resource content, attribute
or contextual information [107].

2.2.2.2 Mandatory Access Control (MAC)

The mandatory access control model manages access to resources based on a central authority. The need
for a MAC model arises when protection decisions must not be decided by the object owner as in DAC
model but rather enforced by the system.

The most common form of mandatory policy is the multilevel security policy [80] based on the clas-
sification of subjects and objects in the controlled system where subjects request access to the objects.
The notion of subjects is different from that of DAC model. In fact, users or groups may be considered
as subjects in DAC model. However, in MAC model, there is a distinction between users (human beings
accessing to objects) and subjects that represent processes performed by users. This allows for con-
trolling indirect access resulting from processes execution since the same user is able to execute many
processes [80].

In the MAC model, an access class is assigned to each subject. Thus, the policy is specified as a set
of partially ordered set of classes where each class dominates the following one according to the partial
order. An example of classes would be Top Secret (TS), Secret (S), Confidential (C) and Unclassified
(U) where TS dominates S which dominates itself C which dominates U [80].

The MAC model offers a high level of security and is generally is used in multilevel systems to
protect highly sensitive data such as military information.

2.2.2.3 Role-based Access Control (RBAC)

The RBAC model is based on groups or roles rather than individuals to regulate access to resources. The
main idea of RBAC is grouping privileges. This idea was firstly introduced by [112] for an SQL-based
framework. In general, roles are statically created, then users are assigned to roles according to their
responsibilities and/or qualifications. Different approaches [6, 51, 69, 85, 86] of RBAC have been made
with the concept “role” that may be related to the user’s job or to designate a task (i.e order processing,
administration, etc).

In this model, there is a distinction between two logical parts where the first assigns users to roles
while the second assigns access rights to roles (see Figure 2.6). In RBAC, access rights are grouped
by role name and access to resource is regulated according roles membership where users are granted
membership into roles based on their role in the organization. For instance, in an academic system, the
role of teacher can include operations to prepare courses and/or exams, correct exams while the role of
student can be limited to consulting information for studies, answer online exams/exercises.

Consequently, access is regulated according to the role instead of specifying rules for each action
performed by each user. The way access is enforced by assigning first roles to users then assigning
access rules to roles simplifies the security policy management. Indeed, user membership into roles can
be revoked easily. Furthermore, updating roles does not require to update the privileges for every user.
Moreover, in many applications, there is a natural hierarchy between roles which can be exploited to
imply authorizations. This greatly simplifies the access control specification and management.

The RBAC model is very practical for traditional as well as collaborative environments, it provides a
promising paradigm for many commercial and government organizations. However, it is limited by the
following shortcomings:

24

2.2. Access Control for Collaborative Editors

Figure 2.6: RBAC model.

• Static role assignment: the earlier implementations of RBAC model defines roles and assign users
to them at the beginning. Hence, dynamic changes of role assignments were badly managed. One
can designate this kind of roles as static roles lacking flexibility and not responding to dynamic
applications requirements [107].

• Static session roles: the family of models RBAC96 presented in [84] overcomes some problems
with dynamic change of rights since it introduces the notion of session associated to each user [53].
A session starts when the user authenticates with the system and ends when he exits the system and
allows him/her to activate the permissions of a subset of roles that he/she belongs to. For every
session, users can be assigned new permissions. However, the concept of session also prevents
a dynamic reassignment of roles since the user roles cannot be changed within a single session.
Indeed, every user has to authenticate again in order to obtain new permissions.

• Lack of fine-grained control: in collaborative systems, users may need specific access rights in-
dependently of the role to which they belong or additional access rights inside their membership.
This is not supported by the RBAC model since it is not possible to define fine-grained access con-
trol on individuals or objects. For instance, suppose that the user having the role secretary need to
replace her manager during his absence. Suppose that she needs only some administrative rights
granted to the role manager and not all of them. In this situation, it is not tolerated from a security
point of view, to assign all the rights of manager role to the secretary.

• In some systems mainly those that do not follow organizational scheme, least privilege is difficult
or costly to achieve due to ambiguity and difficulty to tailor access based on various attributes or
constraints. In fact, the concept of least privilege requires many steps: first, the user’s job functions
must be identified, then the minimum set of privileges has to be defined , finally each user must be
restricted to a domain with those privileges.

2.2.2.4 The Intermezzo and Suite Models

In the following, we briefly discuss two famous approaches based on both access lists and roles in
conjunction.

25

Chapter 2. State of the Art

The Intermezzo model. Edwards et al. [30] propose a system for implementing a variety of policies
mainly in the areas of awareness and collaboration. The model supports dynamic policies and is imple-
mented atop the Intermezzo collaboration environment [31]. Intermezzo framework supports replication
and coordination in the form of session management and provides awareness information for users. It
provides access control for reading, writing, removing and testing the existence for objects. Denial of
access is achieved thanks to a special right NONE.

Policies are described in terms of access control rights on data objects, and are assigned to roles
(groups of users) where roles represent not only statically-defined collections of users, but also dynamic
descriptions of users evaluated at the run-time of the application. This dynamic aspect of roles allows
them to meet flexibly the collaboration dynamism. This is achieved by determining users membership
at the moment of evaluation of a given request thanks to predicate functions instead of using static
membership lists.

The implementation of the access policies are based on poor scaling ACL. Moreover, access rights
are validated at a remote server which degrades the performance of the application. Furthermore, author
did not discuss how to manage security when the server crashes in which case, users may be prevented
to perform actions.

The SUITE model. The SUITE access control model [89] proposed by Shen and Dewan is an extension
for the matrix model that was implemented in the collaborative Suite multi-user framework allowing for
collaborative editing [27].

The model is characterized by:

• A large set of access rights that meets the SUITE framework [27]. For instance, in addition to
classical access rights (read, write, delete) access rights like viewing, eliding and hiding was intro-
duced [89].

• Negative rights: the notion of negative rights was previously introduced in database area [75]. This
notion allows for explicit denial of access and facilitates access right specifying in presence of a
large amount of controlled objects and/or subjects. For instance, consider the scenario where a
user u wants to grant the read right to all group members except the user v. Without negative right
specification, u would require to grant read right to each one of collaborators except v. Thanks to
negative rights, the problem is easily solved by granting a positive read right to all users and an
explicit negative read right to v.

• Inheritance-based specification: the model allows for access right specification for groups of users,
objects and rights. Moreover, entries of the access matrix are not necessarily specified and can be
inferred from other values in the matrix which meets very well the dynamic aspect of collabora-
tion [89].

This approach is a good mixture between matrix and RBAC model since it allows for grouping
users. However, since it specifies a large set of rights, inheritance and implication relations were defined
in order to infer access rules and simplify access specification to the user. Unfortunately, these two
relations introduce conflicts when two contradictory access control actions (grant and revoke) may be
inferred at the same time. This requires conflict resolution rules which complicates the model as well as
its mechanisms and makes it difficult to be generalized for any collaborative application.

2.2.2.5 Task-based Authorization Control (TBAC)

TBAC is an access control model proposed for active and enterprize-oriented authorization management.
It models access control from a task-oriented perspective rather than the traditional subject-object per-
spective where access mediation involves authorizations at various points during the completion of tasks.

26

2.2. Access Control for Collaborative Editors

It is supposed to meet the requirements of agent-based distributed computing and workflow manage-
ment [106].

Preliminary ideas for TBAC were presented in [87]. Then a workflow authorization model named
WAM was proposed in [8]. These works recognized the need for active security and just-in-time permis-
sions. However, TBAC is more comprehensive and conceived better than WAM since the latter proposes
a primitive authorization concept [106]. Furthermore, TBAC provides many features such as holding
permissions temporarily, tracking the usage of permissions, etc.

Access control in this model is managed in many steps related to the progress and life-cycle of tasks.
A protection state is associated to each step (see Figure 2.7). This protection state contains a set of
permissions that change according to the task evolution. Consequently, the model is considered as an
active model since it deals with constant changes of a task allowing by this for dynamic management
of permissions. Moreover, authorizations in the TBAC model have a strict runtime usage, validity, and
expiration characteristics defined according to the task and its protection state.

As shown in Figure 2.7, the main components of the TBAC model are entities of the workfolw and
protection states associated to each of them. TBAC is based on the use of type-based access control and
dynamic check-in and out of permissions from protection states.

Figure 2.7: TBAC as an Active Security Model [106].

Shortcomings. The TBAC model has some weaknesses [107]:

• TBAC systems mainly suit task-based or workflow applications. Nevertheless, collaborative work
is not always based on tasks. To illustrate this point, consider a simple collaborative application
allowing for editing shared text document such as a wiki. In this application, each user has the
ability to update the document without the need of assigning users to tasks or following a workflow
scheme.

• Permissions are activated and deactivated in a just-in-time fashion which may cause problems
in the case of a centralized access control management. In fact, if the central authority crashes,
security holes may occur. This necessitates additional constraints to well manage just-in-time
permissions.

27

Chapter 2. State of the Art

• Specification of complex policies as well as delegation and revocation of authorizations are very
primitive in TBAC.

• Even though TBAC meets enterprise applications more than the subject-object approach, it needs
to be used within other access control models. For instance, in [54, 71], authors associate TBAC
and RBAC to define access control models for inter-organizational workflow.

2.2.2.6 Team-based Access Control (TMAC)

In contrary with RBAC model, the TMAC model is based on a more natural way to group users among
organizations and enterprises based on teams. The approach proposes a fine-grained access control
allowing access assignments to individuals on object instances which is not supported by RBAC. This
model was proposed by [105]. As shown in Figure 2.8, this model introduces two important notions:

1. User context: aims at identifying users playing a role into a given team at any given moment;

2. Object context: identifies which objects are needed by a collaboration session.

Figure 2.8: Main Concepts in TMAC Model [105].

The TMAC model allows for grouping users as well as fine-grained access control in contrary to
RBAC model. It was extended by the C-TMAC approach [37] in order to take into account contextual
information (time, place, etc).

Even though the TMAC and C-TMAC support contextual specifications, they have the following
shortcomings [107]

• The models have not been fully developed and tested to demonstrate they are applicable.

• There is a lack of a fine grained access right specification allowing to specify access assignments
concerning entities and relations.

28

2.2. Access Control for Collaborative Editors

• The model was used in conjunction with RBAC for Hypermedia environments [111] where roles
are defined across teams. This proves that TMAC model needs some extension to be applicable in
real word applications.

2.2.2.7 Spatial Access Control (SPACE)

Spatial Access Control (SPACE) has been proposed to solve the problem of role migration within a
session [17]. Instead of splitting users into groups as in RBAC, SPACE divides the collaborative envi-
ronment into abstract spaces in which subjects and objects reside. Users migrate from space to space in
a session based on a set of predefined rules. SPACE is modelled by an access graph, where nodes are
the spaces and the arcs are the rules. The access graph aims at defining constraints to move from one
region to another. The model also uses credential to allow access within regions, these credentials label
the edges of the graph (see Figure 2.9).

Figure 2.9: Space Model Abstraction of an Office Environment [17].

The SPACE model was implemented in the graphical collaborative virtual environment Spline [4]. It
has the following limits:

• Not generic: SAC implementation needs prior knowledge of the practice used in some collabora-
tive system, in order to produce a set of rules that are generic enough to match most of the daily
access patterns. This model is appropriate only for the collaborative environments with regions
and boundaries.

• Locking: Every access needs to check the underlying access data-structures which requires locking
data-structures and reduces collaborative work performance.

• Lack of fine-grained access specification: This model does not provide a fine-grained control
since it concerns only navigational access requirements i.e “Can i get into this office?”, hence does
not suit applications with specific controls or very large number of objects such as collaborative
editors [17].

2.2.2.8 Context-aware Access Control

The RBAC model was extended in order to provide security for context-aware applications. In [23],
RBAC was extended with the environment notion, environment role [23] were used instead of traditional
roles in order to capture environment state of a role (see Figure 2.10). Roles are activated according to

29

Chapter 2. State of the Art

environmental conditions (e.g time, location) when a request is issued. Permissions are assigned to a set
of roles where a set may include both subject and environment roles. Thus, the approach is considered
as a generalization of the RBAC traditional model.

Figure 2.10: Environment Roles in Context-aware Access Control [23].

This approach is useful for ubiquitous computing. However, it requires to be tested whether it meets
collaborative applications or not [107]. Moreover, as in RBAC, the system administrator must define
environment roles at the beginning. Furthermore, each subject or client in the model must contact a
server to obtain authorization to access the desired service. The administration of access is centralized
due to the nature of the targeted systems (ubiquitous computing systems such as Aware Home).

Other works have focused on extending RBAC with context-awareness and dynamic activation of
permissions. The DRBAC [118] model provides context aware access control for pervasive applications.
DRBAC also extends the RBAC model by dynamically adjusting role and permission assignments based
on context information. However, DRBAC must be combined with feasible authentication mechanisms
to secure pervasive applications in the real world [118].

The GTRBAC model [14] provides mechanisms for enabling and disabling roles based on temporal
constraints. The CA-RBAC [55] uses context-based constraints that include temporal and spatial con-
straints. They are specified as part of role admission/validation and role operation preconditions. This
approach supports fine-grained access control requirements. Indeed, it is possible to selectively revoke a
user’s membership from a role, or activate/deactivate specific role permissions, instead of enabling/dis-
abling a role.

The Or-BAC [33] also generalizes the RBAC model by introducing two abstractions of action and
object called activity and view. The central concept in Or-BAC is the Organization that can be seen as
an organized group of subjects. Furthermore, the Or-BAC model allows for specifying contextual infor-
mation to better manage situations specific to a given context (e.g. bad connexion, temporal information,
etc.). These extensions have introduced the notion of contextual or environmental roles to handle some
events in the system. Consequently, it is possible to assign rôles dynamically.

30

2.2. Access Control for Collaborative Editors

2.2.3 Access Control in Database Area

An important requirement for collaborative applications is the high response time. To avoid additional
time processing needed by the security policy in order to validate accesses, we believe that security policy
must be replicated on all collaborating sites. Hence, we study the solutions that replicate the policy and
allow for concurrent updates targeting the policy.

Samarati et al. [79] addressed authorization replication in database area. They dealt with the propaga-
tion of authorizations in distributed relational database systems. Authors proposed an optimistic replica
control algorithm ensuring consistency even though transient inconsistency are allowed. Indeed, the
replica control algorithm allows the out of order execution between different updates performed on the
authorizations policy. Consistency is maintained thanks to reprocessing updates that have been recog-
nized as received out of order without resorting to undo-redo mechanism but with time stamps usage.
Time stamps may be defined in a centralized fashion or in a distributed one. The latter may be achieved
through the Lamport clock [56]. However even though it allows for distributed timing, it assumes a fixed
number of users which limits the scalability of the system.

Moreover, the presented model allows for discretionary administration. It should be pointed out that
managing discretionary administration is a hard task in a distributed and replicated access control model.
Indeed, the out of order execution between policy updates leads inevitably to violations and divergence.
However, since the model is based on using time stamps it is always possible to know the correct order
of different updates and grants performed on the policy.

However, the proposed model does not allow for grouping users. Instead, it deals with individual
subjects (users) and objects (tables/tuples). Moreover the model presented above is not generic since it
only deals with relational databases and resorts to Lamport time stamps.

Another work of relevance is that of Ray and Xin [76, 117] where authors focus on real time update
of access control policies for database systems. In [76], two algorithms were proposed: syntax-based
and semantic-based in order to allow for concurrent and real time update of the security policy.

The security model is based on a simple authorization-based policy where an access policy is asso-
ciated with each object. Access rights are represented in a binary n-element vector, n being the number
of access rights. For instance, suppose that two access rights (Read and write) are allowed. The binary
vector [01] of a given object allows write but not read on that object.

In [117], a third algorithm were proposed to deal with conflicting situations when multiple access
right policies are specified over the same object. Priorities are assigned to policies to overcome this
problem. However, even priorities are subject to concurrent modifications in which case a lattice-based
approach is used to distinguish between policy relaxation and restriction.

Similarly to [79], access rights are specified only for one user on one object. Hence, it is not possible
to define access rights for group of users or objects. Moreover, while the approach addresses concurrency
in updating security policy, it does not allow users to update at any time since it is based on locking mech-
anisms for both shared data and policy object in order to prevent inconsistencies of both objects which
leads to poor performance and many aborts of operations. To increase concurrency, authors propose to
distinguish between policy restriction and relaxation in order to limit aborts. Nevertheless, cooperative
systems need to exploit the full potential of concurrency and avoid locks in order to offer high response
time as well as availability of both data and security policy. Moreover, this approach does not allow for
explicit revocations and replication.

2.2.4 Access Control for P2P Systems

Several works addressed security in peer-to-peer (P2P) environments. In [65], authors propose an
encryption-based access control mechanism for a p2p file sharing system. A framework for enforc-

31

Chapter 2. State of the Art

ing access control policies on published XML documents was proposed. In this framework the owner
publishes a partially encrypted single data instance. The solution is based on a declarative language
for access policies. The data owner enforces an access control policy by granting keys to users. This
approach concerns the sharing of data and not concurrent updates of the shared data by several users.

Another approach was presented in [16] for managing access control in a distributed fashion in a
p2p network. This approach is based on the access control model of Bertino [15] and Samarati [26]. It
proposes a client-based access control evaluator motivated by the emergence of hardware and software
security elements on client devices as well as the erosion of trusting servers due to internal and external
attacks. Even though, this model manages the replication of access rules in client devices, it only con-
cerns sharing of data. Moreover, the abstraction of target applications makes no assumption on how the
policy is updated and by whom.

Another approach based on trusted computing is proposed in [83] in order to enforce access control
policies in application layer of a P2P application. The proposed framework is an abstract platform
beyond the layer mechanisms of trust computing (including kernel architecture, hardware and attestation
mechanism). This framework is based on using cryptography in conjunction with RBAC model with the
aim to control data dissemination in order to restrict the misuse of data. Note that obtaining certificate
for a given role requires a central server called role server as well as a trusted third party (certificate
authority) or direct anonymous attestation to certify users. Examples of targeted applications would be
a document dissemination control application or P2P VoIP applications. The work does not discuss the
concurrent modification of shared objects.

Another security approach for information sharing systems was proposed in [11]. This solution
distributes the authorization and authentication enforcement in order to avoid single point of failure.
However it relies on centralized knowledge to enforce policy to overcome inconsistency problems caused
by autonomous authentication.

Some other approaches rely on eXtensible Access Control Markup Language (XACML) policies [24,
25] to specify the access restrictions on the data. These restrictions are stored in super nodes which limits
the solution to hierarchical P2P networks.

It should be pointed out that none of the solutions presented above considers existing access control
components and collaborative applications residing on the peers [93]. Moreover, administration distri-
bution is not supported by these approaches which represents an important feature of access control in a
p2p application.

Sturm et al. [93] provide a fine grained access control mechanism similar to those available in re-
lational database systems. It supports delegation of access rights and is based on XACML. Moreover,
the solution ensures secure authentication thanks to a public key infrastructure (PKI) with certificates
to avoid "sybil" Attacks [29]. However, it does not allow for replicating the security policy which may
introduce additional processing time to check access against the central policy. Users do not have the
ability to check locally their access rights and have to wait for the reception of the access decision.

The solution of [115] is proposed to handle security in weakly consistent state-based replicated sys-
tems wherein many items collaborate concurrently (e.g laptop, phone, cloud, etc) and then synchronize
periodically. They propose a logic access control policy formalized with SecPal [10]. The policy is repli-
cated and allows only for positive rights, i.e no explicit access denial is supported. Although delegation is
allowed, the revocation is limited in order to avoid ambiguity. To more illustrate this, neither revocations
nor delegation of revocations can be revoked which is important in such situation. For instance, if we
delegate the revocation right at a given user then we discover it is a malicious one, we can not revoke
this action and hence this user may prevent some trusted collaborators to perform actions. Furthermore,
policy enforcement relies on a single root of authority trusted by all collaborating items. The crash of
this single root would create security problems and block the collaboration if it does not delegate all its
capabilities to another user.

32

2.2. Access Control for Collaborative Editors

2.2.5 Comparing Existing Solutions

After presenting previously some background on main classes of policies in different areas, we are now
in a position to discuss and compare them to better understand the differences between these models.
This step is very important and aims at well defining the appropriate access control model for our work.

The main assessment criteria for access control in collaborative editors are the following

• Ease of use: this criteria indicates the simplicity of the model from user point of view [107].
Users should feel comfortable with the access control component and be able to specify access
definitions easily [89]. the security model should require less effort from users [30].

• Expressiveness: the expressive power of a model allows for specifying complex security scenarios
and deals with the ability of the model to capture the range of needs of system users [107].

• Applicability: this criteria shows the possibility for the model to be deployed in real world collab-
orative applications [107].

• Groups of users support: it indicates whether the model supports the notion of groups and allows
to specify access rights for groups or not [107].

• Policy specification: policy specification is very important and allows for scalability and easy
extension of the model [107].

• Policy enforcement: it is very important to provide means that ensures a correct enforcement of
the policy specification [107].

• Fine-grained control: the system should support fine-grained subjects, objects and access
rights [89]. This makes the model able to specify access rules not only for roles but also for
individuals on one or many controlled objects [107].

Table 2.1 extends the comparative study given in [107] and resumes the different access control models
as well as the differences between them.

Since our objective is to develop an access control model that meets RCEs requirements, we aim
at defining a security layer characterized by its dynamic aspect and high responsiveness. Moreover, our
access control model has to provide most importantly high distribution, high concurrency, availability and
high responsiveness. Consequently, the proposed model has take into account these additional criteria:

• Simplicity and flexibility: this is a very important aspect since, we need to study many collabo-
ration scenarios, the chosen model should be simple to allow for an exhaustive study of different
issues that may cause divergence.

• Generic: it is desirable for an access control model to be generic so that any collaborative system
can deploy it to protect easily shared data without redesigning an access control model each time.

• Policy replication: Replicating the access control policy is very important in collaborative appli-
cations. Indeed, this allows to respect the high responsiveness requirement of RCE. Moreover, it
allows to benefit from the full potential of replicating the shared data.

• Open group: it is very important in a dynamic collaborative application to allow for open groups.
In fact, many collaboration systems offer to users the ability to join and leave the application at
any time (churn). Consequently, the collaborating group must be open and must have a variable
size.

33

Chapter 2. State of the Art

To achieve our goals, we deeply concentrate in [79] since it discusses security policy replication
and [89] since it resorts to a policy specification that allows for a dynamic access control management.
These two works are related to our work and served as a basis of the security model that we propose.
The solution of [115] was published recently assuming it is the first work that address policy and data
replication while our first work was published one year before. However, it relies on partial and state-
based replication in the context of weakly consistent replication while we propose an access control
model for collaborative editors where data is totally replicated.

2.3 Conclusion

Collaborative applications are becoming more and more pervasive. As a matter of fact, many applications
are designed in a distributed fashion in order to meet collaborative work requirements. In our work, we
focus on collaborative editors with the aim to extend them with a security layer since there is a lack of
an adequate access control concept that ensures security of shared documents.

In this chapter, we have discussed the main requirements of a collaborative editing work in real-
time context. Then, we have surveyed the most important access control models in order to well define
an access control model for a distributed collaborative editor. Furthermore, we have highlighted their
weaknesses to meet RCEs requirements. Indeed, controlling access in a decentralized fashion for such
systems is still a challenging problem, as they need dynamic access changes and low latency access to
shared documents.

In the following Chapter, we propose our model that fulfils the main requirements discussed before.
To the best of our knowledge, our model is the first generic access control model based on replicating
the shared document and its authorization policy that addresses document updates.

34

2.3. Conclusion

C
ri

te
ri

a
M

at
ri

x
R

B
A

C
SU

IT
E

[8
9]

T
B

A
C

T
M

A
C

Sp
ac

e
C

on
te

xt
A

w
ar

e
Sa

m
ar

at
i

et
al

.[
79

]
R

ay
an

d
X

in
[1

16
]

Po
lic

y-
ba

se
d

A
C

[1
15

]
E

as
e

of
us

e
M

ed
iu

m
H

ig
h

M
ed

iu
m

M
ed

iu
m

H
ig

h
L

ow
H

ig
h

H
ig

h
H

ig
h

M
ed

iu
m

E
xp

re
ss

iv
en

es
s

M
ed

iu
m

H
ig

h
H

ig
h

H
ig

h
H

ig
h

M
ed

iu
m

H
ig

h
H

ig
h

H
ig

h
H

ig
h

A
pp

lic
ab

ili
ty

M
ed

iu
m

H
ig

h
M

ed
iu

m
M

ed
iu

m
M

ed
iu

m
L

ow
H

ig
h

H
ig

h
H

ig
h

H
ig

h
G

ro
up

s
of

us
er

s
su

pp
or

t
L

ow
Y

es
Y

es
Y

es
Y

es
Y

es
Y

es
N

o
N

o
N

o

Po
lic

y
sp

ec
ifi

ca
tio

n
L

ow
Y

es
Y

es
L

ow
Y

es
Y

es
Y

es
Y

es
Y

es
Y

es
Po

lic
y

en
fo

rc
em

en
t

L
ow

Y
es

L
ow

Y
es

L
ow

Y
es

Y
es

Y
es

Y
es

Fi
ne

gr
ai

ne
d

co
nt

ro
l

N
o

L
ow

Y
es

L
ow

Y
es

N
o

Y
es

N
o

Y
es

Y
es

G
en

er
ic

N
o

N
o

N
o

N
o

N
o

N
o

N
o

N
o

N
o

N
o

O
pe

n
G

ro
up

N
o

N
o

N
o

N
o

N
o

N
o

N
o

N
o

Y
es

Y
es

Po
lic

y
re

pl
ic

at
io

n
N

o
N

o
N

o
N

o
N

o
N

o
N

o
Y

es
N

o
Y

es

Ta
bl

e
2.

1:
C

om
pa

ri
so

n
be

tw
ee

n
A

cc
es

s
C

on
tr

ol
M

od
el

s

35

Chapter 2. State of the Art

36

Chapter 3

Our Generic Access Control Model

Contents

3.1 Coordination Model . 38
3.1.1 Shared Data Object . 38
3.1.2 Shared Policy Object . 39
3.1.3 Single and Multi-Administrator Approaches 40

3.2 Concurrency and Security Issues . 43
3.2.1 Out-of-order Execution of Cooperative and Administrative Operations 43
3.2.2 Joint Issue . 47
3.2.3 Remote Check and Unnecessary Undo . 49

3.3 A Generic Security Model . 53
3.4 Distributed Garbage Collection for Administrative Logs 55

3.4.1 Garbage Collection Issues . 55
3.5 Conclusion . 57

Controlling access in RCE while meeting their requirements discussed in Chapter 2 is a challenging
task. The major problem of latency in access control-based collaborative editors is due to using one
shared data-structure containing access rights that is stored on a central server. So controlling access
consists in locking this data-structure and verifying whether this access is valid.

Thus, a centralized solution is to be discarded since it limits the potential of the collaborative appli-
cation. Indeed, a central server for verifying access rights leads to high latencies.

To overcome the latency problem, we propose an access control model based on replicating the
access data-structure on every site. Thus, a user will own two copies: the shared document and the
access control policy. It is clear that this replication enables users to gain performance since when they
want to manipulate (read or update) the shared document, this manipulation will be granted or denied by
controlling only the local copy of the access data-structure.

However, combining access control with totally consistent replication presents a real challenge if
the resulting system is to be consistent. Indeed, if authorization policy can be temporarily inconsistent
then any given operation may be authorized at one node and yet denied at another. This is troublesome
because it leads to security holes as well as the divergence of the shared document.

Furthermore, unlike traditional single-user models, collaborative applications have to allow for dy-
namic change of access rights, as users can join and leave the group in an ad-hoc manner.

In this chapter, we describe the design of an access control system for replicated collaborative editing
systems hat satisfies RCE requirements (see Chapter 2). Our access control model allows for the specifi-
cation of a fine-grained access control over a collection of replicated copies of the shared document. The

37

Chapter 3. Our Generic Access Control Model

consistency of the replicated data is preserved despite the temporary inconsistency of the access control
policy.

Our contributions are as follows:

1. Access to shared documents is controlled in a decentralized and optimistic fashion in the sense
that every user sees the effect of his modifications immediately even though they were remotely
revoked. Then a correct state is restored after revocations are received locally.

2. Security policy is replicated at every collaborating site in order to instantly control the access to
shared documents.

3. Our model is generic since it meets existing coordination protocols. Moreover, it is characterized
by its good performance since our algorithms have a low complexity.

This chapter is organized as follows: Section 3.1 is dedicated to the access control model and its
ingredients. Section 3.2 discusses security and convergence issues. In Section 3.4, we propose a garbage
collection protocol to clean logs. In Section 3.3, we demonstrate the generic aspect of our solution.
Finally, Section 3.5 concludes.

3.1 Coordination Model

Every existing collaborative editing solution defines a data object that is shared by all collaborators
having the ability to update it concurrently. In the following, we propose a shared security object to be
deployed on the top of a given shared data object in order to ensure access control to shared objects.

3.1.1 Shared Data Object

We consider collaborative objects shared by many users in order to perform a common task simultane-
ously. Operations altering the shared object are called cooperative operations and referred to with the
letter c. Let C be the set of all cooperative operations. These operations are generated locally by each
site and then broadcast to other collaborators.

Example 3.1.1 (Collaborative Text Editors.). For instance a shared object may be a text document. The
document may be considered as a sequence of paragraphs where each paragraph has a unique identifier
and represents an element of the whole shared data object.

Practically, text editor algorithms consider two cooperative operations:

• Ins(p, e) where p is the insertion position and e the element to be added at position p.

• Del(p, e) which deletes the element e at position p.

Some approaches allow for a third operation Upd(p, e, e′) which replaces the element e at position
p by the new element e′ [19, 48, 102].

In our work, we consider coordination models allowing for concurrent execution of cooperative
operations. Such systems, generally, use the OT approach to synchronize cooperative operations. Subse-
quently, we assume that every site has a local buffer (see Chapter 2) of cooperative operations also called
cooperative log and referred to with letter H (see Definition 3.1.1).

38

3.1. Coordination Model

Each site s maintains a buffer H that stores all cooperative operations. A cooperative log is
represented by the sequence of cooperative operations c1 · c2 · . . . · cn executed at site s.

Definition 3.1.1 (Cooperative log).

Given any shared data object based on log usage, we aim at extending it with a security layer to allow
for access control to the different replica hold by collaborators. In the following, we describe the design
of our access control model.

3.1.2 Shared Policy Object

We consider an access control model based on authorization policies. Three sets are used for specifying
authorization policies, namely:

1. S is the set of subjects. A subject can be a user or a group of users.

2. O is the set of objects. An object can be the whole shared document, an element or a group of
elements of this shared document.

3. R is the set of access rights. Each right is associated with an operation that a user can perform on
shared document. For instance, we can consider the right of inserting an element (i), deleting an
element (d) and updating an element (u). The read right is out of the scope of this thesis but we
plan to give an outlook on future work.

An authorization policy specifies the operations that a user can execute on a shared document.

A policy is a function that maps a set of subjects and a set of objects to a set of signed rights.
We denote this function by P : P(S) × P(O) → P(R) × {+,−}, where P(S), P(O) and
P(R) are the power sets of subjects, objects and rights respectively. The sign “+” represents
a right attribution and the sign “−” represents a right revocation.

Definition 3.1.2 (Policy).

We represent a policy P as an indexed list of authorizations. Each authorization li ∈ P is a quadruple
〈Si, Oi, Ri, ωi〉 where Si ⊆ S, Oi ⊆ O, Ri ⊆ R and ωi ∈ {−,+}. An authorization is said positive
(resp. negative) when ω = + (resp. ω = −). Negative authorizations are just used to accelerate the
checking process. We use a first-match semantics: when a cooperative operation is generated, the system
checks it against its authorizations one by one, starting from the first authorization and stopping when it
reaches the first authorization l that matches the cooperative operation. If no matching authorizations are
found, the operation is rejected.

Strings “All” and “Doc” refer to the set of all subjects and all objects respectively. For instance the
authorization l = 〈All,Doc, i,+〉 assign a positive right to insert new objects for all users.

We suppose that the user who assigns authorizations is able to perform administrative operations.
An administrative operation is simply an operation that updates the policy by adding or deleting an
authorization.

39

Chapter 3. Our Generic Access Control Model

The state of a policy is represented by a triple 〈P, S,O〉 where P is the list of authorizations.
The administrator can alter the state policy by the following set of administrative operations:

• AddAuth(p, l) to add authorization l at position p;

• DelAuth(p, l) to remove authorization l at position p;

An administrative operation a is called restrictive iff a = AddAuth(p, l) and l is negative or
a = DelAuth(p, l) and l is positive.

Definition 3.1.3 (Administrative Operations).

Notations a.p and a.l refer to the position and authorization of the administrative operation a.
The policy object is replicated in order to avoid high latencies introduced by checking whether a

cooperative operation is valid or not with respect to the policy. The replication aims at satisfying the
high local responsiveness requirement of RCE.

Collaboration Protocol. We consider the collaboration protocol presented in the flow chart of Figure 3.1.
This protocol consists of the following steps:

1. When a user manipulates the local copy of the shared document by generating a cooperative op-
eration, this operation will be granted or denied by only checking it against the local copy of the
policy object (step (1) in Figure 3.1).

2. Once granted and executed, the local cooperative operations are then broadcast to other users. A
user has to check whether or not the remote cooperative operations are authorized by its local
policy object before executing them (step (2) in Figure 3.1).

3. When an administrator modifies its local policy object by adding or removing authorizations, he
sends these modifications to the other users in order to update their local policy copies (steps (3)
in Figure 3.1).

We assume that messages are sent via secure and reliable communication network, and users are identi-
fied and authenticated in order to associate correctly access to these users.

Although this protocol seems very simple, we show in Section 3.2 that many security and conver-
gence problems are encountered during collaboration.

Another important aspect of the access control policy is whether the model is mandatory or not.
Indeed, two approaches are possible when building the security layer based on the protocol presented
above: the single-administrator approach and the multi-administrator one. Each approach has its advan-
tages and shortcomings as illustrated subsequently.

3.1.3 Single and Multi-Administrator Approaches

When designing a security model, an important question arises: “is there only one administrator or
more?” even though the answer depends on the targeted application, it is better for our access control
model to be flexible and easily extensible from single to multi-administrator model in order to satisfy a
wide variety of applications.

In the following, we discuss both single and multi-administrator approaches based on motivating
examples for both approaches.

40

3.1. Coordination Model

Figure 3.1: Collaboration Protocol.

Single-Administrator Approach. Many distributed applications require only one administrator in the
group. This form of control is useful to maintain group focus, especially when working toward a strict
deadline [61]. In a single-administrator application, the administrator is generally the user creating the
group or supervising it. In practice, some editing areas requires a single administrator, generally, the
group creator. In such applications, the group creator prefers to have a full control over the application
wherein mandatory model is of relevance. This is especially required when the administrator is the owner
of the shared document. Among these applications, we cite that of preparing online exams where only
the course’s supervisor needs to assign rights to other users. To illustrate more, consider the example
of the master degree specialized in “Natural Language Processing” taught in common by the Computer
Science Departments of the Henri Poincaré University and the University of Nancy 2. Suppose that the
course of Web Technologies is taught by two professors, the professor Bob gives theoretical courses and
the professor Carl ensures practical class. When the supervisor prepares the exam for students, he wants
that each professor prepares only his dedicated part (Bob for the theoretical part and Carl for the practical
one). In such a situation, since the supervisor administrates the online exam, he has the ability to give
each professor the appropriate access of his part of the document.

Another example would be a community of programmers where the supervisor of a development
team has the whole authority on the collaborating group. He must be able to assign rights to programmers
according to his needs and to the competence of each programmer while programmers should not have

41

Chapter 3. Our Generic Access Control Model

the right to assign right to other programmers. Let Bob be a supervisor administrating a group of two
programmers Alice and Carl where Carl is a new programmer in the company. Consequently, Carl is less
experienced and trusted than Alice and has just the right to develop some parts of the code that are not
critical.

The main advantage of such a model is its simplicity. Indeed, it allows for an easy update of the
policy since only one administrator changes access rights. However, from a security point of view, it is
harder to control all users mainly in the case of large collaboration groups. Moreover, the absence of the
administrator site due to crashes or physical absence inevitably leads to a static policy. For these rea-
sons, the mandatory model does not meet all applications’ requirements and depends on the application
preferences and policy.

Multi-Administrator Approach. There are several distributed collaborative applications that require
a multi administrator feature. In such applications, each user must be able to control the access to
his objects since users may leave and join the group at any time without being members of the same
community. Even though collaborative applications aim at making data available for many users, users
may need to protect their data according to the nature of the collaborative application.

Shared calendars fall under the collaborative applications umbrella, where a multi-administrator pol-
icy would be of relevance. For instance, in professional context, a secretary may need to instantly see
the activity of his/her manager in order to organize his meetings. On the other side, the manager can see
the activities of his employees and so on. To underline the necessity of a multi-administrator policy in
such an application, let us consider the case when the leader of a company is unable to edit his calendar
and that in the meantime one of his/her customers wants to change the date of an important meeting with
him/her. It would be more practical if the secretary were able to update the appropriate meeting of the
manager’s calendar. Hence, it is interesting to give the leader the ability to grant update right on all or
parts of his shared calendar to his secretary. The secretary (his/her)self may need to grant some rights on
his/her calendar to other secretaries or employees in order to get help.

Another motivating example is that of a collaborative application allowing for a community of re-
searchers, doctors, patients and students to share a piece of information concerning a special disease. In
such an application a researcher may allow doctors to read his scientific results for diagnosing reasons
and students for analysing reasons. Moreover, a doctor may grant writing on his diagnoses to researchers.

According to these two examples, it is crucial to allow for a multi-administrator access control in
existing collaborative applications.

Considering these motivations, we extend the shared policy object in order to take into account multi-
administrator access control. In the multi-administrator access control, we refer to the user ownership
approach in the sense that only the owner of an object has the right to assign rights to other users on
that object. Otherwise the administrative operation is rejected. Hence, for a multi-administrator access
control model, we consider the following meta-access-control policy:

1. Each user who joins the collaborating group is able to create new objects.

2. Each user who creates an object has the right to assign rights to other users on that object.

Accordingly, each user has an owner policy and every policy evolutes independently from other
policies. Each administrator is able to specify access rights to other users on his objects. Owner policies
are defined below.

An owner policy of a user i referred to as Pi is a policy administrated by user i on its own
objects.

Definition 3.1.4 (Owner Policy).

42

3.2. Concurrency and Security Issues

Moreover each user is able to perform the same administrative operations as in the single-
administrator model to alter the state of its own policy Pi.

A global policy is a set of a finite number n of couples (Pi, Li) where Pi is the owner
policy of the site i and Li is its owner administrative log. We denote this set by Pg =
{(P1, L1), (P2, L2), . . . , (Pn, Ln)} where n represents the size of the collaborating group.

Definition 3.1.5 (Global Policy).

Let o and c be a shared object and a cooperative operation respectively such that c alters o. We
consider the primitive Administrator(c) which returns the owner of the object o altered by the cooper-
ative operation c. This primitive allows for identifying the owner policy of o’s administrator in order to
correctly check a remote cooperative operation.

Note that the multi-administrator approach is more general than the single-administrator one and is
required by many applications since it offers a higher flexibility and allows many users to edit access
rights.

In the following, we investigate the issues raised by our protocol presented in Figure 3.1 for both
approaches and present our solutions to overcome these issues.

3.2 Concurrency and Security Issues

The replication of the shared data object and the policy object is twofold beneficial: (i) firstly it ensures
the availability of the shared document, (ii) and secondly it allows for flexibility in access rights checking.

However, this replication may create violation of access rights which inevitably leads to violate the
consistency of shared data required by RCE as mentioned in chapter 2. Indeed, the cooperative and
administrative operations are performed in different orders on different copies of the shared data and
security objects.

In the following, we illustrate the issues raised by the performance of the administrative operations
concurrently to cooperative ones and we present our solutions to address these issues. To better illustrate
the problem, we use the shared text given in Example 3.1.1.

3.2.1 Out-of-order Execution of Cooperative and Administrative Operations

Performing cooperative and administrative operations in different orders at every user site may inevitably
lead to security holes. and, most importantly, data divergence. To underline these issues we will present
in the following four scenarios.

3.2.1.1 First scenario: Divergence caused by administrative operations

Consider a group composed of three users s1, s2 and s3. Initially, the three sites have the same shared
document “abc” (where the characters “a”, “b” and “c” are inserted by s1, s2 and s3 respectively) and
the owner policies Ps1 , Ps2 and Ps3 respectively where Ps1 authorizes s2 to delete the character “a” (see
Figure 3.2). Suppose that s1 revokes the deletion right to s2 and sends this administrative operation to s2
and s3 so that it is applied on their local policy copies. Concurrently s2 executes a cooperative operation
Del(1, a) to derive the state “bc” as it is granted by its local policy. When s1 receives the s2’s operation,
it will be ignored (as it is not granted by the s1’s owner policy) and then the final state still remain

43

Chapter 3. Our Generic Access Control Model

“abc”. As s3 receives the s2’s delete operation before its revocation, he reaches the state “bc” that will be
unchanged even after having executed the revocation operation. We are in presence of data divergence
even though the policy object is the same in all sites due to out-of-order execution of administrative and
cooperative operations.

s1
“abc”

s2
“abc”

s3
“abc”

Revoke deletion
right to s2 on “a”

�� $$

Del(1, a)

%%

}}

“bc” Accepted

Ignored “bc”

“abc” “bc” “bc”

Figure 3.2: Divergence caused by introducing administrative operations

The new policy object is not uniformly enforced among all sites because of the out-of-order execution
of administrative and cooperative operations. Thus, security holes may be created. For instance some
sites can accept cooperative operations that are illegal with respect to the new policy which is the case of
sites s2 and s3.

As our objective is to deploy such model in a decentralized environment, the solution based on
enforcing a total order between both operations is to be discarded as it would require a central server
or a total-order broadcast protocol [43] which is not appropriate for dynamic groups. Achieving this
objective raises a critical question: how the enforcement of the new policy is performed with respect to
concurrent cooperative operations? It should be pointed out that this enforcement may be delayed by
either the latency of the network or malicious users.

To solve this problem, we apply the principles of optimistic security [73] in such a way that the
enforcement of the new policy may be retroactive with respect to concurrent cooperative operations.
This means that users are able to violate the policy temporarily until receiving concurrent administrative
operations. Then, operations that violate the new policy enforcement are undone. Hence, only illegal
operations are undone. For instance, in Figure 3.2, Del(1, a) should be undone in s2 and s3 after the
execution of the revocation.

To detect concurrency, each operation generated to alter an element e locally by a non owner of e
is considered as a tentative. Hence, a remote administrative operation coming from a user s will be
concurrent to all tentative operations performed on the objects administrated by s.

3.2.1.2 Second scenario: Causality between cooperative and administrative operations

In the scenario of the Figure 3.3, we address the causality between a cooperative and administrative
operation. We firstly consider that the user s2 has not the right to delete characters. Then the s1 grants
him the deletion right for character “a”. Thus, he becomes able to perform a delete operation (in our case
the operation Del(1, a) is permitted). Now, if we suppose that the deletion arrives before the grant at the
site s1, we will obviously diverge since the deletion is rejected.

Intuitively, our solution consists in capturing the causal relations between cooperative operations and
the policy copies on which they are generated. The causality reflects a dependency between cooperative

44

3.2. Concurrency and Security Issues

s1
“abc”

s2
“abc”

s3
“abc”

Grant deletion to s3

��

--
Grant deletion to s2

Del(1, a)

qq
tt

Ignored

Grant deletion to s3

“bc” “abc” “bc”

Figure 3.3: Causality between administrative and cooperative operations.

and administrative operations. Since every cooperative operation is generated at a given context (the
version of the local copy of the policy object), every local policy copy has to maintain a monotonically
increasing counter that is incremented by generating local or receiving remote administrative operations.
If each granted cooperative operation is associated with the local counter of the policy object at the time
of its creation, then we can correctly integrate it in every remote site.

3.2.1.3 Third scenario: Necessity of administrative logs

In this scenario, we depict the necessity of using administrative logs in order to keep a local trace of
policy updates. In the scenario of Figure 3.4, three users see initially the same document “abc” and they
use the same policy object containing only one authorization l = 〈{s3}, {a}, d,+〉 allowing user s3 to
delete characters from the shared document. Firstly, s1 revokes the deletion right to s3 by removing
the authorization (the policy becomes empty). Concurrently, s3 performs Del(1, a) to obtain the state
“bc”. Once the revocation arrives at s3, it updates the local policy copy and it enforces the new policy by
undoing Del(1, a) and restoring the state to “abc”.

The question that arises here is how to integrate the remote operationDel(1, a) at s1 and s2? Before
to execute this operation, if we check it directly against the local policy at s1, it will be rejected since
the policy is empty. After a while of receiving and ignoring operation Del(1, a), s1 decides to grant
once again the deletion right to s3. At s2, the execution of both administrative operations leads to a
policy copy allowing s3 to delete characters. Before to execute Del(1, a), if we check it directly with
respect to the local policy of s2 then it will be granted and its execution will lead to data divergence.
Indeed, the generation context of Del(1, a) i.e the local policy on which it was checked at s3 is different
from the current execution context at s1 and s2 due to precedent executions of concurrent administrative
operations.

To overcome this issue, when the cooperative operation’s counter is less than the policy copy’s
counter of another site then this operation need to be checked with respect to precedent concurrent
administrative operations before its execution and not with respect to the policy. Therefore, we propose
in our model to store administrative operations in a log at every site in order to validate the remote coop-
erative operations at appropriate context. For instance, in Figure 3.2, we can deduce that Del(1, a) will
be ignored at s2 by simply checking it against the first revocation. Otherwise if the cooperative opera-
tion counter is greater than the policy version, the operation should wait until it is at the correct context.
Finally, if both counters are equal, we deduce that the policy is the same at the sender and receiver sites.
Consequently, it is considered as granted and is executed.

45

Chapter 3. Our Generic Access Control Model

s1
“abc”

s2
“abc”

s3
“abc”

Revoke deletion to s3

++

++

Del(1, a)

qq

��

Ignored Revoke deletion to s3 “bc”

Allow deletion to s3
Revoke deletion to s3
undo(Del(1, a))

Allow deletion to s3

--

44

abc

Accepted Allow deletion to s3

“abc” “bc” “abc”

Figure 3.4: Necessity of administrative log.

3.2.1.4 Fourth scenario: Necessity of the “Validate” administrative operation

Using the above solution, the administrative operations will be totally ordered as only the administrator
modifies the policy object and we associate to every version of this object a monotonically increasing
counter.

Consider the scenario illustrated in Figure 3.5 where s1 is initially authorized to insert any character.
Suppose that s1 performs the operation Ins(1, x). When adm revokes the insertion right to s1, he has
already seen the effect of the s1’s insertion. If s2 receives the revocation before the insertion, he will
ignore this insertion as it is checked against the revocation. It is clear that the insertion may be delayed at
s2 either by the latency of the network or by a malicious user. We observe that there is a causal relation
at adm between the insertion and the revocation. This causal relation is not respected at s2 and the
out-of-order execution of operations creates a security hole as s2 rejects a legal insertion.

adm
“abc”

s1
“abc”

s2
“abc”

Ins(1, x)

��

vv
Accepted “xabc” revoke insertion

right to s2

“xabc”

revoke insertion
right to s2

''

66

Ignored

revoke insertion
right to s2

“xabc” “xabc” “abc”

Figure 3.5: Validation of cooperative operations

46

3.2. Concurrency and Security Issues

Before it is received at the administrator site, we consider a cooperative operation as tentative. So,
our solution consists of an additional administrative operation that does not modify the policy object but
increments the local counter. This operation validates each received and accepted cooperative operation
at the administrator site. Consequently, every administrative operation is concurrent to all tentative op-
erations. The policy modifications done after the validation of a cooperative operation are executed after
this operation in all sites, as administrative operations are totally ordered.

In case of our scenario in Figure 3.5, the revocation received at s2 will not be executed until the
validation of the insertion is received. This avoids blocking legal operations and data divergence.

Accordingly, we define three kinds of cooperative operations in order to detect the concurrency
between administrative and cooperative operations (see Section 3.2):

• Valid: a cooperative operation c is valid if it is generated by Administrator(c) or by another user
and validated by Administrator(c); For instance, the operation Ins(1, x) in Figure 3.5 is valid
since it is accepted at the administrator site.

• Invalid: a cooperative operation c is invalid if it violates the policy or is undone by a concurrent
administrative operation. For example, the operationDel(1, a) generated at site s3 (see Figure 3.4)
is invalid since it was concurrent to the revocation originated by the owner site s1. Thus, the
operation is ignored at site s1 and undone at site s3.

• Tentative: a cooperative operation c is tentative if it is not generated by Administrator(c). For
instance, the operation Ins(1, x) generated at site s2 in Figure 3.5 is tentative since s2 is not the
owner of the character ”x“.

Let V , I and T be the sets of valid, invalid and tentative operations respectively. Note that, the set V
is sufficient to describe the set of all operations since the two others may be calculated from V and the
cooperative Log9.

3.2.2 Joint Issue

Consider the scenario illustrated in Figure 3.6 where we have initially a group of two collaborating sites
s1 and s2. When s1 grants the delete right on “a” to s2, s3 is not yet a member of the group. Suppose
that s3 joins the group just before s2 receives the grant from s1 and downloads the global policy from
s2. This means that the global policy replica owned by s3 is different from that owned by s1. Then s2
receives the administrative operation from s1. Consequently, the security shared object diverges. This
leads to data divergence. In fact, when s2 deletes the character “a”, this cooperative operation will be
executed at s1 and s2 but rejected by s3.

It should be pointed out that this issue does not concern only administrative operations but also
cooperative ones. In fact, a user may loose a cooperative operation when he downloads the log and the
state concurrently to the generation of a cooperative request by another user in the group.

To overcome this issue, there are two possible solutions: (1) The new user must request the policy
object (Pi, Li) from its possessor i and not from the nearest user in the P2P network as well as the shared
data object. This solution is costly and to be discarded; (2) The new user must wait the time θ before
requesting shared objects from the nearest user. The time θ corresponds to the maximum bound needed
so that a message traverses the network from any sender to its receiver (see Figure 3.7).

9H \ V = T
⋃

I, H being the cooperative log storing the cooperative operations.

47

Chapter 3. Our Generic Access Control Model

s1
“abc”

s2
“abc”

s3
“abc”

Grant deletion
right on “a” to s2

//

Request security and
data object from s2

ss

Send security and data object

,,

Del(1, a)

++ss
Accepted Ignored

“bc” “bc” “abc”

Figure 3.6: Divergence caused by a new user

s1 s2 New user

OO

t ≤ θ

��

Send cooperative
or administrative

operation

��

Join the groupOO

wait until all operations
traverse the network

��
Request shared objects

uu

Figure 3.7: Time required by a new user to request shared objects.

In our model, we consider that θ is a parameter depending on message size and network configuration
on witch the application is running. For instance, θ ≤ 175ms for 1KB message propagated through
HTTP connection on the P2P network JXTA 2.0 [41]10.

The same problem occurs when a user disconnects then reconnects to the group. In this situation
two cases are possible. A disconnected user may be regarded as a new user to whom we assign a
new identifier. This approach is avoided since policies must be updated each time a user disconnects
and reconnects by replacing old identity by the new one. The second possibility, is to assign the same
identity to the user. However, owner policies of other collaborators may change during his absence.
Consequently, his local replica of the global policy must be updated in the same way as a new user who
joins the group by downloading the new objects from the nearest peer after time θ.

10JXTA is the P2P platform that we used to implement our solution.

48

3.2. Concurrency and Security Issues

3.2.3 Remote Check and Unnecessary Undo

In this section, we focus on the unnecessary undo issue raised by the remote check. Indeed, tentative
cooperative operations are undone when a concurrent restrictive administrative operation is found at the
receiver site during the check process. However, a cooperative operation c may be revoked due to the
concurrent deletion of an administrative operation granting c while c is legal with respect to the policy
if there are other concurrent administrative operations granting c. This issue occurs due to the fact that
we invalidate or undo tentative operations as soon as a concurrent restrictive administrative operation is
found regardless the semantic of this restrictive operation.

In the following, we detail the scenarios of unnecessary undo operations and show how to exploit the
administrative operations semantics to overcome this issue.

3.2.3.1 First case of useless undo

Consider the scenario presented in Figure 3.8 where two sites s1 and s2 edit the same shared data object.
Suppose that s1 and s2 begin the collaboration with the initial owner policy of s2, Ps2 containing {l1 =
〈{s1}, {o}, u,+〉; l2 = 〈All, {o}, u,+〉} where o is an object administrated by s2. Authorisation l1
only grants update right to user s2 while l2 grants update right to all users. We also assume that the
authorization list is parsed from the top to the bottom.

Suppose now that user s1 performs a tentative cooperative operation c = Upd(p, o) to update the
object o at position p. According to the ownership principle, s2 performs the restrictive administrative
operation a3 = DelAuth(0, l1) in order to delete the permission l1. Then, broadcasts the restrictive
administrative operation a3 that revokes the cooperative operation c.

When a3 is received at site s1, it leads to undoing c since it is tentative and revoked by a3. At site s2,
the remote check of c returns a negative result, since a3 is a revocation of c generated at a version greater
than that of c.

Note that c is undone while authorized by the permission l2 inserted on the top of the authorization
list. The same issue would be faced if site s2 inserts a permission l0 = 〈s1, {o}, u,−〉 at a position less
or equal to l2’s position wherein c is invalidated even though it is legal with respect to the authorization
list.

To overcome this problem, we propose to track administrative dependency for every cooperative
operation. Tracking this dependency inside administrative logs enables us to correctly integrate remote
cooperative operations since a cooperative operation depends on the permission allowing its execution.
For instance in the scenario of Figure 3.8, c is validated thanks to l2 and not l1. Subsequently, the
deletion of l2 instead of l1 should invalidate c. This administrative dependency should be updated when
parsing the administrative log during a remote check process in order to take into account concurrent
administrative operations executed on the local policy of the receiver site.

3.2.3.2 Second case of useless undo

Consider the scenario of Figure 3.9 where two sites s1 and s2 collaborate with the initial policy object
such as Ls2 = a1 with a1 = AddAuth(0, l1) and Ps2 = {l1 = 〈{s1}, {o}, d,+〉}. We suppose that s1
performs the cooperative operation c = Del(p, o) verifying Administrator(c) = s2 then broadcasts c
to be executed at site s2. After a while, s2 generates two administrative operations a2 and a3 concurrent to
c. The administrative operation a2 inserts the permission l2 = 〈All, {o}, d,+〉 on the top of l1 which also
grants c since l2 is more general than l1. However, the administrative operation a3 = DelAuth(0, l1)
deletes the permission l1 on which depends c.

According to the first useless undo case, c should be undone at site s1 and invalidated at site s2
since its administrative dependency l1 was deleted concurrently. However, the administrative operation

49

Chapter 3. Our Generic Access Control Model

Initial policy object state

Ps2
l2 = 〈All, {o}, u,+〉
l1 = 〈{s1}, {o}, u,+〉

Ls2
a2 = add(1, l2)
a1 = add(0, l1)

Intermediate policy
object state for s1

s1 s2 Intermediate policy
object state for s2

c = Upd(p, o)

��

DelAuth(0, l1)

��

P ′
s2

l2 = 〈All, {o}, u,+〉

L′
s2

a3 = DelAuth(0, l1)
a2 = AddAuth(1, l2)
a1 = AddAuth(0, l2)

P ′
s2

l2 = 〈All, {o}, u,+〉 undo(c) c.f = Invalid

L′
s2

a3 = DelAuth(0, l1)
a2 = AddAuth(1, l2)
a1 = AddAuth(0, l1)

Figure 3.8: Useless Undo: First Case.

a2 generated after a1 also grants c. Consequently, the cooperative operation c must not be undone
even though its dependency was deleted concurrently if there are at least one administrative operation
authorizing its execution. Subsequently, when checking c remotely, we have to take into account the
administrative operation a2.

To overcome this issue, we propose to track l2 in the administrative dependency of c during the
remote check process. Consequently, the administrative dependency is seen as a list of integers referring
to the positions of all authorizations granting the execution of a given cooperative and inserted on the top
of its initial dependency. This dependency is referred to with c.ad.

Initially, the dependency set of an operation c contains the authorization on which it depends locally.
Next, during the remote check procedure, the set of administrative dependencies is updated by adjust-
ing, adding or removing positions according to the kind of the encountered administrative operation
(AddAuth() or DelAuth()). Accordingly, given a cooperative operation c, the administrative depen-
dency of c represents an ordered set of integers where the minimum and the maximum refer to the first
and last administrative operations granting c respectively.

To better illustrate how we update the dependency of a given cooperative operation, we consider the
following example:

Example 3.2.1. Consider a cooperative operation c and the following administrative log where c is
initially granted by a0 (e.g c is a delete operation). Then c is checked against the administrative log as

50

3.2. Concurrency and Security Issues

Initial policy object state

Ps2
l1 = s1, {o}, d,+

Ls2
a1 = add(0, l1)

Intermediate policy
object state for s1

s1 s2 Intermediate policy
object state for s2

c = Del(p, o)
AddAuth(1, l2)

l2 = 〈All, {o}, d,+〉

yy

P ′
s2

l2 = 〈All, {o}, d,+〉
l1 = 〈s1, {o}, d,+〉

P ′
s2

l2 = 〈All, {o}, d,+〉
l1 = 〈s1, {o}, d,+〉

L′
s2

a2 = addAuth(1, l2)
a1 = AddAuth(0, l1)

L′
s2

a2 = addAuth(1, l2)
a1 = AddAuth(0, l1)

DelAuth(0, l1)

tt

P ′′
s2

l2 = 〈All, {o}, d,+〉

P ′′
s2

l2 = All, {o}, d,+ undo(c)

L′′
s2

a1 = AddAuth(0, l1)
a2 = AddAuth(1, l2)
a3 = DelAuth(0, l0)

L′′
s2

a3 = DelAuth(0, l1)
a2 = addAuth(1, l2)
a1 = AddAuth(0, l1)

Figure 3.9: Useless Undo: case 2

follows: Initially ad = [0], it is updated when c is transformed against a1 and becomes [0, 1] (since also
a1 grants c). Finally, the deletion of the authorization at position 1 leads to ad = [0].

a2 = DelAuth(1, 〈All,Doc, d,+〉) → c.ad = [0]
a1 = AddAuth(1, 〈All,Doc, {d, u},+〉) → c.ad = [0, 1]
a0 = AddAuth(0, 〈All,Doc, d,+〉) → c.ad = [0]

This transformation is applied both at the remote check and at the reception of a remote administra-
tive operations. In the first case, a cooperative operation is transformed against concurrent administrative
operations stored in the administrative log in order to update the administrative dependency. Thus, the
remote check will proceed correctly by avoiding useless invalidation scenarios. Similarly, the recep-
tion of remote administrative operations updates the administrative dependency of tentative cooperative
operations.

For instance, the cooperative operation c in Figure 3.9 must be updated at site s1 at the reception
of the administrative operation a2 (i.e c.ad = [0, 1]). Similarly, the reception of a3 has to update the

51

Chapter 3. Our Generic Access Control Model

administrative dependency of c by deleting 1 (i.e ad = [0]) since the new position of l2 is 0 after the
deletion of l1.

Accordingly, a cooperative operation c is undone only when its dependency becomes empty (i.e
ad = ∅) after being transformed against a concurrent administrative operation.

3.2.3.3 Third case of useless undo

The last scenario of useless undo is illustrated in Figure 3.10. In this scenario, we suppose that two sites
s1 and s2 have the initial policy Ps2 allowing s1 to delete all objects administrated by s2. Suppose s1
performs a cooperative operation c = Del(p, o) where o is administrated by s2.

Initial policy object state

Ps2
l0 = {s1}, All, d,+

Ls2
a1 = add(0, l0)

Intermediate policy
object state for s1

s1 s2 Intermediate policy
object state for s2

c = Del(p, o) DelAuth(0, l0)

ww

P ′
s2

P ′
s2 undo(c)

L′
s2

a2 = DelAuth(0, l0)
a1 = AddAuth(0, l0)

L′
s2

a2 = DelAuth(0, l0)
a1 = AddAuth(0, l0)

AddAuth(0, l1)
l1 = 〈All, All, d,+〉

tt

P ′′
s2

l1 = 〈All, All, d,+〉

P ′′
s2

l2 = 〈All, All, d,+〉

L′′
s2

a3 = AddAuth(0, l1)
a2 = DelAuth(1, l0)
a1 = AddAuth(0, l0)

L′′
s2

a3 = DelAuth(0, l1)
a2 = AddAuth(1, l2)
a1 = AddAuth(0, l1)

Figure 3.10: Useless Undo: case 3

Concurrently, s2 deletes the permission l0 on which depends c (by generating the administrative
operation a2 = DelAuth(0, l0) then adds the permission l1 = 〈All, All, d,+〉 which is more general
than l0 and grants c. Hence, c will be undone due to the administrative operation a2 = DelAuth(1, l0)
generated by s2 although the policy allows its execution (thanks to a3).

For simplicity reasons, we chose to invalidate a cooperative operation if an invalidation is found
before any new administrative operation granting this operation. Details and algorithms of the remote
check are given in Chapter 4.

52

3.3. A Generic Security Model

3.3 A Generic Security Model

In this Section, we present the generic architecture of our access control model that can be deployed atop
any log-based collaborative editor. To illustrate the generic aspect of our access control model, we define
an editing application as a structure of three different layers (see Figure 3.12):

1. The Coordination Layer denoted as CL;

2. The Access Control Layer denoted by ACL and;

3. The Generic Interface (GI) that connects CL and ACL;

The Coordination Layer e.g. OPTIC, SDT, (see Chapter 2) implements the coordination algo-
rithm responsible of coordinating concurrent updates. This layer is seen as a black box and is independent
of other layers. It ensures the concurrency control as illustrated in Figure 3.11, where every site first exe-
cutes locally generated document update, then broadcasts them to other users. The receiver site, extracts
remote operations from network and integrates them locally by the CL.

Figure 3.11: Underlaying Coordination Architecture.

Note that we only address CLs using logging mechanisms to store different updates performed on
the shared document and that identify each created object with a unique identifier.

To build a generic access control layer (ACL) on the top of a given CL while preserving convergence,
we need to well define the Generic Interface (GI) that connects both layers: ACL and CL. For the sake
of our results, we define the following set of operations that handle the connections between the different
layers mentioned before (see Figure 3.12):

• Check(c) checks whether the cooperative operation c communicated to the generic interface (GI)
is authorized by ACL or not;

• Apply(c) launches the execution of the cooperative operation c on the actual data state;

53

Chapter 3. Our Generic Access Control Model

• Undo(c) to undo every cooperative operation c in the cooperative log conflicting11 with the con-
current restrictive administrative operation a received by GI.

We describe below the flow of interactions between the three layers:

1. When a cooperative operation c is received from the network, it is firstly redirected to the GI
instead of the CL in order to be checked against the policy object through the Check(c) module.

2. If c is authorized by the ACL, then it is communicated to the module Apply(c) of the generic
interface GI. This module will ensure its execution on the current document state state. Otherwise,
the operation is rejected from the ACL and then ignored by CL.

3. When a remote administrative operation a is received, it is communicated to the GI in order to be
applied in the ACL so to modify the local copy of the shared policy object.

4. If there are cooperative operations concurrent with ra and conflicting with it, then the generic
layer will process the Undo(c) module in order to undo all cooperative operations c that are no
more legal after the reception of ra. This step is crucial since it allows for the data convergence
by restoring the correct state seen by the administrator at the moment of the generation of the
administrative operation a.

5. When a cooperative operation c is locally generated, it is first executed then redirected to the GI to
check if it is authorized by the ACL or not. If not, it is undone thanks to the Undo(c) module12.
Otherwise its effect remains on the document state. Finally, the operation c is broadcast through
the network.

Figure 3.12: Different layers of secure RCE model.

11We say that a cooperative operation c is conflicting with an administrative operation when c is concurrent with a,
Administrator(c) is the issuer of a and c violates the rights restricted by a (a is restrictive).

12We suppose that a user is aware of his/her capabilities to limit the repetition of a do/undo mechanism

54

3.4. Distributed Garbage Collection for Administrative Logs

3.4 Distributed Garbage Collection for Administrative Logs

Our model requires every site s to maintain an administrative log containing administrative operations of
which site s is informed, i.e. administrative operations generated by s or originated from other sites and
then communicated to s. As discussed in Section 3.2, the site may need to reconsider the administrative
operations it has received in order to properly check a remote cooperative operation upon reception of
out of order administrative ones. Furthermore, shared objects may not have been received by other users
such as new users or disconnected ones; hence every site must remember the operations it has received
so to communicate them to other sites.

Accordingly, enforcing security requires to store administrative operations in a buffer history, as it is
necessary to track policy updates in order to achieve convergence of the shared data. Unfortunately, with
the continuous increasing of log size, the system performance may be degraded which is inappropriate for
low storage capacity devices and may not be useful after producing many versions of the access control
policy. Moreover, storage capacity is not infinite as memory always has limited size. Secondly, the
motivation for maintaining a log at each site is that a remote administrative operation must be executed
at the same security context on all receiver sites as we have already shown in Section 3.2. However, not
all operations received by a site must be kept in its log. In particular, an administrative operation can be
safely deleted from a site’s log if it is already received in all other sites.

In this section, we focus on garbage collection as a feature for our access control model. We discuss
issues raised by garbage collection mechanism in collaborative editing context. Finally, we devise a
distributed garbage collection scheme to clean administrative logs.

3.4.1 Garbage Collection Issues

Administrative logs are identical at all sites, since all administrative operations are executed in the same
order dictated by the administrator13.

Let GARBAGE_ADM_LOG(s,v) be the request allowing for initiating a garbage process for admin-
istrative logs where s is the owner site’s identity and v is the policy version. Such a message is causally
ready at a site s1 if v = v′ + 1, v′ being the version of the owner policy copy Ps of site s1.

The out of order execution of a garbage request and a cooperative operations inevitably leads to
divergence of the shared data object since cooperative operations are checked against the administrative
log. To illustrate this issue, consider the scenario of Figure 3.13 in which we give the impact of deleting
the administrative log of a site s1 on the remote check of cooperative operations received after the log
removal.

In Figure 3.13.(a), two sites s1 and s2 begin the collaboration with the same document and policy
objects. Let c be a cooperative operation originated by s2. Suppose that Administrator(c) = s1
and that c is granted at version vg − 1. After he reaches the version vg, site s1 generates the request
GARBAGE_ADM_REQUEST(s1, vg) in order to garbage the administrative log L1. We also assume that
the garbage request is immediately executed at the originating site s1. Consequently, the local copy of the
access control policy becomes empty. Obviously, checking the remote cooperative operation c already
executed at site s2 presents a big issue.

The same issue is encountered for illegal cooperative operations as illustrated in Figure 3.13.(b). In
this case, we suppose that s1 grants rc at version vg − 2 but revokes later c from s2. Then s1 generates
again an administrative operation that grants c. Finally, s1 performs GARBAGE_ADM_LOG(s1, vg) in
order to garbage the administrative log and broadcast the garbage request so to be executed at site s2.

The cooperative operation c is invalid because of the revocation performed at version vg − 1. In fact,
once the revocation is received at site s2, c is undone since it is a tentative operation concurrent to the

13This order reflects the policy version.

55

Chapter 3. Our Generic Access Control Model

s1
s2

user

grant c
v = vg − 1

//

generate c

}}

GARBAGE_ADM_LOG(1,vg)

**
delete log

???

(a) Case of a legal coop. operation.

s1 s2

grant c
v = vg − 2

//

revoke c
v = vg − 1

))

generate c

xx

grant c
v = vg

))

undo(c)

GARBAGE_ADM_LOG(1,vg)

**
??? delete log

(b) Case of an illegal coop. operation.

Figure 3.13: Interleaving Between a Garbage Request and Cooperative Operation

revocation performed by the administrator s1. However, when c arrives at site s1, the log is empty so
we can not correctly check this remote cooperative operation. Unfortunately, such a situation inevitably
leads to divergence of the shared document as well as policy violation (if c is executed at site s1).

To overcome this problem, we have to correctly address the following two issues:

1. What should be version of the policy after processing a GARBAGE_ADM_LOG?

2. How to check remote cooperative operations that are concurrent to a GARBAGE_ADM_LOG re-
quest?

In an attempt to answer these questions, we focus on policy version and show how to avoid the
divergence caused by the interleaving between garbage request and cooperative operations.

Policy Version. Restarting the version 0 after cleaning logs is to be discarded since it does not allow
to remember previous garbage requests. Consequently, a delayed remote cooperative operation concur-
rent to a GARBAGE_ADM_LOG request may be executed at given site s that has processed a garbage
collection as if it was not the case. For instance, consider a cooperative operation c with version v. Sup-
pose that c is delayed by a malicious user while Administrator(c) performs a GARBAGE_ADM_LOG

request and restarts the version of its owner policy to 0. Then Administrator(c) performs many ad-
ministrative requests until he reaches the version v. Clearly, when Administrator(c) receives c, he will
integrate it locally as if it was generated after the garbage. Consequently, the remote check may produce
an erroneous result that violates the policy and leads to divergence.

To overcome this problem, we define the policy version v as a couple (vg, va), where vg represents the
counter of garbage requests i.e vg is incremented each time a GARBAGE_ADM_LOG request is generated
while va represents the counter of administrative requests i.e it is incremented when an administrative
operation is generated and reset to 0 each time vg is incremented. For example, the version v = (5, 2)
refers to an administrative log containing two administrative operations after the fifth garbage of the
administrative log. We use the dot notation to denote each parameter of the version (v = (vg, va)).

Accordingly, a cooperative operation administrated by the site s having the version vs = (vg, va) is
ready with respect to the policy if its version number v verifies (i) v.vg = vs.vg i.e it is generated after the
same number of garbage requests. (ii) v.va ≥ vs.va i.e s has reached the policy context on which c was

56

3.5. Conclusion

generated. Thus, we are able to correctly check a remote cooperative operation against the administrative
log even if it was removed by a GARBAGE_ADM_LOG request.

Checking Remote Cooperative Requests Concurrent to a Garbage Request. We have already shown
in Figure 3.13, that it is impossible to correctly integrate remote cooperative requests concurrent to a
garbage request. To overcome this issue, our solution consists in undoing cooperative operations that
are concurrent to a GARBAGE_ADM_LOG request even if they are legal operations. This highlights the
optimistic aspect of our model in the sense that a user may introduce temporary divergence situations
while the system ensures permanently the convergence of the shared document.

The causal relation between garbage and cooperative requests is defined as follows:

• Every cooperative operation c with version v received at a site s with version vs such that v.vg <
vs.vg is considered as invalid since it was generated concurrently to a garbage request. Note that
c is a tentative cooperative operation otherwise it would be validated before the execution of the
garbage request thanks to the administrative operation V alidate(c).

• When a GARBAGE_ADM_LOG request is received at a remote site, it is executed after undoing all
tentative operations from the cooperative log.

For instance, in Figure 3.13, c must be undone before the execution of GARBAGE_ADM_LOG(s1,vg)
which leads to convergence. Thus, a garbage request behaves in the same manner as a restrictive admin-
istrative operation.

Garbage Collection Protocol. To remove administrative logs, we follow these steps:

1. The site s generates the administrative operation GARBAGE_ADM_LOG(s,v) and broadcasts it to
all users. This request contains the identity of the issuer as well as its version.

2. When a remote site s′ receives GARBAGE_ADM_LOG(s,v), it stores it until it is causally ready.
Once it is causally ready, s′ undoes all tentative operations then removes the administrative log
and updates the policy version. Thus the counter of administrative operations is reset to zero and
that of garbage administrative logs is incremented.

3. Each cooperative operation received at site s or at any other collaborating site after the garbage
request is ignored.

3.5 Conclusion

In this chapter, we have proposed a generic and decentralized framework for controlling access in dis-
tributed collaborative editors. We designed our solution in a replicated and optimistic fashion so that
users are able to collaborate in editing the shared access control policy. Our model relies on the op-
timistic aspect of the collaboration in the sense that users may violate temporarily the policy. Illegal
operations are undone in order to restore the correct state.

57

Chapter 3. Our Generic Access Control Model

58

Chapter 4

Concurrency Control Algorithms and
Correctness Proof

Contents

4.1 Concurrency Control Algorithms . 59

4.1.1 Cooperative Requests . 60

4.1.2 Administrative Requests . 60

4.1.3 Causality Between Cooperative and Administrative Requests 61

4.1.4 Control Procedures . 62

4.1.5 Check Procedures . 64

4.1.6 Administrative Procedures . 66

4.1.7 Asymptotic Time Complexities . 69

4.1.8 Illustrative Example . 71

4.2 Correctness Proof . 73

4.2.1 General Principles . 73

4.2.2 The Correctness Criteria . 74

4.3 Conclusion . 77

This chapter presents a protocol for optimistic access control model proposed for RCE that enables
us to address issues such as security holes and data divergence presented in Chapter 3.

The outline of this chapter is as follows: In Section 4.1, we present our algorithms as well as an
illustrative example. Section 4.2 gives the correctness proof of our protocol.

4.1 Concurrency Control Algorithms

In our collaboration protocol, we consider that a user maintains two copies: the shared document and its
access policy object. Even though our access control model seems simple, we have shown in Section 3.2
that the policy enforcement is very tricky.

In the following, we formally present the different components of our algorithm as well as its asymp-
totic time complexity.

59

Chapter 4. Concurrency Control Algorithms and Correctness Proof

4.1.1 Cooperative Requests

A cooperative operation c is associated to a cooperative request rc = (s, c, v, f, ad) where:

1. s is the identity of the generator site.

2. c is the cooperative operation of rc referred to with rc.c.

3. v is the number version of the policy copy referred to with rc.v.

4. f is the kind of cooperative operation denoted by rc.f and takes values “Tentative”, “Valid” and
“Invalid”.

5. ad is the administrative dependency of c and is referred to with rc.ad .

The object altered by a given request rc is referred to as rc.o. Furthermore, rc.t reflects the request
type e.g considering the set of operations insert, delete and update rc.t = i if c is an insert, rc.t = d if it
is a delete and rc.t = u if it is an update. Let Cr be the set of all cooperative requests.

We consider coordination models allowing for concurrent execution of cooperative operations. Such
systems systematically rely on logging cooperative operations. Subsequently, every site keeps a local log
for cooperative operations also called cooperative log and referred to with letter H .

Each site s maintains a buffer H that stores all cooperative requests. A cooperative log is
represented by the sequence of cooperative requests rc1 · rc2 · . . . · rcn executed at site s.

Definition 4.1.1 (Cooperative log).

4.1.2 Administrative Requests

Every administrative operation a is associated with an administrative request ra where ra is the triple
ra = (s, a, v) such that:

1. s is the identity of the site referred to with ra.s;

2. a is the administrative operation denoted by ra.a;

3. v is the version number of the owner policy Ps denoted by ra.v and is the couple (vg, va) where
vg is the number of garbage collections while va is the number of administrative requests.

Moreover, the notation ra.t refers to the type of a administrative operation ra.a associated with ra
e.g. ra.t = AddAuth if ra.a = AddAuth(p, l) and so on. Finally, ra.l refers to the authorization
inserted or deleted by the administrative request ra if ra.t = AddAuth ∨ ra.t = DelAuth and ra.c
refers to the identifier of the cooperative request validated by ra if ra.t = V alidate.

Let Ar be the set of all administrative requests. Note that administrative requests are stored in a log
called administrative log (see Section 3.2, Chapter 3).

An administrative log L is a buffer that stores all administrative requests.

Definition 4.1.2 (Administrative Log).

60

4.1. Concurrency Control Algorithms

In order to enforce access control, we need to define both Grant and Revoke predicates that allow
to deduce whether an administrative request grants or revokes a given cooperative request.

Both predicates requires a matching rule, to see if the administrative request really concerns the
cooperative request or not. This matching rule is given in Definition 4.1.3.

Given an authorization li = 〈Si, Oi, Ri, ωi〉 and a cooperative request rc. The predicate
Matches(l, rc) returns true iff:

(rc.s ∈ Si ∨ Si = All) ∧ (rc.o ∈ Oi ∨Oi = Doc) ∧ (rc.t ∈ Ri ∨Ri = All)

Definition 4.1.3 (Matching rule).

Next, we define the boolean predicate Grant(ra, rc) and its dual boolean predicate Revoke(ra, rc)
as follows:

Given an administrative request ra and a cooperative request rc, the boolean function
Grant(ra, rc) : Ar × Cr 7→ {true, false} returns true iff

ra.a is not restrictive and Matches(ra.l, rc) = true.

Definition 4.1.4 (Grant predicate).

For instance, consider the positive authorization l = 〈All,Doc, {i, d},+〉 and its associated admin-
istrative operation a = AddAuth(p, l) where p is the top of the authorization list P (p = |P |). Let ra be
the administrative request corresponding to a. In this case, for every cooperative insert or delete request
rc (i.e rc.t = i ∨ rc.c = d), we have Grant(ra, rc) = true.

In the following, we present the revoke predicate, that takes true value if an administrative request
revokes a cooperative request.

Given an administrative request ra and a cooperative request rc, the boolean function
Revoke(ra, rc) : Ar × Cr 7→ {true, false} returns true iff

ra.a is restrictive and Matches(ra.l, rc) = true.

Definition 4.1.5 (Revoke predicate).

For better understanding, let l1 = 〈{s}, Doc, {i, d},+〉 deleted by the administrative operation a =
DelAuth(p, l1) where p is the position of l1 in the corresponding authorization list P . Consider a
cooperative request rc verifying rc.t = d ∨ rc.t = i and administrative request ra such that ra.a = a,
thus Revoke(ra, rc) = true. Similarly, consider l2 = 〈{s}, Doc, {i, d},−〉 and the administrative
request ra1 that adds l2 on the top of P . Consequently, we have Revoke(ra, rc) = true.

4.1.3 Causality Between Cooperative and Administrative Requests

A cooperative request is causally ready if it has the same garbage as the receiver site and a policy version
greater than the policy version of the receiver site. We define the causality of a cooperative operation in
the following:

61

Chapter 4. Concurrency Control Algorithms and Correctness Proof

Let rc and ra be two cooperative and administrative requests respectively such that ra.s =
Administrator(rc). The cooperative request rc depends causally on ra iff rc.vg = ra.vg ∧
rc.a > ra.va, i.e. rc has already seen the effect of ra. If rc is tentative then it is concurrent to
ra, i.e. the administrator has not yet seen the effect of rc when it generates ra.

Definition 4.1.6 (Causality between cooperative and administrative operations).

A remote cooperative request is executed at the receiver site only when it is causally ready. We define
the boolean function Ready(rc) as follows:

Given a cooperative request rc received by a site s, the boolean function Ready(rc) : Cr 7→
{true, false} returns true iff rc is causally ready according to the Definition 4.1.6 (all admin-
istrative requests on which rc depends causally are executed on s).

Definition 4.1.7.

Similarly, remote administrative requests are buffered and executed only when they are causally
ready. By abuse of notation, we use the same function used for cooperative requests.

Given an administrative request ra with version v = (vg, va) received by a site s such that
the owner policy of ra.s has the local version vr = (vgr, var). Then ra is causally ready iff
(i) ra.t 6= V alidate ∧ ra.vg = vgr ∧ ra.va = var + 1 or (ii) ra.t = V alidate ∧ ra.vg =
vgr ∧ ra.va = var + 1 ∧ ra.c ∈ H . Consequently, boolean function Ready(ra) : Ar 7→
{true, false} returns true.

Definition 4.1.8.

4.1.4 Control Procedures

In a secure collaborative editor, a group consists of N user sites (where N is variable in time) starting a
collaboration session from the same initial shared data state. Each site stores all cooperative requests in
a cooperative log and all administrative requests in an administrative log.

Our concurrency control procedure is given in Algorithm 2. In the following, we detail the main
steps of this algorithm.

Joining the group. Each user must join an existing group. Even the group creator, creates the group
then joins it. In Algorithm 2, the first step is the JOIN procedure. We define two different states for each
user: passive and active state. A user is active when he is able to begin the collaboration with other
users. Otherwise he is passive. First, the user waits until receiving both data and security objects. He
has the initial state passive until he receives both data and security objects from the nearest peer on the
collaborating group (of course if there is already at least a member in the group).

In the following, we illustrate the generation and reception of administrative requests.

Generation of local cooperative request. In Algorithm 3, when a cooperative operation c is locally
generated at a site s, we begin by forming rc = (s, c, f, vs, []) associated with it where vs is the version
of the policy administrating rc. Once the request rc is formed, it is considered either as valid when the

62

4.1. Concurrency Control Algorithms

1: Main:
2: JOIN
3: INITIALIZATION OF THE COORDINATION LAYER
4: INITIALIZATION OF THE SECURITY LAYER {see Algorithm 8}
5: while not aborted do
6: if there is a generated cooperative operation c then
7: GENERATE_COOP_REQUEST(c)
8: else
9: if there is a generated administrative operation a then

10: GENERATE_ADMIN_REQUEST(a)
11: else
12: RECEIVE_REMOTE_REQUEST
13: INTEGRATE_REMOTE_REQUEST
14: end if
15: end if
16: end while

17: RECEIVE_REMOTE_REQUEST:
18: if there is a request r from a network then
19: F ← F + r
20: end if

21: INTEGRATE_REMOTE_REQUEST:
22: if ∃ r ∈ F |Ready(r) = true then
23: {see Definition 4.1.6 and 4.1.8}
24: F ← F − r
25: if r ∈ Cr then
26: RECEIVE_COOP_REQUEST(r) {see Algorithm 4}
27: else
28: if r ∈ Ar then
29: RECEIVE_ADMIN_REQUEST(r) {see Algorithm 9 and 10}
30: else
31: r is a garbage message
32: RECEIVE_GC_MESSAGE(r) {see Algorithm 11}
33: end if
34: end if
35: end if

36: JOIN:
37: if N > 1 then
38: state← passive
39: wait until all requests traverse the network
40: request shared data and security object
41: wait until receiving shared data object
42: for all cooperative requests rc in H do
43: RECEIVE_COOP_REQUEST(rc)
44: end for
45: end if
46: state← active

Algorithm 2: Concurrency Control Algorithm

issuer s is Administrator(rc) (note that Administrator(rc) is simply the group’s administrator in the
case of a single-administrator approach) or otherwise as tentative. The request rc is immediately executed

63

Chapter 4. Concurrency Control Algorithms and Correctness Proof

on its generation state (i.e. Apply(rc) computes the resulting state when executing operation c on the
document state) then checked to verify whether it is authorized or not in which case it is undone. The
operation is checked against the local copy of the policy (i.e. using boolean function CHECK_LOCAL

detailed in Algorithm 5). We choose to execute the operation immediately before checking it against
the local copy of the policy for generality reasons. Indeed, all existing coordination algorithms execute
a locally generated operation immediately. This allows our model to be generic and to be deployed on
the top of any coordination algorithm without any modification of the coordination layer. However, we
suppose that users are aware of their rights and consequently generating illegal operations is not frequent.

Reception of remote cooperative request. Each site has the use of queue F to store the remote requests
coming from other sites (line 19 of Algorithm 2). Request rc generated on site si is added to F when it ar-
rives at site sj (with si 6= sj). In Algorithm 4, to preserve the causality dependency with respect to prece-
dent administrative requests and precedent cooperative requests, rc is extracted from the queue when it
is causally-ready (see Definition 4.1.6). If there is no concurrent garbage collection for the administra-
tive log we check the cooperative request. Using function CHECK_REMOTE(rc,LAdministrator(rc)), rc is
checked against the administrative log LAdministrator(rc) (note that this log is the log of the administrator
of the group in the case of a single-administrator approach) to verify whether or not rc is granted. If rc is
executed by Administrator(rc) then it is validated and a validation V alidate(rc) request is generated
in order to broadcast it to other sites. Note that if a cooperative request has the same version as the
receiver site, it is valid since it is has the same context of the receiver site. In this case there is no need to
check the operation.

1: GENERATE_COOP_REQUEST(c):
2: rc ← (si, c, f, vsi , [])
3: sj ← Administrator(rc)
4: if sj = si then
5: rc.f ← V alid
6: V ← V + rc
7: else
8: rc.f ← Tentative
9: end if

10: Apply(rc)
11: if CHECK_LOCAL(rc, Pj) then
12: {see Algorithm 5}
13: broadcast rc
14: else
15: Undo(rc)
16: end if

Algorithm 3: Generation of Cooperative Request at the Site si

4.1.5 Check Procedures

In this Section, we illustrate how to check local and remote cooperative requests.
In order to avoid useless undo cases (see Chapter 3, section 3.2.3), we define the transformation

function IT a(rc,ra) presented in Algorithm 7 that updates the administrative dependency of a cooper-
ative request when checked against the local copy of the policy (see algorithm 7) or at the reception of
concurrent administrative operations.

64

4.1. Concurrency Control Algorithms

1: RECEIVE_COOP_REQUEST(rc):
2: sj ← Administrator(rc)
3: if (vj .vg = rc.vg and CHECK_REMOTE(rc,Lsj))(see Algorithm 6) then
4: Apply(rc)
5: if si = sj then
6: V ← V + rc
7: a← V alidate(rc)
8: GENERATE_ADMIN_REQUEST(a)
9: else

10: T ← T + rc
11: end if
12: else
13: I ← I + rc
14: end if

Algorithm 4: Reception of a Remote Cooperative request at the Site si

The Algorithms 5 and 6, show how to check the legacy of local and remote cooperative requests with
respect to the access control layer.

Check of locally generated cooperative request. Algorithms 5 shows that a cooperative request rc
generated locally is checked against the authorization list (the owner authorization list in the case of
multi-administrator approach). The authorization list is parsed from the top to the end in order to check
rc against each authorization l verifying Matches(l, rc) = true. If l grants rc then the check returns
true, the cooperative request is authorized and rc.ad takes the position of l. If a revocation is found the
cooperative request rc is rejected since the result of the check returns false. Similarly, the local check
function returns false if the end of the policy is reached.

Check of remote cooperative request. Algorithm 6 shows how we can deduce if a received operation is
still authorized or not according to the administrative log owned byAdministrator(rc). When receiving
a cooperative request rc with the version rc.v and administrative dependency c.ad at a site si, we check
rc against the appropriate administrative log L from the index rc.va to guess whether it was invalidated
concurrently or not.

According to Section 3.2, there are some cases where the cooperative request rc is legal even though
a revocation is performed concurrently. The remote check proceeds as follows:

1. The administrative log is parsed from rc.va in order to find concurrent revocations.

2. If an administrative request verifying Revoke(ra, rc) = true is encountered such that ra.p >
Max(rc.ad), then rc is considered as an invalid operation and is not executed. This is achieved
thanks to the Invalidate() predicate which will be used to determine if a cooperative re-
quest conflicts with an administrative request in order to correctly check remote cooperative
requests against the administrative log. Formally, the boolean function Invalidate(ra, rc) :
Ar × Cr 7→ {true, false} takes value true iff Administrator(rc) = ra.s ∧ rc.f = Tentative ∧
Max(rc.ad) < p ∧ Revoke(ra, rc) ∧ ra.t = AddAuth. The Invalidate() predicate allows to
decide whether a cooperative operation is invalid during a remote check algorithm or not. It is also
used to decide whether a tentative cooperative request must be undone or not when receiving a
concurrent remote administrative operation.

3. If an administrative request ra verifying Grant(ra, rc) = true is encountered such that ra.p >
Max(rc.ad), we store the new administrative dependency and continue the check (line 5 of algo-

65

Chapter 4. Concurrency Control Algorithms and Correctness Proof

rithm 7). Otherwise, if a DelAuth request is found such that the request belongs to the admin-
istrative dependencies set, rc.ad is updated by deleting this dependency (line 8 Algorithm 7). In
both cases, if ra.p < Maxrc.ad, we update the administrative dependencies set in order to get
correct positions (line 15 Algorithm 7).

4. Finally, if c.ad 6= ∅, we deduce that the cooperative operation rc is still legal with respect to the
policy and is executed at the receiver site.

1: CHECK_LOCAL(rc, Psj): Boolean
2: rc.va ← vsj
3: for (k = |Psj |); k >= 0 ; k −−) do
4: l← Psj [k]
5: if Grant(l, rc) then
6: rc.ad← [k]
7: return true
8: else
9: if Revoke(l, rc) then

10: return false
11: end if
12: end if
13: end for
14: return false

Algorithm 5: Local Check Against the Authorization List

1: CHECK_REMOTE(rc,L): Boolean
2: decision← true
3: for (int k = rc.va + 1 ; k < |L|; k + +) do
4: rc ← IT a(rc, L[k]){see Algorithm 7}
5: if rc.ad = ∅ or rc.ad 6= ∅ and Invalidate(L[k], rc) then
6: decision← false
7: return decision
8: end if
9: end for

10: return decision

Algorithm 6: Remote Check Algorithm Against Administrative Log L

4.1.6 Administrative Procedures

In this section , we give the algorithms for generating and receiving administrative requests as well as
the garbage procedure allowing for cleaning the administrative log.

4.1.6.1 Single-Administrator

In case of single-administrator approach, each group consists of one administrator and several users.
Only the administrator can specify authorizations in the policy object. It can also modify directly the
shared documents. As for users, they only modify the shared document with respect to the local policy
object.

66

4.1. Concurrency Control Algorithms

1: IT a (rc, ra) : r′c
2: r′c ← rc
3: a← ra.a
4: if a.p > Max(r′c.ad) ∧Grant(ra, rc) then
5: rc.ad← rc.ad ∪ {a.p}
6: else
7: if a.p ∈ rc.ad ∧ ra.t = DelAuth then
8: rc.ad← rc.ad \ {a.p}
9: end if

10: offset← (ra.t = AddAuth)?1 : −1
11: for (d ∈ rc.ad | d ≥ ra.p) do
12: if (d = a.p) then
13: d← d+ 1
14: else
15: d← d+ offset
16: end if
17: end for
18: end if
19: return r′c

Algorithm 7: Transformation algorithm of a remote cooperative operation against administrative opera-
tion at the i-th site

In the following we detail the initialization, generation and reception of administrative requests pro-
cedures.

Initialization. At the initialization step (see Algorithm 8), i is set to the identifier of the site. The
policy as well as administrative log are empty. The policy counter is set to 0. Finally, the coordination
component is initialized.

1: INITIALIZATION OF THE SECURITY LAYER:
2: s← Identification of local site
3: if single-administrator approach then
4: v ← 0 {Initial Version of the policy copy of the site}
5: (P ← [], L← []) { initial policy and administrative log }
6: else
7: {multi-administrator approach}
8: vs ← 0 {Initial Version of the owner policy of the site}
9: (Ps ← [], Ls ← []) {Owner policy}

10: Pg ← (Ps, Ls) {Global policy }
11: end if
12: F ← [] {Queue buffer}

Algorithm 8: Initialization

Generation and Reception of administrative request. In Algorithm 9, the policy copy maintains a
version counter v that is incremented by the administrative request generated by the administrator and
performed on the policy copy. This request is next broadcast to other users in order to enforce the new
policy.

When a remote administrative request ra is causally ready at site s (i.e. ra.v = vs + 1 and if ra is a
validation of a cooperative request rc then rc must have been already executed on this site), it is extracted
from F . Otherwise, ra.t is either AddAuth or DelAuth in which case: (i) it is performed on the policy

67

Chapter 4. Concurrency Control Algorithms and Correctness Proof

copy; and, (ii) it undoes the tentative cooperative requests that are no longer granted by the new policy.
However, if ra is a validation of cooperative request rc then it sets rc.f to valid.

1: GENERATE_ADMIN_REQUEST(a):
2: if s is the administrator then
3: if a is a garbage administrative log request then
4: GARBAGE_ADM_LOG()
5: else
6: Apply a to P
7: ra ← (s, a, v)
8: L← L+ ra
9: broadcast ra

10: end if
11: v.va ← v.va + 1
12: end if

13: RECEIVE_ADMIN_REQUEST(ra):
14: if (ra.t = AddAuth ∨ ra.t = DelAtuh) then
15: Apply a to P
16: for All rc ∈ T do
17: rc ← IT a(rc, ra)
18: if Invalidate(ra, rc) or rc.ad = ∅ then
19: Undo(rc)
20: T ← T − rc
21: I ← I + rc
22: end if
23: end for
24: else
25: if ra.a = V alidate(rc) then
26: rc.f ← ”V alid”
27: V ← V + rc
28: end if
29: end if
30: v.va ← v.va + 1

Algorithm 9: Generation and Reception of Administrative Requests: single-administrator approach

4.1.6.2 Multi-Administrator

In this approach, we consider that each user administrates his own objects. Hence, he can specify au-
thorizations in the policy object by modifying his owner policy. All users modify the shared document
with respect to the local policy object associated with the modified element. Our collaboration protocol
proceeds as follows:

1. When a user manipulates the local copy of the shared document by generating a cooperative request
rc, this operation will be granted or denied by only checking the local copy of the owner policy
owned by the Administrator(rc).

2. Once granted and executed, the local operations are then broadcast to other users.

3. A user has to check whether or not the remote operations are authorized by the copy of his local
policy object before executing them by checking each operation against the appropriate owner log.

68

4.1. Concurrency Control Algorithms

4. When a user modifies his owner policy by adding or removing authorizations, he sends these
modifications to other users in order to update their local copies.

Initialization. At the initialization step (see Algorithm 8), s is set to the identifier of the site. The owner
policy as well as owner administrative log are empty. The owner policy counter is set to 0. Then the
global policy is initialized with the local owner policy. Finally, the coordination component is initialized.

Generation and reception of administrative request. In Algorithm 10, we discuss the update of the
policy object. The policy copy is formed by the set of owner policies Pi. Each owner policy Pi maintains
a version counter vi that is incremented by the request generated by the administrator i and performed
on his copy. This request is next broadcast to other users to enforce the new policy. However, if ra is a
validation of cooperative request rc then it sets rc to valid request.

When the received request ra is causally ready it is extracted from F . If there is no entry of the user
j = ra.s in the global policy then a new entry (Pj , Lj) is added. If ra.a is AddAuth or DelAuth: (i) it
is performed on Pj ; and, (ii) it launches the Undo() module to undo all tentative cooperative requests
performed to alter objects owned by ra.s that are no longer granted by the new owner policy. If the
received administrative operation is a validation, it simply validates the concerned cooperative operation.
Finally, ra is buffered in the owner administrative log Lj and the version vi is incremented.

Garbage Administrative Log. The garbage administrative log procedures are described in Algo-
rithm 11. The owner administrative log is removed immediately then the garbage request is broadcast
to other sites so they remove the owner administrative log of site s. The final step is the update of the
policy version vs. Once RECEIVE_GARGABE_ADM_LOG(s′,vs′) (see Algorithm 11 line 7) is received
at a remote site, all cooperative requests administrated by s and that are tentative are undone. Then the
owner log Ls is removed and the version is updated. All requests that are concurrent or generated before
RECEIVE_GARGABE_ADM_LOG(s′,vs′) are ignored (see Algorithm 4) since they do not have the same
garbage version.

4.1.7 Asymptotic Time Complexities

We focus on security mechanism in order to study the asymptotic time complexities introduced by the
access control layer. We study the complexities of CHECK_LOCAL(), CHECK_REMOTE(), IT a() as well
as GENERATE_ADMIN_REQUEST() and RECEIVE_ADMIN_REQUEST().

The check of a local cooperative request is done against the local copy of the authorization list (see
Algorithm 5). In the worst case, the authorization list or the policy P is parsed till the end (either the
cooperative request is matched with the last authorization or there is no rule matching it in the policy).
The time taken by the matching rule (Grant() and Revoke()) is constant C if we use hash sets for both
the subset of users and objects in each authorization. Consequently, the complexity of CHECK_LOCAL

is linear with the size of P and is equal to C ∗O(|P |)
On the other hand, the check of a remote cooperative request is done against the administrative

log. In the single-administrator approach, the worst case consists of parsing all the administrative
log which means that the received cooperative operation has the initial version and was delayed for a
long time. Since the complexity of IT a() (line 4 of Algorithm 6) is constant, the final complexity of
CHECK_REMOTE is O(|L|).

Concerning the multi-administrator approach, the policy object is formed by the couples (Psi , Lsi)
wherePsi is the policy (authorization list) andLsi is the administrative log of the site si. We resort to hash
maps in order to implement the global policy object. Hence, accessing a given policy or administrative
log takes a constant time. The complexity of both functions CHECK_LOCAL(), CHECK_REMOTE() are
linear with the size of the biggest owner policy and owner administrative log respectively.

69

Chapter 4. Concurrency Control Algorithms and Correctness Proof

1: GENERATE_ADMIN_REQUEST(a):
2: if s is the administrator then
3: if a is a garbage administrative log request then
4: GARBAGE_ADM_LOG()
5: else
6: Apply a to Pi

7: ra ← (i, a, vi)
8: Li ← Li + ra
9: broadcast ra

10: end if
11: vi.va ← vi.va + 1
12: end if

13: RECEIVE_ADMIN_REQUEST(ra):
14: j ← ra.s
15: if (Pj , Lj) does not exist then
16: create owner policy (Pj , Lj)
17: Pg ← Pg + (Pj , Lj)
18: end if
19: if (ra.t = AddAuth ∨ ra.t = DelAtuh) then
20: Apply ra to Pj

21: for All rc ∈ T |Administrator(rc) = j do
22: IT a(rc, ra)
23: if Invalidate(ra, rc) ∨ rc.ad = ∅ then
24: Undo(rc)
25: T ← T − rc
26: I ← I + rc
27: end if
28: end for
29: else
30: if ra = V alidate(rc) then
31: rc.f ← V alid
32: V ← V + rc
33: end if
34: end if
35: Lj ← Lj + ra
36: vj .va ← vj .va + 1

Algorithm 10: Generation and Reception of Administrative Request at the i-th Site: multi-administrator
approach

The generation of a cooperative request has a constant complexity. However, the reception of a
remote administrative request depends on the size of the set of tentative requests and on the complexity
of the Undo() function. The worst case is reached when T = H . We suppose that the Undo() function
has a linear complexity (see Chapter 6). However if each request of the cooperative log H is undone,
the final complexity of the RECEIVE_ADMIN_REQUEST() would be quadratic O|H2|. Indeed, undoing
a given request requires to parse all requests that follow in H which lead to a complexity equal to
n(n− 1)/2 with n = |H|. We stress the fact that such a case is not faced since the communications are
in a real time. We assume that the transmission time of requests is very short. Consequently, the size
of the cooperative log can not change rapidly between two different versions of the policy. This means
that, T = H is not realistic in practise and that fewer requests are to be undone between two different
versions of the policy object.

70

4.1. Concurrency Control Algorithms

1: GARGABE_ADM_LOG()
2: Ls ← ∅
3: SEND_GARGABE_ADM_LOG(s,vs)
4: vs.va ← 0
5: vs.vg ← vs.vg + 1

6: RECEIVE_GARGABE_ADM_LOG(s′,vs′)
7: for all rc ∈ T do
8: if Administrator(c) = s′ then
9: Undo(rc)

10: end if
11: end for
12: Ls′ ← ∅
13: vs′ .va ← 0
14: vs′ .vg ← vs′ .vg + 1

Algorithm 11: Garbage Collection Administrative Logs Procedures at site s

4.1.8 Illustrative Example

To highlight the feature of our concurrency control algorithm, we present a slightly complicated scenario
in Figure 4.1, where the solid arrows describe the integration order. We have three users s1, s2 and s3
starting the collaboration with the initial state D0 =“abc” where characters “a”, “b” and “c” are inserted
by s1, s2 and s3 respectively. The initial global policy Pg = {(P1, L1), (P2, L2), (P3, L3)} with Pi = ∅
and Li = ∅ for i = 1, 2, 3. Initially, the cooperative log of each site is empty (H0

i = ∅ for i = 1, 2, 3).
Site s1 generates a cooperative requests where rc0 .c = Ins(2, y). Concurrently, site s3 generates an

administrative request ra1 with ra1 .a = AddAuth(0, 〈{s2}, Doc, {u, d},+〉). After receiving ra1 at site
s2 it generates rc1 with rc0 .c = Del(3, c). Concurrently, site s3 generates another administrative request
ra2 with ra2 .a = AddAuth(0, 〈{s2}, Doc, {d},−〉). Also site s1 generates an administrative request
ra3 with ra3 = AddAuth(0, 〈All,Doc, {u, d},+〉).

Once ra3 is received by s3, it generates a cooperative request rc2 with rc2 .c = Del(1, a). As soon as
rc2 arrives at site s1 it generates an administrative request ra4 with ra4 .a = V alidate(rc2).

The following relations are verified by our set of requests:

• rc0 is concurrent ra1 ;

• rc1 is causally dependent on ra1 ;

• rc1 and ra2 and ra3 are concurrent;

• rc2 causally depends on ra4 ;

• ra4 that also causally depends on ra3 .

We describe the integration of our requests in the following steps:

Step 1. At s1, the execution of rc0 produces the state “aybc” and the cooperative log H1 = rc0 .
When ra1 is received at both sites s1 and s2, the owner policy copy of s3 is updated to P3 =
{〈{s2}, Doc, {u, d},+〉)} as for the owner log L3 that becomes L3 = ra1 . When rc1 arrives at site
s2, it results in the state “ybc” and the cooperative log H2 = rc0 . Site s3 generates an administrative re-
quest ra1 with ra1 = AddAuth(0, 〈{s2}, Doc, {u, d},+〉). This leads to the update of the global policy
by inserting the authorization 〈{s2}, Doc, {u, d},+〉 into P3, also the administrative log is updated to

71

Chapter 4. Concurrency Control Algorithms and Correctness Proof

s1
“abc”

s2
“abc”

s3
“abc”

rc0 .c = Ins(2, y)

&&

,,

ra1 .a = AddAuth(0, 〈{s2}, Doc, {u, d},+〉)

yy

qq

“aybc” “aybc”

ra2 .a = AddAuth(0, 〈{s2}, Doc, {d},−〉)

||

qq rc1 .c = Del(3, c)
rc1 .ad = [0]

ww

++
ra3 .a = AddAuth(1, 〈{s1}, Doc, {d},+−〉)

--

��

“ayb”

rc1 .f = Invalid Undo(rc1)

“aybc” rc2 .c = Del(1, a)
rc2 .ad = [0]

ssqq wait for ra3

ra4 .a = V alidate(rc2)

++ --
rc2 .f = V alid rc2 .f = V alid

“ yc” “ yc” “ yc”

Figure 4.1: Collaboration scenario between an administrator and two sites.

become L3 = ra1 . Similarly, when ra1 is received at site s1 and s2, they update their copies of the owner
policy and log of site s3.

Step 2. At s2, the execution of rc1 gives the state “ayb” and the log H2 = rc0 · rc1 . This operation is
authorized since ra1 granted the deletion right to s2 and Administrator(rc1) = s3. The administrative
dependency of rc1 is set to rc1 .ad = [0] and it is broadcast to other sites.

Concurrently, site s3 generates a restrictive administrative request ra2 to revoke the deletion right
from s2 with ra2 = AddAuth(0, 〈{s2}, Doc, {d},−〉). It is obvious that the policy P3 is violated
by s2. When rc1 arrives at site s3 the function CHECK_REMOTE() returns a negative result since
Invalidate(ra2 , rc1) = true. However rc1 was executed at site s2 which lead to divergence. Simi-
larly, at site s1 when rc1 is is checked against L3 it is rejected due to the reception of ra2 but is stored in
invalid form r∗c1 (rc1 .f = Invalid) which has no effect on the local document state. The resulting log is
H1 = rc0 · r∗c1 .

72

4.2. Correctness Proof

Enforcing the new policy requires to undo rc2 at site s2. Indeed, the reception of ra2 introduces the
undo of rc1 since it is a tentative request (not validated yet) and Invalidate(ra2 , rc1) = true. This
allows to converge to the same document as site s3 and s1. The state is restored to “aybc” and the log is
updated by excluding the effect of rc1 .

Step 3. Site s1 generates an administrative request ra3 to add a positive permission to L1. Let
ra3 .a = AddAuth(1, 〈{s1}, Doc, {d},+−〉), this leads to a new version of the policy vs1 = 1 with
P1 = {〈{s1}, Doc, {d},+−〉)} and L1 = ra3 . Then ra3 is broadcast to s2 and s3 so that they update
their local copies of the owner policy of s1. After receiving ra3 , site s3 generates the cooperative re-
quest rc2 with rc2 .c = Del(1, a). Once executed locally, the state becomes “yc”. Then this operation is
broadcast with rc2 .v = 1 and rc2 .ad = [0].

When site s2 receives rc2 , it stores it in a buffer until it is causally ready. In fact, the version of P1

at site s2 is 0. As well as ra3 is received from site s1, the version of P1 changes to 1 and rc2 is executed
since it is granted.

Once rc2 is received at site s1 and granted, its execution leads to the state “yc”. Then a validation
request ra3 is broadcast in order to set rc2 to Valid at all remote sites.

It is clear that all sites converge to the same final state “yc” and policy object.

4.2 Correctness Proof

We will first give some general principles for providing access control in a collaborative editing system.
Then we will formalize our correctness criteria.

4.2.1 General Principles

Ensuring security, more precisely access control to shared objects, is more challenging in a collaborative
application than in a single-user one due to concurrency. We use the following principle as guidelines in
our work:

(a) The security object is replicated: Like the shared document, the policy is also replicated in order to
benefit of the full potential of the replication and not introduce additional overhead due to controlling
access at a server site.

(b) The security object is updated concurrently with the data object. The modification of the policy
object is done independently of the document update. There is no use of locks in order to respect the
real time aspect of the collaboration.

(c) Once all requests are received by all sites, users must have the same document state and policy state.
Users must converge in terms of data and policy objects.

(d) To enforce access control, we resort to selective Undo(). In fact, enforcing the policy requires
to undo concurrent cooperative requests that are not legal with respect to the new policy enforced
concurrently by the administrator.

(e) Undo() is an operation executed locally and not exchanged between users. Indeed undoing an
operation is an administrative action launched and executed at receiver sites.

(f) A cooperative operation can be undone exactly once at each site since this undo is due to policy
violation.

73

Chapter 4. Concurrency Control Algorithms and Correctness Proof

4.2.2 The Correctness Criteria

In the following we formalize two correctness criteria, namely causality and access policy preservation.
This allows us to provide formal proof of our algorithms correctness.

Following the notations of [32], we define the causality relation between two requests as follows:
for any two requests r1 and r2, the dependency relation is denoted as r1 → r2 if r2 depends on r1
(this dependency could be temporal i.e happens before relation or based on the semantic of requests e.g
semantic dependency [48, 50] or on effect relation [88]). If the two requests are concurrent we denote
then as r1||r2.

Given any two requests r1 and r2 in Cr ∪ Ar, if r1 → r2, then r1 is invoked before r2 at any
site in the system.

Definition 4.2.9 (Causality Preservation).

The causality condition is compatible with our principles and it is possible to verify it thanks to the
dependency relations we already defined for both cooperative and administrative requests. If r1 and r2
are both cooperative requests, the causality condition depends not only on the ACL but also on the CL on
the top of which we will implement our model. Some CLs are based on the Lamport clocks [56] which
does not scale well and does not allow for open groups. The approach of [48] relies on the semantic
dependency notion to define the causality and concurrency relations. In addition to the causality relation
imposed by the underlying CL, the ACL adds a new condition of causality which is the policy context
(or its version). A cooperative request must wait till the version of the receiver site is greater or equal
to its generation’s version. Consequently r1 → r2 iff r2.vg = r1.vg and r2.va ≥ r1.va where r1 is an
administrative request and r2 is a cooperative one. As for administrative requests, we have r1 → r2 iff
r2.vg = r1.vg and r2.va ≥ r1.va + 1.

The second correctness criteria is given below:

The execution of any cooperative or administrative request at a site si does not violate its local
access control policy of the administrator. After the reception of all administrative requests,
all sites must have the same document state. More formally, the following statements must be
true:

1. Tsi = ∅;

2. Vsi = Vsj ;

3. Isi = Isj .

for all sites si and sj .

Definition 4.2.10 (Policy Enforcement).

Using the two correctness criteria cited before, our objective is to satisfy the convergence property
defined as follows:

74

4.2. Correctness Proof

When all sites have performed the same set of cooperative and administrative requests, the
copies of both shared document and policy object are identical.

Definition 4.2.11 (Convergence).

In order to ensure convergence of both policy and document state, the condition of policy enforce-
ment must be fulfilled. The statement (1) of Definition 4.2.10 ensures that all tentative requests are seen
by the appropriate administrator, this ensures that all requests at the network are received by all sites.
Statements (2) and (3) of the same definition ensure that all legal/illegal requests are the same at all sites
and that all illegal request are undone. This enforces the policy and allows for document convergence.

In the following, we will present formal proofs with regard to the previous conditions.

Our coordination algorithm satisfies the causality preservation condition.

Theorem 4.2.1.

Proof. In our algorithm each cooperative request rc is invoked only when it is causally ready (see Defini-
tion 4.1.6). That is, all cooperative requests and administrative requests on which depends rc have been
invoked. Similarly, since administrative requests are generated by the same user, thanks to the policy
version (administrative requests counter), all these requests are executed in the same order in all sites
which respects the causality condition.

In the following lemma, we prove that the set of tentative requests is empty after the reception of all
requests by the collaborating sites.

Given n sites s1, s2, . . . , sn with the set of tentative operations T1, T2 . . . Tn and p cooperative
requests rc1 , rc2 , . . . , rcp . When the p requests are received by all sites, then

∀i ∈ [1..n], Ti = ∅

Lemma 4.2.1.

Proof. Each set of tentative requests is updated at tree steps of our algorithm:

1. line 9 in Algorithm 3;

2. line 10 in Algorithm 4;

3. line 20 in Algorithm 9 as well as line 25 in Algorithm 10);

We refer to the multi-administrator approach since the single-administrator approach is a special case
of the multi-administrator one. The proof is similar in both cases. At the generation step, a coop-
erative request is either valid, if it is generated by its administrator or tentative. Suppose that none
of the requests rc1 , rc2 , . . . , rcp is generated by its administrator. In this case. After the reception of
all cooperative requests T1 = T2 = . . . = Tn = {rc1 , rc2 , . . . , rcp}. Each time rci is received by
sj = Administrator(rci), two situations are faced:

75

Chapter 4. Concurrency Control Algorithms and Correctness Proof

1. rci is granted by Lsj : in this cases rci is set to valid, Tj is updated by removing rci and a validation
request is sent to every site sk, k ∈ [1..n] in order to set rci to valid and remove it from Tk.

2. rci is invalidated by Lsj : in this case rci is set to invalid, Tj is updated by removing rci . This
means that a concurrent administrative request ra conflicting with rci is generated at site sj . When
ra is received by a site sk, it will undo rci (line 24 in Algorithm 10) and update Tk by removing
rci .

Accordingly, since the same process is done for all requests, we have ∀i ∈ [1..n], Ti = ∅.

In the following, we show that after receiving all operations, the set of valid operations is equal at all
sites.

Given n sites s1, s2, . . . , sn with the set of tentative operation T1, T2 . . . Tn and p cooperative
requests rc1 , rc2 , . . . , rcp . When the p requests are received by all sites, then

∀i, j ∈ [1..n],Vi = Vj

Lemma 4.2.2.

Proof. Suppose that initially, all sites begin with an empty set of valid operations. Consider a cooperative
request rc and a site s where s = Administrator(rc). Let vs be the policy version of s at the moment of
reception of the request rc and Ls be its administrative log (note that vs = |Ls|). Two cases are possible:

1. s does not generate administrative requests concurrently to rc

2. s has generated k administrative requests Ls[rc.v; rc.v + k] concurrently to rc.

In case (1) the function CHECK_REMOTE(rc, Ls) returns true since the context is the same. Conse-
quently Vs = {rc} and a validation request is sent to every site sj in order to validate rc and add it to
Vj = {rc}. If it is the case for every cooperative request rc ∈ {rc1 , rc2 , . . . , rcp}, then after receiving all
cooperative and administrative requests we have ∀i, j ∈ [1..n],Vi = Vj = {rc1 , rc2 , . . . , rcp}.

In the second case (2), a request is valid at site s when CHECK_REMOTE(rc, Ls)=true. If
∀ra ∈ Ls[rc.v; rc.v + k], Grant(ra, rc) = true, then rc.ad 6= ∅ after the remote check and
∀ra ∈ Ls[rc.v; rc.v + k], Invalidate(rc, ra) = false. Each time an administrative request ra ∈
Ls[rc.v; rc.v + k] is received at a site sj 6= s, the procedure RECEIVE_ADMIN_REQUEST(ra) is
called and tentative requests are updated with the transformation function IT a. Similarly, since
∀ra ∈ Ls[rc.v; rc.v + k], Invalidate(ra, rc) = false, rc.ad 6= ∅, the request rc in not undone (line
21-24 in Algorithm 10). As soon as the validation is received from s at site sj , the request rc is added to
Vj (line 31 in Algorithm 10). Otherwise, either rc.ad = ∅ or it is invalidated (∃ra ∈ Ls[rc.v; rc.v + k]
verifying Invalidate(ra, rc) = true). In both cases rc is set to invalid, thus neither added to Vs since
it is undone (lines 18 in Algorithm 10), nor to Vj (set of valid requests at the receiver site) due to the
remote check. If the same case is faced for every cooperative request rc ∈ {rc1 , rc2 , . . . , rcp}, then after
receiving all cooperative and administrative requests we have ∀i, j ∈ [1..n],Vi = Vj = ∅.

If some requests are in case (1) and some others are in case (2), then ∀i, j ∈ [1..n],Vi = Vj and
contains the set of requests in case (1).

Finally, we show that the sets of invalid operations are equal at all sites.

76

4.3. Conclusion

Given n sites s1, s2, . . . , sn with the set of tentative operation T1, T2 . . . Tn and p cooperative
requests rc1 , rc2 , . . . , rcp . When the p requests are received by all sites, then

∀i, j ∈ [1..n], Ii = Ij

Lemma 4.2.3.

Proof. Since at every site si, Hi \ V〉 = T〉
⋃
I〉, where Hi is the cooperative log, it comes from Lem-

mas 4.2.1 and 4.2.2, that after receiving all requests Ii = Ij

Using the precedent lemmas, we deduce that the policy enforcement condition is satisfied.

Our algorithm ensures the policy enforcement condition.

Theorem 4.2.2.

Proof. According to the three precedent Lemmas 4.2.1, 4.2.2 and 4.2.3, the policy enforcement condition
is fulfilled.

Additionally, the convergence condition is ensured according to the following theorem.

Our algorithm ensures the convergence of both data and policy objects.

Theorem 4.2.3.

Proof. We assume that the CL ensures the convergence of the shared document. The ACL may in-
troduce divergence cases as shown in Section 3.2. Our algorithm resolves some of these convergence
problems with the use of undo algorithm. Assuming that our undo solution is correct (see Chapter 6), we
must prove that the convergence is ensured. For this, all cooperative logs must produce the same doc-
ument state after the reception of all cooperative and administrative requests by all sites. According to
Lemma 4.2.2 and Lemma 4.2.3, we ensure that the same set of requests are executed at all sites, otherwise
invalid requests are either not applied to the document copy or undone by the reception of the concurrent
administrative request. Consequently, since logs are equivalent according to the CL, convergence of the
document state is ensured.

Concerning the policy and the administrative log, since administrative requests are executed at the
enumeration order of the administrator site, every administrative request ra that is causally ready is
executed after the execution of all administrative requests that happen before it.

4.3 Conclusion

In this chapter, we have presented the algorithms of our access control model and calculated their asymp-
totic time complexities. Finally, we have demonstrated that our approach is correct and ensures conver-
gence.

In the next Chapter, we concentrate on the undo command as a main feature of our access control
model. Indeed, since we design an optimistic access control model, we allow users to temporarily violate
security policy. Convergence is maintained thanks to the selective undo approach.

77

Chapter 4. Concurrency Control Algorithms and Correctness Proof

78

Chapter 5

On the Undoability Problem in Distributed
Collaborative Editors

Contents

5.1 Notations . 80

5.2 Undo Approach . 80

5.2.1 Principle . 81

5.2.2 Undo Effect . 81

5.2.3 Undo Properties . 82

5.2.4 Illustrative Examples . 83

5.3 Related Work . 86

5.3.1 Proposed Undo Solutions for Single-user Editors 86

5.3.2 Undo Solutions for Collaborative Editors . 87

5.4 Conclusion . 90

The ability to undo operations performed by a user is a standard and very useful feature allowing
to reverse erroneous operations and restoring a correct state without being obliged to redo all the work
performed on a document. It represents an indispensable feature for many collaborative applications
mainly real time collaborative editors. Furthermore, maintaining convergence in access control-based
collaborative editors requires a selective undo mechanism [21] as shown in Chapter 3 wherein we have
considered an optimistic access-control-based RCE in the sense that we tolerate temporary access right
violations. To maintain convergence, we must undo illegal updates to alter the document state.

We focus on selective undo which is based on rearranging operations in the history using the OT
approach. Three inverse properties that we will detail later, namely IP1, IP2 and IP3 [36, 74, 97, 101]
were proposed to achieve undo. Combining OT and undo approaches while ensuring data convergence
remains an open and challenging issue. Indeed, undoing operations may itself lead to divergence cases
called undo puzzles [97]. Moreover, providing an undo solution for collaborative applications has to take
into account three main issues: (i) formalizing the correctness criteria of an undo solution, (ii) designing
the algorithm and prove its correctness, (iii) ensure performance by providing a low complexity of the
algorithm.

Even though many solutions were proposed over the recent years, designing undo schemes in collab-
orative applications is a hard task since each proposed solution has either a limitation or a counterexample
showing it is not correct [88, 101].

79

Chapter 5. On the Undoability Problem in Distributed Collaborative Editors

This chapter is organised as follows: Section 5.1 presents the notations used to illustrate the un-
doability problem. Section 5.2 illustrates the principle of undoing operations in collaborative editors.
Finally, Section 5.3 gives an overview on related work.

5.1 Notations

An undo framework assumes a collaborative application model in which all updates or operations per-
formed on the shared object are achieved in a history list also called log in order to provide the basis
for undoing operations. The operations are reversible and capable of being reordered unless there are
dependencies between them.

All applications maintain a current state of the shared object that is being updated concurrently by
collaborators. This state depends on the nature of the shared object. We use the notation st to denote the
state of the shared object. Let St be the set of all possible states for a given shared object.

When we apply an operation to a given state st ∈ St, we obtain a new state st′ 6= st where also
st ∈ St. Any given state represents simply the application of a sequence of operations to the initial state
referred to as st0. We use the letter op to denote operations performed to update a given state. Letters
and numbers will be used to distinguish between different operations. Let Op be the set of all possible
operations. For a given state st ∈ St and an operation op ∈ Op, the notation st · op refers to the new
state resulting from the application of op on st. The idle operation I is the operation that has no effect
on a given state. It verifies the following statement:

∀st ∈ St, st · I = st.

The sequence of operation {op1, op2, . . . , opn} is denoted by op1 · op2 · . . . · opn. Two sequences of
operations are equivalent if they provide the same resulting state when they are performed on the same
initial state :

Two sequences of operations seq1 = op1 · op2 · . . . · opn and seq2 = op′1 · op′2 · . . . · op′k, n and
k being two integers, are said to be equivalent denoted as seq1 ≡ seq2 iff

∀st ∈ St, st · seq1 = st · seq2

Definition 5.1.1 (Log equivalence).

To support undo, we suppose that every operation op ∈ Op is reversible, i.e. it has an inverse noted
op ∈ Op14.

5.2 Undo Approach

This Section presents the principle of undoing an operation in a collaborative context as well as properties
to be satisfied in order to achieve a correct undoability.

14The inverse of the idle operation I is I = I .

80

5.2. Undo Approach

L L′ (after undo)
op1 op1
op2 op2

...
...

opi−1 opi−1

opi ≡ op∗i

opi

IT

��

opi+1 op′i+1

...
opn op′n

opi
′

Figure 5.1: Undo Scheme.

5.2.1 Principle

Logging all executed operations is necessary to accomplish an undo scheme. Furthermore, all operations
should be undoable (i.e., each operation op has its inverse operation op). As proposed in [74, 97], to
selectively undo operation opi from the log L = op1 ·op2 · . . . ·opi · . . . ·opn, we proceed by the following
steps:

1. Find opi in L;

2. Mark opi as an undone operation: op∗i ;

3. Generate opi;

4. Calculate op′ = IT ∗(opi, opi+1 · . . . · opn) that integrates the effect of operations following opi in
L;

5. Exclude the effect of opi from the log by including the effect of opi inside the sublog opi+1·. . .·opn;
We can exclude the effect of opi from the sublog opi+1 · . . . · opn using this small algorithm:
op← opi
for j from i+ 1 to n do
op′j ← IT (opj , op)
op← IT (op, opj)
end for The sequence of operations following op∗i is then op′i+1 · . . . · op′n;

6. Execute op′.

5.2.2 Undo Effect

Undoing an operation op at a given state stmust restore the previous state of the object as if op had never
occur. This can be formalized as follows:

81

Chapter 5. On the Undoability Problem in Distributed Collaborative Editors

Given an object state

stn = st0 · op1 · . . . · opi−1 · opi · opi+1 · . . . · opn,

then the effect of undoing opi must produce the state

st′n−1 = st0 · op1 · . . . · opi−1 · op′i+1 · . . . · op′n,

where op′j , j ∈ i+ 1, i+ 2, . . . , n is the operation that would be executed if opi has never
been executed before.

Definition 5.2.2 (Undo Effect).

Practically, op′j is the operation that excludes the effect of opi. This allows to eliminate the effect of
opi but retains the effect of the operations that follow opi in the log [97].

Example 5.2.1. Consider the initial state st0 = abcde and two operations op1 = Del(2, b) and op2 =
Del(2, c) (since st0 · op1 = acde). Then the resulting state is st′ = ade and the log is H = [op1; op2].
Undoing op1 should produces the state st′′ = abde. Moreover, the log has to be updated by eliminating
the effect of the undone operation op1 from the log. Thus H ′ = [op∗1; op

′
2] with op′2 = Del(3, c) instead

of Del(2, c).

5.2.3 Undo Properties

Three inverse properties IP1, IP2 and IP3, have been proposed in the literature (see [36, 74, 97, 101])
to formalize the correctness of a transformation-based undo scheme.

Given any operation op and its inverse op, then

op · op ≡ ∅.

Definition 5.2.3 (Inverse Property 1 (IP1)).

Property IP1 means the operation sequence op · op should have no effect on the object state.

Given a correct transformation function IT and any two operations op1 and op2 then:

IT (IT (op1, op2), op2) = op1.

Definition 5.2.4 (Inverse Property 2 (IP2)).

As the sequence op2 · op2 should have no effect, property IP2 means transforming op1 against op2
and its inverse op2 must result in the same operation. This property is generally avoided by placing an
inverse just after the undone operation in the log then to consider the sequence op2 · op2 as an empty
sequence.

82

5.2. Undo Approach

Given a transformation function IT and any two operations op1 and op2 with op′1 =
IT (op1, op2) and op′2 = IT (op2, op1). If sequences op1 · op′2 ≡ op2 · op′1 then

IT (op1, op
′
2) = IT (op1, op2).

Definition 5.2.5 (Inverse Property 3 (IP3)).

Property IP3 means that the operation executed to undo op1 in op1 · op′2 is the same as the operation
executed to undo the corresponding operation op′1 in op2 · op′1.

The violation of one of properties IP1, IP2 and IP3, leads to divergence situations referred to as
puzzles [97] as we illustrate in the following.

5.2.4 Illustrative Examples

To further illustrate the undo properties, we present the following examples:

Example 5.2.2. Consider a shared integer register altered by two operations Inc() and Dec() which
increment and decrement respectively the register state such as the one is the inverse of the other. A
correct transformation function is defined as follows:

IT (op1, op2) = op1 for all operations op1, op2 ∈ {Inc(), Dec()}.

It is trivial that IP1 is satisfied as Inc() · Dec() ≡ Dec() · Inc() ≡ ∅. Furthermore it is easy
to verify that IP2 and IP3 are satisfied since IT (IT (op1, op2), op2) = IT (op1, op1) = op1 and
IT (op1, IT (op2, op1)) = op1 = IT (op1, op2) for all operations op1, op2 ∈ {Inc(), Dec()}.

Example 5.2.3. Consider an application of collaborative editing of the same shared document altered
by the set of the following three operations:

1. Ins(p, e) to insert element e at position p

2. Del(p, e) to delete element e at position p

3. Upd(e, e′, p) to replace element e at position p with element e′

The IT function is given in Appendix B.
Violating IP2 leads to an IP2 undo puzzle [97]. This puzzle results when transforming an op-

eration against another operation and its inverse during the couple do-undo pair procedure. The
problem occurs when transforming two insertions at the same position since the position is changed
arbitrarily according to site identifiers. To illustrate this puzzle, consider a document with the ini-
tial state st0 = e0e1 . . . ep−1epep+1ep+2 . . . en and two operations op1 = Del(p, ep) and op2 =
Del(p, ep+1). Suppose that op2 depends causally on op1 then undoing op2 then op1 may lead to a
divergence case as discussed in [74, 77, 97]. Indeed, after executing op1 and op2 at the state s0,
we obtain the state st1 = e0e1 . . . ep−1ep+2 . . . en. Now, undoing op2 produces the state st2 =
e0e1 . . . ep−1ep+1ep+2 . . . en and the history log H = op1 . . . op2 . . . op2. Then, if we undo op1, we have
to determine IT (IT (op1, op2), op2). Since op1 = Ins(p, ep) then transforming it against op2 produces
op1
′ = Ins(p, ep). Finally, we have to transform Ins(p, ep) against Ins(p, ep−1) which may result in the

operation Ins(p+ 1, ep) instead of Ins(p, ep). Consequently, the effect of undo is not correct since the
initial state was equal to e0e1 . . . ep−1epep+1ep+2 . . . en and not e0e1 . . . ep−1ep+1epep+2 . . . en. This
divergence case is referred to as the coupled do-undo pair trap [97].

83

Chapter 5. On the Undoability Problem in Distributed Collaborative Editors

op1 = Ins(1, a)

��

s1
“a”

s2
“a”

op1 = Del(1, a)

##

op2 = Ins(1, b)

{{
“” “ba’

op′1 = Ins(1, a) op′2 = Ins(1, b) op′1 = Del(2, a) op1
′ = Ins(2, a)

uu
“b” “b”

“ab” “ba”

(a) Undoing op1 produces a divergence.

s1
“a”

s2
“a”

op2 op1 = Del(1, a)

Canonize

�� ##

op2 = Ins(1, b)

{{
“” “ba’

c′1

op′1 = Ins(2, a)
00

op′2 = Ins(1, b)

]]

op′1 = Del(2, a)

op′1 = Ins(2, a)

uu

“b” “b”

“ba” “ab”

(b) Avoiding divergence thanks to canonization.

Figure 5.2: Avoiding divergence thanks to canonization.

As for IP3, it is not satisfied by our example since the insert-insert puzzle presented in Figure 5.2
may be encountered. This puzzle occurs when transforming two insertions during the undo procedure
where the first is an inverse (see Figure 5.2.(a)). This puzzle may be eliminated in the coordination
framework OPTIC [48] since it is based on canonical logs where all insertions precede all deletions as
shown in Figure 5.2.(b).

Example 5.2.4. Consider a shared binary register where two primitive operations modify the state of a
bit from 0 to 1 and vice versa: (i) Up to turn on the register; (ii)Down to turn off the register. Intuitively,
we can write the transformation IT as given in Algorithm 12.

1: IT(op1,op2):op′1
2: Choice of op1 and op2
3: Case: op1 = Up and op2 = Up
4: op′1 ← Up
5: Case: op1 = Up and op2 = Down
6: op′1 ← Up
7: Case: op1 = down and op2 = Up
8: op′1 ← Up
9: Case:op1 = Down and op2 = Down

10: op′1 ← Down
11: end choice

Algorithm 12: Transformation Cases for the Set of Binary Operations {Up,Down}

First, we show that the transformation Algorithm 12, is correct i.e respects both transformation
properties TP1 and TP2.

Algorithm 12 verifies TP1.

Theorem 5.2.1.

Proof. Consider a state st ∈ St and a couple of two concurrent operations (op1, op2) ∈ {Up,Down}2.
Four cases are possible:

84

5.2. Undo Approach

1. (op1, op2) = (Up,Down): We have ∀ st ∈ {0, 1}, st · Up = 1. Integrating op1’s effect into op2
leads to IT (op2, op1) = IT (Down,Up) = Up. Consequently, the final state is st · Up · Up = 1.
On the other hand, applying the operation Down to st leads to st′ = st · Down = 0. The
final state is the result of performing IT (op1, op2) = IT (Up,Down) = Up. Since ∀ st ∈
{0, 1}, st.Up = 1, the final state is st ·Down ·Up = 1. Hence, if (op1, op2) = (Up,Down) then
∀ st ∈ {0, 1}, st · op1 · IT (op1, op2) = st · op2 · IT (op2, op1).

2. (op1, op2) = (Down,Up): this case is symmetric to case (1).

3. (op1, op2) = (Up,Up): Since IT (Up,Up) = Up and ∀ st ∈ {0, 1}, st · Up = 1, we have:
∀ st ∈ {0, 1}, st · op1 · IT (op1, op2) = st · op2 · IT (op2, op1) when (op1, op2) = (Up,Up).

4. (op1, op2) = (Down,Down): this case is symmetric to case (3).

Consequently, for all concurrent couple of operations (op1, op2) ∈ {Up,Down}2, we have

∀ st ∈ {0, 1}, st · op1 · IT (op1, op2) = st · op2 · IT (op2, op1)

That is, IT verifies TP1.

Algorithm 12 verifies TP2.

Theorem 5.2.2.

Proof. Consider st ∈ St and a pairwise concurrent operations op1, op2 and op3 belonging to
{Up,Down}. Suppose that op1 6= op2 (otherwise the proof is trivial) and let op′3 = IT (op3, op1)
and op′′3 = IT (op3, op2). If (op1, op2) = (Up,Down), then two cases are possible:

1. op3 = Up: In this case op′3 = op′′3 = Up and IT (op2, op1) = IT (op1, op2) = Up. Consequently,
IT (op′3, IT (op2, op1)) = IT (Up,Up) = Up and IT (op′′3, IT (op1, op2)) = IT (Up,Up) = Up.
TP2 is then verified.

2. op3 = Down: In this case op′3 = Up and op′′3 = Down. Moreover, IT (op2, op1) =
IT (op1, op2) = Up. Consequently, IT (op′3, IT (op2, op1)) = IT (Up,Up) = Up and
IT (op′′3, IT (op1, op2)) = IT (Down,Up) = Up. That is, TP2 is also verified.

Consequently, for all concurrent pairwise concurrent operations op1 ,op2 and op3 belonging to
{Up,Down}, we have

∀ st ∈ {0, 1}, st · op1 · IT (op1, op2) = st · op2 · IT (op2, op1)

Consequently, IT verifies TP2.

Property IP1 is violated since 0 · Down · Up = 1 6= 0. As for property IP2 is violated since
IT (IT (Down,Down), Up) = Up 6= Down.

To illustrate the violation of IP3, we consider the Figure 5.3 where we illustrate how to undo op1
of the scenario depicted in Figure 2.2.(b). Initially both sites converge to state 1. Suppose now that the
operation op1 is undone at both sites. At site 1, undo(op1) generates its inverse op1 = Down, then trans-
forms op1 against op′2 which results in IT (op1, op

′
2) = Up. Thus, the final state after undoing op1 is 1 at

site 1. However, at site 2, the execution of op′1 = Down at state 1 gives the state 0. Consequently, both
copies diverge. This divergence is due to IP3 violation since IT (op1, IT (op2, op1)) 6= IT (op1, op2).

85

Chapter 5. On the Undoability Problem in Distributed Collaborative Editors

Undo(op1)

��

site 1
0

site 2
0

op1 = Down

��

op1 = Up

!!

op2 = Down

}}
1 0

op1
′ = Up

""

op′2 = Up op′1 = Up op′1 = Down

{{

1 1

1 0

Figure 5.3: IP3 violation by IT function presented in Algorithm 12.

Accordingly, given a correct transformation function (i.e., they satisfy the transformation properties
TP1 and TP2), it is not guaranteed to achieve a correct undo since transformation properties are not
sufficient to preserve the data convergence when undoing operations.

Practically, IP2 violation is discarded by placing inverse operation just after the undone one in the
log. The sequence op · op is then marked in order to be ignored when transforming another operation
against it [97]. Thus the transformation of any operation against an undone operation remains the same.
However, the violation of IP3 cannot be avoided by such a mechanism and must be fulfilled by trans-
formation functions in order to always ensure the data convergence.

5.3 Related Work

Several works proposed undo capability mainly for single user editors. The majority of these solutions
are based on log usage. In general, operations are stored in the log according to their execution order.
Consequently, many familiar single-user applications such as text editors and design tools allow for
undoing operations in chronological order.

In distributed collaborative applications, shared data is usually replicated in order to achieve high
local responsiveness as well as high availability. Each user has the ability to perform operations concur-
rently to other users; which makes undo more and more challenging [22, 74, 97]. In fact, undoing the
last operation leads to undoing different operations since the last operation is not the same at all sites
(logs are not equal in a collaborative application). Furthermore, undo may be needed to enforce secu-
rity (see Chapter 3). This obviously motivates the importance of providing a selective undo solution for
collaborative applications.

Significant works have been made to address OT-base selective undo [74, 77, 97, 101]. However, the
proposed solutions either do not allow to undo any operation e.g [77] or is not efficient for real time since
it takes time e.g [101].

In the following, we summarize the different solutions proposed to undo an operation in single-user
editors as well as collaborative editors.

5.3.1 Proposed Undo Solutions for Single-user Editors

Single-step undo. Single-step undo is a feature available in many systems (Macintosh and Windows) as
well as editors such vi [74]. It allows to undo only the last operation. To further illustrate this approach,

86

5.3. Related Work

consider the following log:
op1 · op2 · op3 · op4

In single-step undo approach, it is possible to undo op4 but a subsequent undo of op3 is not allowed. To
redo the last, the user has simply to undo the last undo it has originated.

Linear undo model and US & R model. The linear undo model [7, 104] allows to undo a sequence of
operations by the use of a pointer indicating the following operation to be undone [74]. After undoing a
sequence of operations, it is possible to perform new operations then to redo the undone ones.

The US & R (Undo Skip Redo) model [110] is similar to the linear model except the fact that it
allows to skip some operations during the redo. This approach is based on the use of a tree structure of
the log in order to be able to restore state at any point in the history.

Both approaches are limited by the necessity of undoing the sequence of operations following the
operation to be undone then redoing them.

History undo. Like the linear and US & R model, the history model undoes a sequence of operations.
However, it appends the inverse operations at the end of the log. For instance, given the following log

op1 · op2 · op3 · op4

Undoing op4 results in
op1 · op2 · op3 · op4 · op4

with op3 as the following operation to be undone. If a normal operation is performed let op5, the log will
be:

op1 · op2 · op3 · op4 · op4 · op5
where op5 is the following operation to be undone. Then if two undo operations are performed, the log
is as follows:

op1 · op2 · op3 · op4 · op4 · op5 · op5 · op4
The history undo scheme is used in the Emacs editor [92].

5.3.2 Undo Solutions for Collaborative Editors

Various group undo solutions have been proposed. We focus on the following main solutions:

Swap then undo. The first selective undo was proposed in [74]. It consists on placing the selected
operation in the end of the history by swapping and then executing its inverse. Consider the state resulting
from the following sequence of operations applied on the initial state st0.

st1 = st0 · op1 · op2 · op3

Undoing op1 would require to transpose op1 against op2 then against op3 in order to place it at the end
of the log then to generate the inverse of the resulting operation. The log will be represented by the
following sequence:

op′2 · op′3 · op′1 · op′1
where op′2, is the result of transposing op1 and op2 and op′3 is the result of transposing op′′1 and

op3, op′′1 being the result of transposing op1 with op2. However in some cases, it may be impossible to
swap two operations. For example inserting an element could never be executed after its deletion since
the latter operation depends on the former one. To avoid this issue, authors defined a boolean function
conflict(opx, opy) (where opx and opy are successive operations in the log) in order to abort the undo

87

Chapter 5. On the Undoability Problem in Distributed Collaborative Editors

procedure in conflicting situation like that presented above. Hence, the proposed solution does not allow
to undo any operation.

Undo/Redo. Another solution is to undo all the operations in the reverse chronological order, i.e from
the last to the wanted operation as it is proposed in [77]. So, considering the same example presented
above:

st1 = st0.op1.op2.op3

Undoing op1 would require to undo op3, op2 then op1. The following step imposes to redo op2 and op3
in order to restore the last state that excludes op1’s effect. The resulting log will look like:

op1.op2.op3.op3.op2.op1.op
′
2.op

′
3

with op′2 and op′3 the new forms of op2 and op3 that exclude the effect of op1.
It is clear that this approach avoids the conflict faced in the first solution. However, it is expensive

since it requires to perform many steps to achieve undo. Moreover, it does not allow undo in all cases.
In fact, an operation may not be undoable if another later operation performed by the same user has not
been undone.

Ferrié’s Approach. The undo approach presented in [36] is the same as the work given in [77]. It uses
the transformation functions of the algorithm SOCT2 presented in [88, 94]. This algorithm assumes that
TP2 is verified, however a counter example showing TP2 violation was presented in [47]. Furthermore,
another limitation of the solution is its quadratic complexity.

UNO. The approach of UNO [114] resembles that of Ferrie [36] but is based on TTF [70]. Even though it
has a linear complexity with the size of the shared document, the proposed solution only suites a special
kind of RCE based on TTF and having the set of operations fixed by the authors (ins, del and undel
operations). Moreover, the convergence of UNO assumes the intention preservation which is not proved
formally [88].

ANYUNDO-X and COT. The ANYUNDO-X proposed in [97] was the first solution allowing the undo of
any operation and solving the known undo problematic. However it has an exponential linear complexity
which degrades the performance of a real time application.

Both AnyUndo and COT [101] supports integrated Do and selective Undo. In this approach undo
is interpreted as concurrent inverse as in [77] except that an operation op is coupled with its inverse op
such that they behave as an identity operation. In COT, a contextual relation is introduced to illustrate the
relation between an operation, its inverse and the transformed intermediates forms of the inverse. The
time complexity is also exponential in the log size.

The difference between ANYUNDO [97] and COT [101] is that the latter discusses the undo in the
case of causally dependent operations and not only concurrent ones. However, the solution may violate
the effect undo property [97]. This property ensures that the state after undoing a given operation op
is the state as if op does not occur. However, if we consider a sequence of characters “abc” and two
operations op1 = Del(2, b) and op2 = Ins(2, x). The COT-Undo algorithm proceeds as follows: We
first generate the inverse of op1 let op1 = Ins(2, b), then we must transform op1 against op2. However,
this transformation may lead to inserting character “y” after “b” which is not the same state if op1 were
not performed at the state. This violates the undo effect defined in [97].

ABTU. The ABTU algorithm is presented in [88] where authors propose an undo solution for collabo-
rative editors. The proposed solution is based on the transformation algorithm ABT [60]. Even though
the proposed algorithm has a linear complexity, it does not allow to undo any operation since undo is
aborted in some cases defined by authors. The transformation algorithm ABT is based on a novel notion

88

5.3. Related Work

named effect relation allowing to order document updates in the log. Consequently, all updates are or-
dered according to their effect relation on the shared document state. Authors assume that this relation
ensures convergence. However, in Figure 5.4, we show that there is a divergence case.

site 1
“abc”

site 2
“abc”

site 3
“abc”

op1 = Ins(2, x)

,,

$$

op3 = Ins(2, z)

��

op′1 = Ins(2, x)

op′1 = Ins(2, x) op2 = Ins(2, y)

xx
op′2 = Ins(2, y)

op′3 = Ins(2, z)

“bc” “ayxzbc” “azyxb”

Figure 5.4: Divergence case of the ABTU algorithm.

In this Figure, three sites 1, 2 and 3 begin the collaboration with the same initial sequence of char-
acters “abc” as well as empty logs say H1, H2 and H3 respectively. To simplify, we suppose that the
number of the site reflects its identity. Site 1 generates the operation op1 = Ins(2, x) to derive the state
“axbc” and site 2 generates op3 = Ins(2, z) and gets the state “azbc”. Then site 2 receives op1 as a
remote operation from site 1. Note that op1 ≺ op3 according to the effect relation defined by authors (the
two operation insert characters at the same position and the identity of site 1 is less than the identity of site
2), the transformed form of op1 is then op′1 = Ins(2, x) and the log H2 is reorganized and updated to be
H ′2 = op′1(Ins(2, x)) ·op′3(Ins(3, z)) in order to respect the effect relation. When op1 arrives at site 3, it
is executed as is since the log is empty, op′1 = Ins(2, x) and gives the state “axbc”. Then site 3 generates
op2 which is less than op1 according to the effect relation, i.e op1 � op2. Consequently, the log is updated
to H ′3 = op2(Ins(2, y)) · op′1(Ins(3, x)). Now, when op3 is received it verifies op3 ≺ op2 (inserting at
the same position and site identity of site 2 less than the site identity of site 3), then it is executed as is, the
log is updated to H ′′3 = op3(Ins(2, z)) · op′′2(Ins(3, y)) · op′′1(Ins(4, x)) and the final state is “azyxbc”.
On the other side, when op2 is received at site 2, the log is H ′2 = op′1(Ins(2, x)) · op′3(Ins(3, z)). The
remote integration of op2 gives op′2 = ins(2, y). In fact, since op2 ≺ op1, it is executed as is and inserted
at position 0 in H ′2. The state is then “ayxzbc” at site 2 which is obviously a divergence since the last
state at site 3 is “azyxbc”.

Note that the divergence is due to the difference between the two logs at site 2 and 3. Indeed, final
logs are H ′′2 = op2 · op1 · op3 whereas at site 3, we have H ′′3 = op3 · op2 · op1. However, authors assumed
that the effect relation ensure the same order at all sites.

Table 5.1 resumes the main solutions in the context of collaborative editors and compare them ac-
cording to the following criteria:

1. Simplicity: the simplicity of the algorithm is of relevance and allows its comprehension, verifica-
tion and integration in any collaborative editing framework.

2. Undo any operation: it is important to allow the undo of any operation, since we need to use the
undo procedure in order to enforce the policy (see Chapter 3). If the undo of an illegal operation
is abort, we inevitably encounter a security issue and may diverge.

89

Chapter 5. On the Undoability Problem in Distributed Collaborative Editors

3. Undo causally dependent operations: Undo must allow not only the undo of concurrent operations
but also causally dependent ones which is challenging since the undo is based on OT functions that
are only defined for concurrent operations.

4. Complexity: the complexity of the undo solution is very important and has to be good since we
need to apply it for real time collaborative editors.

5. Correctness: any undo solution must be correct and respect the undo properties defined in Sec-
tion 5.2.3. A given solution is also considered incorrect if it is based on an incorrect OT-framework
even though it respects undo properties.

Criteria Swap then undo Undo/Redo Ferrié UNo ANYUNDO/X COT ABTU
Simple Yes Yes Yes Yes No No No
Undo any operation No No No Yes Yes Yes No
Undo causally
dependent No No No No No Yes No
operations
Complexity O(n) O(2n) O(n2) O(n) O(en) O(en) O(n)
Correct Yes Yes No Yes Yes No No

Table 5.1: Comparison Between Undo Algorithms

5.4 Conclusion

In this chapter, we presented the most important aspects of the undo principle and most importantly,
inverse properties in order to be able to well study this command with the aim of providing a generic
solution in the following chapters. Moreover, we focused on the main solutions proposed for undo-
ing operation in collaborative applications mainly collaborative editors and stressed the limits of these
solutions.

In Chapter 6, we provide a theoretical study for undo problem and show what are the necessary and
sufficient conditions allowing to achieve a correct undo in distributed collaborative applications.

90

Chapter 6

A Necessary and Sufficient Condition for
Undoability

Contents

6.1 Formal Problem Statement . 92
6.2 Necessary and Sufficient Condition for Undoability 93

6.2.1 CCO Properties . 93

6.2.2 CSP Model . 97

6.2.3 Necessary and Sufficient Condition for Undoability 102

6.2.4 Discussion . 103

6.3 Our Generic Undo Framework . 105
6.3.1 The Hide Relation . 106

6.3.2 Transformation Rules . 108

6.3.3 Illustrative Example . 110

6.3.4 Asymptotic Time Complexity of the Undo Command 111

6.4 Conclusion . 112

Maintaining convergence in access control-based collaborative editors requires a selective undo
mechanism [21]. However, two obstacles may arise when we selectively undo an operation in a col-
laborative context. On the one hand, convergence of the shared document may be violated since the
operations are out-of-order executed at two different sites. On the other hand, there are many properties
to be satisfied, which complicates the verification of the undoability correctness.

In this chapter, we present a theoretical study of the undoability problem in collaborative applications
by giving a formal proof of necessary and sufficient conditions for achieving correct undo. Yet OT was
proposed to go beyond the commutativity, we prove that under some assumptions, it is impossible to
design an undoable object without enforcing the natural commutativity. Proving this result was a difficult
task. To overcome this difficulty, we formalized the undoability problem as a Constraint Satisfaction
Problem (CSP) where CSPs are mathematical problems defined as a set of objects whose state must
satisfy a number of constraints or limitations.

However, practically it is not possible to always define a set of commutative operations. For instance,
in the context of collaborative editors, inserting characters does not commute with deleting characters.
Thus, we propose to extend the set of operations with a new form of the idle operation where semantic
information about the transformed operations is encapsulated in the idle operation’s signature. The

91

Chapter 6. A Necessary and Sufficient Condition for Undoability

enhanced set of operations has to satisfy both inverse and transformation properties. Thus, we investigate
transformation rules for idle and inverse operations to prove these rules preserve all the properties.

In the first section of this chapter, we present the formal statement of the undoability problem. In
Section 6.2, we investigate a formal analysis of the undoablity problem based on the CSP theory. We
provide a necessary and sufficient condition for achieving correct undoability in the context of OT-based
collaborative applications. Finally, in Section 6.3, we sketch a preliminary solution that consists in
adding an idle operation in order to keep the OT advantages, namely going beyond the commutativity.

6.1 Formal Problem Statement

Collaborative Object. We suppose that there are N sites collaborating on the same shared object repli-
cated at each site. Every site updates its local copy, executes the update immediately then broadcast the
generated operation to other sites. Remote sites compute the new form of remote operations by applying
the IT function in order to integrate the effect of the local log into the received remote operation. Then
the result of the IT function is executed on the local copy of the receiver site. We define formally the
collaborative object as follows:

A Consistent Collaborative Object (CCO) is a triplet C = 〈St,Op, IT 〉 such that:

• St is the set of object states (or the space state);

• Op is the set of primitive operations executed by the user to modify the object state.
This set is characterized by the following properties:

1. for every operation op ∈ Op there is unique inverse op ∈ Op such that op 6= op
and st · op · op = st for all states st ∈ St;

2. for every operation op ∈ Op there exists a state st ∈ St such that st · op = st′

where st′ 6= st.

• IT : Op × Op → Op is a correct transformation function (i.e., IT satisfies properties
TP1 and TP2).

A CCO is of order n, denoted n-CCO, if the size of Op is equal to n.

Definition 6.1.1 (Consistent Collaborative Object).

According to Definition 6.1.1, property (1) means that all operations have to satisfy the undo property
IP1. This property should be preserved even though the operation is generated outside an undo process.
As for property (2), it discards the use of idle operations (i.e., there is no op ∈ Op such that st · op = st
for any state st). Indeed, when designing a shared object, a developer provides intuitively only operations
that alter the object state. For him, it does not make sense to handle practically idle operations. As seen
in Chapter 5, we can devise consistent objects (i.e. TP1 and TP2 are satisfied) without idle operations
(see Examples 5.2.2 and 5.2.4). Also we exclude operations having the same inverse (i.e, op = op) since
they are not interesting in practice. Note that example 5.2.4 is not a CCO since IP1 is violated while it
is easy to prove that example 5.2.2 is a CCO.

Next we define the undoability for a consistent collaborative object.

92

6.2. Necessary and Sufficient Condition for Undoability

A consistent collaborative object C = 〈St,Op, IT 〉 is undoable iff its transformation function
IT satisfies undo properties IP2 and IP3.

Definition 6.1.2 (Undoability).

Formal Problem Statement. It is possible to show by counterexamples that not all collaborative objects
are undoable w.r.t. Definition 6.1.2 (see Example 5.2.4). Then, a natural follow-up question is what make
a collaborative object undoable? It can be formally stated as:

The Undoability Problem: Given a consistent collaborative object C =
〈St,Op, IT 〉, what are the necessary and the sufficient conditions that C is un-
doable?

In the sequel, all used objects are consistent collaborative objects (see Definition 6.1.1).

6.2 Necessary and Sufficient Condition for Undoability

In this section, we present CCO properties related to the Definition 6.1.1. Furthermore, we present the
commutativity property since it represents a sufficient condition for undoability as we will prove in the
following section. Finally, we show that commutativity property is also necessary to achieve undoability.

6.2.1 CCO Properties

In the following, given a consistent collaborative objectC = 〈St,Op, IT 〉, we present properties derived
from TP1 and IP1.

In Lemma 6.2.1, we present Property C1 that discards evaluations of IT leading to equality between
two different operations.

For every pairwise operations opi, opj ∈ Op, if opi 6= opj then IT (opi, opj) 6= IT (opj , opi).

Lemma 6.2.1 (Property C1).

Proof. By absurd reasoning, suppose that there exist two different operations opi 6= opj from Op such
that IT (opi, opj) = IT (opj , opi). As IT verifies TP1, we have:

opi · IT (opj , opi) ≡ opj · IT (opi, opj) (TP1)

≡ opj · IT (opj .opi)

Performing IT (opj , opi) would lead to:

opi = opj

Clearly, this is absurd since opi 6= opj .

The following property C1X extends C1 since it also eliminates evaluations of IT leading to equal-
ity between two different operations by transitivity.

93

Chapter 6. A Necessary and Sufficient Condition for Undoability

For every different pairwise operations opi, opj and opk from Op. If IT (opi, opj) =
IT (opi, opk) then IT (opk, opi) 6= IT (opj , opi).

Lemma 6.2.2 (Property C1X).

Proof. Since C is a CCO then IT verifies TP1 and IP1. Suppose that there exist three operations opi,
opj and opk verifying IT (opi, opj) = IT (opi, opk) and IT (opk, opi) = IT (opj , opi). According to
TP1, we have

opi · IT (opj , opi) ≡ opj · IT (opi, opj)

Replacing IT (opj , opi) by IT (opk, opi) leads to the following result:

opi · IT (opk, opi) ≡ opj · IT (opi, opj)

Since opi · IT (opk, opi) ≡ opk · IT (opi, opk) according to TP1, we obtain: Consequently,

opk · IT (opi, opk) ≡ opj · IT (opi, opj)

Replacing IT (opi, opk) by IT (opi, opj) leads to:

opk · IT (opi, opj) ≡ opj · IT (opi, opj)

Finally, applying IT (opi, opj) at both sides leads to opj = opk (according to IP1) which is false since
we supposed that opj 6= opk.

Next, property C2 (see Lemma 6.2.3) is directly derived from IP1 and TP1. It ensures that if
IT (opi, opj) = opj then IT (opj , opi) = opi and is formalized as follows:

For every different pairwise operations opi, opj ∈ Op, if IT (opi, opj) = opj then
IT (opj , opi) = opi.

Lemma 6.2.3 (Property C2).

Proof. Since C is a CCO then IT verifies TP1 and IP1. IP1 ensures that op · op ≡ ∅. Consequently,
if IT (opi, opj) = opj then for every pairwise operations opi and opj from Op, we have:

opi · IT (opj , opi) ≡ opj · IT (opi, opj)
opi · IT (opj , opi) ≡ opj · opj
opi · IT (opj , opi) ≡ ∅

Hence, IT (opj , opi) = opi according to IP1.

Next, we present property C3 in Lemma 6.2.4. This property allows to deduce the transformation
result of an operation opj against opi under some conditions. It is formalized as follows:

94

6.2. Necessary and Sufficient Condition for Undoability

For every two operations opi and opj from Op such as IT (opj , opi) /∈ {opj , opi}, if
IT (opi, opj) = opi and opi commute with IT (opj , opi) then IT (opj , opi) = opj .

Lemma 6.2.4 (Property C3).

Proof. Since C is a CCO then IT verifies TP1 and IP1. Consequently, for every state st ∈ St, ∀
opi, opj ∈ Op, according to TP1, we have

opi · IT (opj , opi) ≡ opj · IT (opi, opj)

Since, IT (opi, opj) = opi, the previous equivalence leads to the following one

opi · IT (opj , opi) ≡ opj · opi

Applying opi at both sides leads to

opi · IT (opj , opi) · opi ≡ opj · opi · opi
opi · IT (opj , opi) · opi ≡ opj (IP1)

Finally, since opi commutes with IT (opj , opi)), then opi · IT (opj , opi) · opi ≡ opi · IT (opj , opi). This
lead to

opi · opi · IT (opj , opi) ≡ opj

Since opi · opi ≡ ∅ (according to IP1), we deduce that IT (opj , opi) = opj . Then the result is obtained.
Box

Finally, property C4 enforces the difference between an operation and its inverse.

For every operations opi and opj ∈ Op, if IT (opi, opj) = opi then IT (opj , opi) 6= opj .

Lemma 6.2.5 (Property C4).

Proof. If IT (opi, opj) = opi for every operations opi and opj fromOp, then IT (opj , opi) = opj 6= opj .
Then the result is obtained.

These properties allow us to well define the constraints to be satisfied by an IT function. The rest
of this section is devoted to the commutativity property since it is sufficient to achieve undoability as we
will show later.

Two operations op1 and op2 commute iff op1 · op2 ≡ op2 · op1.

Definition 6.2.3 (Commutativity).

95

Chapter 6. A Necessary and Sufficient Condition for Undoability

In the following, we say that a set of operationOp is commutative if all of its operations are pairwise
commutative.

Commutativity property given in Definition 6.2.3 is strong in the sense that it enables us to reorder
any pair of operations whatever they are concurrent or causally dependent. Instead, in collaborative
applications, we just need to verify whether pairwise concurrent operations commute or not. The impact
of commutativity on IT function is shown in the following Theorem:

For any pairwise concurrent operations op1, op2 ∈ Op, op1 commute with op2 iff
IT (opi, opj) = opi, i = 1, 2.

Theorem 6.2.1.

Proof. As the transformation function IT is correct (see Definition 6.1.1), then IT satisfies TP1. That
is, op1 · IT (op2, op1) ≡ op2 · IT (op1, op2). Since, IT (op2, op1) = op2 and IT (op1, op2) = op1,
we deduce from the previous equivalence that op2 · op1 ≡ op1 · op2. Consequently, op1 commutes
with op2. Moreover, if Op is commutative then for every two operations op1 and op2 from Op, we
have op1 · op2 ≡ op2 · op1. Consequently, IT (op1, op2) = op1 and IT (op2, op1) = op2 according
to TP1. Hence, for any pairwise concurrent operations op1, op2 ∈ Op, op1 commute with op2 iff
IT (opi, opj) = opi, i = 1, 2.

It is worth mentioning that given any 2-CCO, the equivalence between operation sequence and its
inverse leads to commutativity. In Lemma 6.2.6, we show that if an operation op verifies op ·op ≡ op ·op
then op commutes with its inverse op.

Given an object C = 〈St,Op, IT 〉 where Op = {op1, op2}, op1 = op2 and op2 = op1. If
op1 · op1 ≡ op2 · op2 then Op is commutative.

Lemma 6.2.6.

Proof. Since C = 〈St,Op, IT 〉 is a CCO then IP1 holds. Thus, we can deduce the following sequences
when applying op1 twice on the left and right:

op1 · op1 ≡ op2 · op2
op1 · op1 · op1 · op1 ≡ op2 · op2 · op1 · op1
op1 · op1 · op2︸ ︷︷ ︸

IP1

·op2 ≡ op2 · op2 · op1︸ ︷︷ ︸
IP1

·op1

op1 · op2 ≡ op2 · op1

consequently, op1 and op2 commute. Therefore, the IT function can be defined by IT (opi, opj) = opi
for all pairwise concurrent operations from Op.

Example 6.2.1. To illustrate Lemma 6.2.6, consider the following operations
op1 : x 7→ (x+ 1)mod 4
op2 : x 7→ (x− 1)mod 4

that modifies the state of a natural number. Let 0 be the initial state, the set of states in this case is St =
{0, 1, 2, 3}. Each of these operations is periodic of periodicity 4 since ∀x ∈ St, x·op1 ·op1 ·op1 ·op1 = x

96

6.2. Necessary and Sufficient Condition for Undoability

for every state x ∈ St (see Figures 6.1.(1) and 6.1.(2)). Moreover, op1 · op1 ≡ op2 · op2, and obviously,
op1 commutes with op2 (see Figure 6.1.(3)).

1 op1

��
0

op1
55

2

op1uu3op1

TT

3 op2

��
0

op2
55

2

op2uu1op2

TT

1 op2

��
0

op1
55

0

op2uu3op1

TT

(1) op1 is 4-periodic. (2) op2 is 4-periodic (3) op1 commutes with op2.

Figure 6.1: Commutative transformation for a 4-periodic set

The question that arises here is whether the commutativity property is sufficient to achieve undoa-
bility or not. In the following, we answer this question by showing that for a given consistent ob-
ject C = 〈St,Op, IT 〉, if IT (opi, opi) = opj for all opi and opj from Op then C is undoable (see
Lemma 6.2.7).

Given an object C = 〈St,Op, IT 〉, if Op is commutative then C is undoable.

Lemma 6.2.7 (Commutativity implies undoability).

Proof. To prove that C is undoable we have to verify that IP2 and IP3 conditions are preserved. Since
Op is commutative then for all two operations opi and opj from Op, we have

IT (IT (opi, opj), opj) = IT (opi, opj)

= opi

Then, IP2 is preserved. As for IP3, it is preserved since,

IT (opi, IT (opj , opi)) = IT (opi, opj) opj commutes with opi
= opi opiand opj commute

= IT (opi, opj) opi and opj commute

The next step consists in proving that also undoability implies commutativity. For the sake of our
results, we formalize our problem as a CSP, taking into account the properties C1-4 presented above.

6.2.2 CSP Model

Since our objective consists in finding necessary and sufficient conditions for achieving correct undoabil-
ity, we have to find all the evaluations of an IT function that satisfy both transformation and undoability
properties, namely TP1, TP2, IP1, IP2 and IP3. Finding such evaluations is achieved by formaliz-
ing the undoability problem as a Constraint Satisfaction Problems (CSP) problem in order to determine
easily all the possible values for any correct IT function satisfying undo properties.

Indeed, CSPs [108] are mathematical problems defined as a set of objects whose state must satisfy
a number of constraints. CSPs represent the entities in a problem as a homogeneous collection of finite
constraints over variables, which is solved by constraint satisfaction methods. CSPs are the subject

97

Chapter 6. A Necessary and Sufficient Condition for Undoability

of intense research in both artificial intelligence and operations research, since the regularity in their
formulation provides a common basis to analyse and solve problems of many unrelated families. CSPs
aims at exhibiting high complexity since they are solved in a reasonable time thanks to the combination
of heuristics and combinatorial search methods. Formally, a CSP is defined as follows15.

A CSP is defined as a triple 〈X ,D, C〉 , where:

• X = {x1, . . . , xn} is a set of problem variables,

• D = {D1, . . . ,Dn} is set of of domain values for every the variable, i.e. for every
k ∈ [1;n], xk ∈ Dk, and

• C = {C1, . . . , Cm} is a set of constraints, where every constraint Ci is in turn a pair
〈Xi,Ri〉(usually represented as a matrix), where Xi is a tuple of variables and Ri is a
set of tuples of values.

All these tuples having the same number of elements; as a result R is a relation. An evaluation
of the variables is a function from variables to values, v : X → D . Such an evaluation satisfies
a constraint 〈(Xi1, . . . ,Xin),Ri〉 if (v(Xi1), . . . , v(Xin)) ∈ R. A solution is an evaluation that
satisfies all constraints.

Definition 6.2.4 (CSP).

Example 6.2.2. One of the most famous CSP problems is the eight queen puzzle (see Figure 6.216). It
consists in placing eight chess queens on an 8 × 8 chessboard so that no two queens attack each other.
consequently, a solution of this problem requires that no two queens share the same row, column, or
diagonal [34].

Figure 6.2: One solution to the eight queens puzzle.

In the following, we formalize the undoability problem as a CSP:

The set of variables. In our case X is the set of different possible values of IT for a given set of
operationsOp = {op1, . . . , opn}. It is formally represented by X = {IT (opi, opj)| opi, opj ∈ Op}. To
simplify our model, we consider N as the domain of operations. Consequently, IT could be represented
by a matrix where opi and opj refer the row i and the column j while IT (opi, opj) refers to the value of
IT [i, j] (see table 6.1).

15http://en.wikipedia.org/wiki/Constraint_satisfaction_problem.
16http://en.wikipedia.org/wiki/Eight_queens_puzzle

98

6.2. Necessary and Sufficient Condition for Undoability

The domain. The domain of values is the set of values taken by the IT function. Obviously, we have
D = Op.

Constraints. Finally, our constraints are the conditions to be satisfied by the IT function so that an
evaluation is true. More precisely, constraints are TP2, IP2, IP3, and the properties C1 − 4 derived
from TP1 and IP1 (see Lemmas 6.2.1-6.2.5) since they could not be expressed with equalities between
different variables from X . Thus, C = {TP2, IP2, IP3, C1, C1X,C2, C3, C4}.

These constraints could be represented by a matrix IT of size n2 where n = |Op| as shown in
Table 6.1. Subsequently the set of evaluations has the size nn

2
.

IT op1 . . . opi . . . opj . . . opn
op1
. . .
opi IT (opi, opi) IT (opj , opi)
. . .
opj IT (opi, opj) IT (opj , opj)
. . .
opn

Table 6.1: Transformation Matrix

The question that arises here is whether an undoable CCO is commutative or not? To answer this
question, we begin bay studying CCO of order 2 and 4 as the basic cases in order to generalize the result
by induction on the CCO’s order. To solve the undoability problem for 2-CCO and 4-CCO cases and
calculate all the evaluations of IT that respect the mentioned constraints in a reasonable time, we use the
Choco solver 17. The solutions given by the solver are presented in Figures 6.3 and 6.4 where we have
considered consistent collaborative objects of order 2 and 4 respectively.

Consider the first case of CCOs with two operations. If a 2-CCO is undoable then the only two IT
evaluations are (see Figure 6.3):

1. IT 2
1 verifies IT (opi, opj) = opi, i = 1, 2 which means op1 commutes with op2 according to

Definition 6.2.1. For instance, Example 5.2.2 is an example of an undoable CCO of order 2 where
its operations set is commutative.

2. IT 2
2 verifies IT (opi, opj) = opi, i = 1, 2, in which case TP1 implies that op1 · op1 ≡ op2 · op2

which means that Op is commutative according to Lemma 6.2.6.

Accordingly, an undoable 2-CCO is commutative.

(1) Solution 1 (2) Solution 2
IT 2

1 op1 op2
op1 op1 op1
op2 op2 op2

IT 2
2 op1 op2

op1 op2 op1
op2 op1 op2

Figure 6.3: Solutions of the 2-CCO problem.

As for 4-CCOs, we present the output of our solver in Figure 6.4. We can show easily that the
first four evaluations leads to commutativity. Indeed, TP1 enforces equivalence relationship between
different sequences of operations according to the evaluation of IT . To more illustrate, we consider
every solution and state different equivalences dictated by TP1. Then, we prove these equivalences lead
to commutativity.

17http://www.emn.fr/z-info/choco-solver

99

Chapter 6. A Necessary and Sufficient Condition for Undoability

(1) Solution 1
IT4

1 op1 op2 op3 op4
op1 op1 op1 op1 op1
op2 op2 op2 op2 op2
op3 op3 op3 op3 op3
op4 op4 op4 op4 op4

(2) Solution 2
IT4

2 op1 op2 op3 op4
op1 op1 op1 op1 op1
op2 op2 op3 op3 op2
op3 op3 op2 op2 op3
op4 op4 op4 op4 op4

(3) Solution 3
IT4

3 op1 op2 op3 op4
op1 op4 op1 op1 op4
op2 op2 op2 op2 op2
op3 op3 op3 op3 op3
op4 op1 op4 op4 op1

(4) Solution 4
IT4

4 op1 op2 op3 op4
op1 op4 op1 op1 op4
op2 op2 op3 op3 op2
op3 op3 op2 op2 op3
op4 op1 op4 op4 op1

(5) Solution 5
IT4

5 op1 op2 op3 op4
op1 op2 op2 op2 op2
op2 op1 op1 op1 op1
op3 op4 op4 op4 op4
op4 op3 op3 op3 op4

(6) Solution 6
IT4

6 op1 op2 op3 op4
op1 op2 op4 op2 op4
op2 op3 op1 op3 op1
op3 op4 op2 op4 op2
op4 op1 op3 op1 op3

(7) Solution 7 (sym to 5)
IT4

7 op1 op2 op3 op4
op1 op3 op3 op3 op3
op2 op4 op4 op4 op4
op3 op1 op1 op1 op1
op4 op2 op2 op2 op2

(8) Solution 8 (sym to 6)
IT4

8 op1 op2 op3 op4
op1 op3 op3 op2 op2
op2 op4 op4 op3 op3
op3 op2 op2 op1 op1
op4 op1 op1 op2 op2

(9) Solution 9
IT4

9 op1 op2 op3 op4
op1 op1 op4 op4 op1
op2 op3 op2 op2 op3
op3 op2 op3 op3 op2
op4 op4 op1 op1 op4

(10) Solution 10
IT4

10 op1 op2 op3 op4
op1 op1 op4 op4 op1
op2 op3 op3 op3 op3
op3 op2 op2 op2 op2
op4 op4 op1 op1 op4

(11) Solution 11
IT4

11 op1 op2 op3 op4
op1 op4 op2 op4 op2
op2 op1 op3 op1 op3
op3 op2 op4 op2 op4
op4 op3 op1 op3 op1

(12) Solution 12 (sym to 11)
IT4

12 op1 op2 op3 op4
op1 op4 op4 op3 op3
op2 op3 op3 op4 op4
op3 op1 op1 op2 op2
op4 op2 op2 op1 op1

(13) Solution 13 (sym to 10)
IT4

13 op1 op2 op3 op4
op1 op4 op4 op4 op4
op2 op3 op2 op2 op3
op3 op2 op3 op3 op2
op4 op1 op1 op1 op1

(14) Solution 14
IT4

14 op1 op2 op3 op4
op1 op4 op4 op4 op4
op2 op3 op3 op3 op3
op3 op2 op2 op2 op2
op4 op1 op1 op1 op1

Figure 6.4: Solutions of the 4-CCO problem.

The transformation function IT 4
1 implies commutativity according to Definition 6.2.1. Additionally,

the next three solutions do not verify IT (opi, opj) = opi ∀opi, opj ∈ Op but according to TP1 leads to
commutativity. Indeed, IT 4

2 requires the following equivalences dictated by the property TP1:

• op2 ·op1 ≡ op1 ·op2, op4 ·op1 ≡ op1 ·op4 and op4 ·op2 ≡ op2 ·op4 which means that {op1, op2, op4}
is commutative.

• op3 · op1 ≡ op1 · op3 and op4 · op3 ≡ op3 · op4 which means that op3 commutes with op1 and op4.

• op2 · op2 ≡ op3 · op3 which means that {op2, op3} is commutative according to Lemma 6.2.6.

Consequently, Op is commutative.
Similarly, the transformation function IT 4

3 implies:

• op2 · op1 ≡ op1 · op2, op3 · op1 ≡ op1 · op3 and op3 · op2 ≡ op2 · op3 then {op1, op2, op3} is
commutative.

• op4 · op2 ≡ op2 · op4 and op4 · op3 ≡ op3 · op4 so op4 commutes with op2 and op3.

• op4 · op4 ≡ op1 · op1: which means that op4 commutes with op1 according to Lemma 6.2.6.

Thus, Op is commutative.
Finally, the solution IT 4

4 imposes that:

• op2 · op1 ≡ op1 · op2 and op3 · op1 ≡ op1 · op3 then op1 commutes with op2 and op3.

• op4 · op2 ≡ op2 · op4 and op4 · op3 ≡ op3 · op4 then op4 commutes with op2 and op3.

• op2 · op2 ≡ op3 · op3 which means that {op2, op3} is commutative according to Lemma 6.2.6.

100

6.2. Necessary and Sufficient Condition for Undoability

• op4 · op4 ≡ op1 · op1 which means that {op4, op1} is commutative according to Lemma 6.2.6.

The remaining solutions (Solutions 5-10) provided by our CSP solver either transform an operation
to its inverse or to the inverse of the concurrent operations, i.e. there exist opi, opj ∈ Op verifying
IT (opi, opj) = opi or IT (opi, opj) = opj . Even though these solutions do not lead to commutativity
(e.g solution 5 detailed in Example 6.2.3) they are not practically interesting since the goal of IT is to
integrate the effect of concurrent operations and not to undo their effects. Subsequently, it is preferable
to use the first IT evaluation (IT (opi, opj) = opi, ∀opi, opj ∈ Op) as it integrates the operation’s effect
after transformation.

Example 6.2.3. Let op1 and op2 be two operations over square matrices of order 2 M2,2, such that:
op1 : M2,2 → M2,2

A 7→ 2×t A
where tA is the transpose of the matrix A and
op2 : M2,2 → M2,2

A 7→ 2×
(
a0,1 a0,0
a1,0 a1,1

)
Let op3 and op4 be the inverse of op2 and op1 respectively. Obviously, op3 = 1

2 ×op2 and op4 = 1
2 ×op1

Consider the transformation function IT 4
5 given by our CSP solver (see Figure 6.4.(5)) summarized as

follows:

• IT (op1, op) = op2

• IT (op2, op) = op1

• IT (op3, op) = op4

• IT (op4, op) = op3

where op ∈ Op = {op1, op1, op2, op2}.
According to TP1, we have:

op2 · op2 ≡ op1 · op1 (6.1)

op2 · op1 ≡ op2 · op1 (6.2)

op1 · op2 ≡ op1 · op2 (6.3)

op1 · op1 ≡ op2 · op2 (6.4)

Note thatOp respects these properties for instance for every matrix A, we have A ·op1 ·op1 = 4×A
and A · op2 · op2 = 4× A. Hence (6.1) is satisfied. Similarly, (6.4) is correct. As for equivalence (6.2),
it is satisfied since for every matrix A ∈M2,2, op2 · op1 = 1

2 × op2 · op1 and op2 · op1 = op2 · 12 × op1.
Clearly, 1

2 × op2 · op1 ≡ op2 ·
1
2 × op1. Similarly, equivalences (6.3) is correct. It should be pointed out

that op1 does not commute with op2. Indeed, consider the matrix A =

(
a0,0 a0,1
a1,0 a1,1

)
: Applying op1 to

A produces A1 = 2×
(
a0,0 a1,0
a0,1 a1,1

)
. Then A3 = A1 · op2 = 4×

(
a1,0 a0,1
a0,1 a1,1

)
. Also op2 · A produces

A2 = 2×
(
a0,1 a0,0
a1,0 a1,1

)
. Then applying op1 to A2 produces A4 = 4×

(
a0,1 a1,0
a0,0 a1,1

)
. Clearly, op1 does

not commute with op2 since A3 6= A4.

101

Chapter 6. A Necessary and Sufficient Condition for Undoability

Even though the set is not commutative, the transformation function leading to such set of operations
(solution 5) imposes that IT (opi, opj) = opj with opi 6= opj . Such a transformation function does not
make sense since it just undo the effect of the performed operation when receiving a concurrent remote
operation. Hence, after synchronizing all operations, all users will loose their updates.

Consequently, we improve our CSP model with the following two constraints so to avoid IT evalu-
ations that are not interesting in practice and that do not keep the advantages of the OT approach.

In Definition 6.2.5, we present property C5 that forbids transforming an operation to its inverse:

Given a CCO C = 〈St,Op, IT 〉 then for every operations opi and opj from Op, it must be
that

IT (opi, opj) 6= opi.

Definition 6.2.5 (Property C5).

As for property C6, it discards IT functions transforming an operation op1 against op2 to the inverse
of op2. Indeed, this is equivalent to undoing the effect of op2 which is far from being the objective of OT
approach leading to integrating the effect of op1 into op2.

given a CCO C = 〈St,Op, IT 〉 then for every operations opi and opj from Op, if opj /∈
{opi, opi} then IT (opi, opj) 6= opj .

Definition 6.2.6 (Property C6).

Accordingly, we extend the set of constraints C with C5 and C6 in order to keep only the solutions
that are practically interesting.The results of the new CSP model using Choco solver for both 2 and 4-
CCOs are presented in Figure 6.5. Obviously, we can observe that an undoable CCO of order 2 or 4
implies that its transformation function verifies IT (opi, opj) = opi for every pairwise operations opi
and opj from Op. Thus, Op is commutative. In the following, we generalise this result and prove that
undoability is equivalent to commutativity.

(1) 2-CCO Solution
IT op1 op2
op1 o1 op1
op2 op2 op2

(2) 4-CCO Solution
IT op1 op2 op3 op4
op1 op1 op2 op3 op4
op2 op2 op2 op2 op2
op3 op3 op3 op3 op3
op4 op4 op4 op4 op4

Figure 6.5: Solutions of the 2-CCO problem.

6.2.3 Necessary and Sufficient Condition for Undoability

To generalize the result presented above, we proceed by induction on the size n of the set of operations,
where n is even. Indeed, basic cases corresponds to n = 2 and n = 4, then we can deduce the result for
n > 4 since we build the set of operation by adding an operation and its inverse to an undoable CCO.
Each time we add a new couple of operations (op, op), it forms a 4-CCO with every couple of operations
(opi, opi) from the initial CCO operations set.

102

6.2. Necessary and Sufficient Condition for Undoability

Given a CCO C = 〈St,Op, IT 〉. C is undoable iff Op is commutative.

Theorem 6.2.2 (Necessary and Sufficient Conditions for Undoabiliy).

Proof. From Lemma 6.2.7 we deduce that commutativity implies undoability. Now let us prove that if a
consistent object C is undoable then its corresponding set of operations is commutative. To do this, we
proceed by induction on 2n = |Op|, n ∈ N (i.e. 2n is the size of Op).

Basis. As illustrated in Figure 6.5, the statement holds for n = 2 and n = 4. Indeed, the only solution
for the 2-CCO and 4-CCO problems is commutative.

Inductive step. Let us show that if the statement holds for a given C = 〈St,Op, IT 〉 of order 2n,
then it holds for the object C ′ of order 2n + 2. This can be done as follows. Assume that that if Op
is undoable then Op is commutative. We also suppose that for every opi ∈ Op, where i ∈ [1; 2n], we
have opi = op2×i if i is odd and opi = op i

2
if i is even (see Figure 6.6). Now, consider the object C ′

with the corresponding set of operations Op′ = Op
⋃
{opn+1, op2(n+1)} of size 2n + 2 such that the

inverse of opn+1 is op2(n+1) (the blue set in Figure 6.6). Let us prove that if C ′ is undoable then Op′
is commutative. According to the initial step (n = 2), we deduce that opn+1 commutes with op2(n+1)

since the set {opn+1, op2(n+1)} forms an undoable CCO of order 2.

Figure 6.6: Main Theorem.

Furthermore, since C ′ is undoable, then every CCO formed by subsets
{opi, op2i, opn+1, op2(n+1)|opi ∈ Op)} (the red set in Figure 6.6) is undoable. Consequently, us-
ing initial step with n = 4, we deduce that opn+1 and its inverse op2(n+1) commute with every operation
opi and its inverse op2i from the initial set of operation Op. Thereby showing that indeed Op′ is
commutative.

Since both the basis and the inductive step have been proved, it has now been proved by mathematical
induction that undoability implies commutativity.

6.2.4 Discussion

From Theorem 6.2.2, we can deduce that commutativity has a direct impact on undoability. Our result
shows that non commutative operations do not allow to achieve undoability property while most collab-
orative operations based on the transformation function approach, use non commutative operations to
alter shared objects.

103

Chapter 6. A Necessary and Sufficient Condition for Undoability

This is a challenging problem because the use of OT approach aims at going beyond commutativity.
Subsequently, we believe that it is necessary to extend the set of operations with a new kind of operations
namely the idle operation yet excluded in Definition 6.1.1.

However, the idle operation as it is defined does not allow to preserve IP3 in all cases. Mainly, we
can face divergence problems when the two concurrent operations have the same effect on the document
and thus are transformed into idle operations.

To illustrate this problem, we consider the Example 5.2.4 where the IT function (see Algorithm 12)
is extended as follows:

1: IT(op1,op2):op′1
2: Choice of op1 and op2
3: Case: op1 = Up and op2 = Up
4: op′1 ← I
5: Case: op1 = Up and op2 = Down
6: op′1 ← Up
7: Case:op1 = Up and op2 = I
8: op′1 ← Up
9: Case: op1 = Down and op2 = Up

10: op′1 ← I
11: Case:op1 = Down and op2 = Down
12: op′1 ← I
13: Case:op1 = Down and op2 = I
14: op′1 ← Down
15: Case:op1 = I and op2 = Up
16: op′1 ← I
17: Case:op1 = I and op2 = Down
18: op′1 ← I
19: Case:op1 = I and op2 = I
20: op′1 ← I
21: end choice

Algorithm 13: Extension of Algorithm 12 with the Idle Operation

Consider the scenario presented in Figure 6.7 where two sites perform the operation Up concurrently
which is transformed to I at both sites. Undoing op1 = Up at site 1 leads to generating op1 = Down
and transforming it against I which results in the operation Down. Executing Down at state 1 leads to
the new state 0. However, undoing op1 at site 2 consists in applying I = I at state 1 which produces the
same state 1. Obviously, sites 1 and 2 diverge. The same issue is encountered if op1 = op2 = Down.

site 1
0

site 2
0

op1 = Down

IT

��

op1 = Up

""

op2 = Up

||
1 1

Down

$$

I I I = I

~~
1 1

0 1

Figure 6.7: Divergence despite the use of the Idle Operation.

It should be pointed out that this problem is faced only if two concurrent operations are both trans-
formed to an idle operation.

Similarly, the idle operation does not allow for undoability in the context of collaborative editors
as shown in the scenario of Figure 6.8.(a) where two deletions at the same position are performed con-
currently by s1 and s2. These operations are transformed into two idle operations I at both sites (the

104

6.3. Our Generic Undo Framework

corresponding transformation function is given in Appendix B). Now, if we undo op1 = Del(1, a) at site
s1, we generate op1 = Ins(1, a). Then, we integrate op′2’s effect to obtain op1′ = op1 whom execution
recovers the state “abc”. However at s2, the state remains “bc” since op′1 = I = I . It is obvious that IT
fails to preserve IP3 as we have op1′ 6= op′1.

s1
“abc”

s2
“abc”

op1 = Del(1, a)

op1 = Ins(1, a)

)) $$

op2 = Del(1, a)

zz
“bc” “bc”

op′2 = I

op1
′=op1

**

op′1 = I

op′1 = I

tt

“bc” “bc”

“abc” “bc”

(a) Undoing op1 produces a divergence.

st1
“abc”

st2
“abc”

op1 = Del(1, a)

op1 = Ins(1, a)

((%%

op2 = Del(1, a)

yy
“bc” “bc”

op′2 = I(op2, op1)

op1
′ =

IT (op1, op2) =
I(op1, op2) **

o′1 = I(op1, op2)

op′1 = I(op1, op2)

tt

“bc” “bc”

“bc” “bc”

(b) Delete-Delete puzzle resolution.

Figure 6.8: Delete-Delete puzzle.

According to the two examples presented above, we deduce that the divergence is caused by the loss
of the initial information about the operation to be undone. To overcome this issue, we propose to extend
the semantic of the idle operation I as follows:

Given two concurrent operations op1 and op2 and a correct transformation function IT . If
IT (op1, op2) is in an idle operation we have:

IT (op1, op2) = I(op1, op2).

Definition 6.2.7 (New Semantic of the Idle Operation).

This new semantic aims at transforming reverse or idle operations correctly but requires
to define transformation rules for both reverse and idle operations. For instance, stating that
IT (op1, I(op2, op1)) = IT (op1, op2) leads to satisfying IP3 property. For example, in Figure 6.8,
when op1 is transformed against I(op2, op1) at site 1, the result is equal to IT (op2, op1) = I(op2, op1).
Since the inverse of an idle operation has no effect on the state, the convergence is achieved since we
have to execute two idle operations at both sites.

Basing on the new semantic of the idle operation, we propose a generic undo framework. Our
solution consists in extending consistent collaborative objects with idle operations and integrate them
correctly to preserve inverse and transformation properties.

6.3 Our Generic Undo Framework

We have proved in Section 6.2 that the commutativity property represents a necessary and sufficient
condition to achieve undoability. Accordingly, it is impossible to define a correct undo algorithm for non
commutative operations. However, practically it is not possible to always define a set of commutative
operations. For instance, in the context of collaborative editors, inserting characters does not commute
with deleting characters. Thus, we proposed to extend the set of operations with a new form of the

105

Chapter 6. A Necessary and Sufficient Condition for Undoability

idle operation where semantic information about the transformed operations is encapsulated in the idle
operation’s signature (see Definition 6.2.7). For this, we relax the Definition 6.1.1 to cover idle operations
in order to take into account the idle operation as follows:

A Relaxed Consistent Collaborative Object (RCCO) is a triplet Cr = 〈St,Op, IT 〉 such that:

• St is the set of object states (or the space state);

• Op is the set of primitive operations executed by the user to modify the object state such
that for every operation op ∈ Op there is unique inverse op ∈ Op.

• IT : Op × Op → Op is a correct transformation function (i.e., IT satisfies properties
TP1 and TP2).

Definition 6.3.8 (Relaxed Consistent Collaborative Object).

For instance the collaborative object defined in [48] is a RCCO since it includes the idle operation
equal to its inverse.

Extended idle operations are generated at the integration process according to the relation between
the two operations involved in the transformation function. Indeed, if the effect of the received operation
is hidden by the concurrent operation against which it is transformed (e.g transforming two deletions or
updates at the same position), then the result of the transformation is an idle operation.

In the following, we present the hide relation used to originate semantically extended idle operations
and detail the transformation rules used to integrate correctly idle and inverse operations.

6.3.1 The Hide Relation

Given a RCCO Cr = 〈St,Op, IT 〉, we define the Hide relation over Op as follows:

For every two operations op2 and op1 from Op defined on the same state of the shared object,
we say that op1 hides op2 noted Hide(op1, op2) iff op1 · IT (op2, op1) ≡ op1.

Definition 6.3.9 (Hide Predicate).

According to Definition 6.3.9, we deduce that Hide(op1, op2) means IT (op2, op1) ≡ ∅. Thus, also
the transformation of IT (op2, op1) against any operation op3 produces an operation with no effect i.e.
IT (IT (op2, op1), op3) ≡ ∅.

Given a RCCO Cr = 〈St,Op, IT 〉, then for any three operations op1, op2 and op3 from Op,

Hide(op1, op2) =⇒ IT (IT (op2, op1), op3) ≡ ∅.

Lemma 6.3.8.

Proof. Since IT (op2, op1) ≡ ∅, then its transformation against any operation has no effect on the shared
object state.

106

6.3. Our Generic Undo Framework

Always according to Definition 6.3.9, the following statement holds:

Given three operations op1, op2 and op3, then

Hide(op1, op2)⇒ IT ∗(op3, op1 · IT (op2, op1)) = IT (op3, op1).

Lemma 6.3.9.

Proof. Since Hide(op1, op2) then op1 · IT (op2, op1) ≡ op1 (see Definition 6.3.9). Consequently:

IT ∗(op3, op1 · IT (op2, op1) = IT (op3, op1)

Next, we give some properties of the Hide relation. In the following lemma we state that the Hide
relation is transitive.

Given three concurrent operations op1, op2 and op3 then

Hide(op3, op2) ∧Hide(op2, op1)⇒ Hide(op3, op1)

Lemma 6.3.10 (Hide is Transitive.).

Proof. We have:

IT (op1, op3) = IT ∗(op1, op3 · IT (op2, op3)) (Lemma 6.3.9)
IT (op1, op3) = IT ∗(op1, op2 · IT (op3, op2)) (TP2)
IT (op1, op3) = IT (IT (op1, op2), IT (op3, op2))

≡ ∅ (Lemma 6.3.8)

Thus, op3 · IT (op1, op3) ≡ op3. Thereby showing that indeed Hide(op3, op1) holds. Q.E.D.

Given a RCCO Cr = 〈St,Op, IT 〉, our solution consists in transforming Cr to Cr′ =
〈St,Op′, IT ′〉 as follows: ∀op1, op2 ∈ Op×Op

• If Hide(op1, op2) then IT ′(op2, op1) = I(op2, op1) and Op′ = Op ∪ {I(op2, op1)};

• Otherwise IT ′(op2, op1) = IT (op2, op1).

Example 6.3.1. Consider again the example of a shared binary register altered by the two operations Up
and Down. According to the IT function given in Algorithm 12 (see Chapter 5) related to this example,
we have:

• Up · IT (Up,Up) ≡ Up⇒ Hide(Up,Up)

• Down · IT (Down,Dwon) ≡ Down⇒ Hide(Down,Down)

• Up · IT (Up,Down) ≡ Up⇒ Hide(Up,Down)

107

Chapter 6. A Necessary and Sufficient Condition for Undoability

• Down · IT (Down,Up) 6≡ Up⇒ ¬Hide(Up,Up)

The final set of operations Op = {Up,Down, I(Up,Up), I(Down,Up), I(Down,Down)}

Accordingly, we define three different kinds of operations:

1. Normal operations: an operation op ∈ Op is a normal operation if it is originated by a user or
is the result of transforming two operations op1 and op2 such that neither Hide(op1, op2), nor
Hide(op2, op1).

2. Idle or Hidden operations: a hidden operation is an operation of the form I(op1, op2) where both
op1 and op2 are normal operations verifying Hide(op2, op1).

3. Inverse Operations: an inverse operation op is an operation generated to undo the normal operation
op and verifies op · op ≡ ∅

These different operations must be transformed correctly to ensure inverse and transformation prop-
erties. We define in the following a set of transformation rules in order to integrate correctly inverse and
idle operations.

6.3.2 Transformation Rules

Given a RCCO, we must ensure that the enhanced set of operations preserves transformation and inverse
properties. Otherwise the undoability as well as the convergence of the shared document are lost.

Table 6.2 presents the transformation rules for idle as well as inverse operations. These transfor-
mation rules can be integrated by any existing IT according to the Hide relation w.r.t Definition 6.3.9.
Letters x, y, z and t refer to integrated operations.

TR1. The set of transformation rules TR1 shows how we transform an idle operation against another
idle operation where both operations are hidden by the same normal operation. Let two operations x
and z are transformed against an operation z such that z hides both x and y. Integrating x against the
sequence y · I(z, y) has to take into account the hide relation between x and z. Indeed, if z hides x
then according to the transitivity property of the hide relation w.r.t Lemma 6.3.10, I(x, y) is transformed
against I(z, y) into I(x, z). Otherwise, we integrate the effect of the operation z into x. Subsequently,
if the operation y is undone later, the effect of z is yet integrated into x which greatly simplifies the
elimination of y’s effect from the log.

TR1I. When an idle operation is undone, it should de transformed against the following operations in
the log. The set of transformation rules TR1I shows how we transform an inverse idle operation against
another idle operation hidden by the same normal operation. The principle is the same as in TR1. Since,
we are integrating an idle inverse operation I(x, y), we may face another idle operation hidden by y that
already integrates the effect of x i.e. I(IT (z, x), y) (according to TR1I). In this case, according to
whether z hides x or not, we integrate I(x, y) into I(x, z) (since hide is transitive) or we integrate the
effect of z into x to obtain I(IT (x, z), y).

TR2. These transformation rules show how to transform an idle operation against a normal operation
or a normal inverse operation. According to the transitivity of the hide relation, we update the semantic
of the integrated idle operation. So, if an idle operation I(x, y) is integrated against IT (z, y), it is trans-
formed into I(x, z) if z also hides x. Otherwise it is transformed to I(IT (x, z), y). The same principle
is used when transforming I(x, y) against a normal inverse operation excepting that the transitivity is not
applied since we are integrating the effect of an inverse operation whose effect will be eliminated.

TR2I. These rules transform an idle inverse operation against a normal operation or a idle operation.

108

6.3. Our Generic Undo Framework

TR1 Hide(z, x)⇒ IT [I(x, y), I(z, y)] = I(x, z)
¬Hide(z, x)⇒ IT [I(x, y), I(z, y)] = I(IT (x, z), y)

TR1I Hide(z, x)⇒ IT [I(x, y), I(z, y)] = I(x, z)

¬Hide(z, x)⇒ IT [I(x, y), I(z, y)] = I(IT (x, z), y)

Hide(z, x)⇒ IT [I(x, y), I(IT (z, x), y)] = I(x, z)

¬Hide(z, x)⇒ IT [I(x, y), I(IT (z, x), y)] = I(IT (x, z), y)

TR2 Hide(z, x)⇒ IT (I(x, y), IT (z, y)) = I(x, z)

Hide(z, x)⇒ IT (I(x, y), IT (z, y)) = I(x, y)
¬Hide(z, x)∧ ⇒ IT [I(x, y), IT (z, y)] = I(IT (x, z), y)

¬Hide(z, x)∧ ⇒ IT [I(x, y), IT (z, y)] = I(IT (x, z), y)

TR2I Hide(z, x)⇒ IT (I(x, y), I(z, x)) = I(x, y)

¬Hide(z, x)⇒ IT (I(x, y), I(z, x)) = I(IT (x, z), y)

IT (I(x, y), IT (z, y)) = I(x, y)

¬Hide(z, x)⇒ IT (I(x, y), IT (z, x)) = I(IT (x, z), y)

TR3 IT (x, I(y, x)) = IT (x, y)

¬Hide(x, y)⇒ IT (x, IT (y, x)) = IT (x, y)

TR4 IT (I(x, y), y) = x

IT (I(x, y), I(y, z)) = I(x, z)

Hide(z, y)⇒ IT (I(x, y), I(z, y)) = I(x, y)

¬Hide(z, y)⇒ IT (I(x, y), I(z, y)) = I(IT (x, z), y)

¬Hide(z, x)⇒ IT (I(IT (x, y), z), I(y, z)) = I(x, z)
¬Hide(z, x) ∧Hide(t, y)⇒ IT (I(x, y), I(z, t)) = I(IT (x, z), y)

¬Hide(t, x)⇒ IT (I(IT (x, y), z), I(IT (y, t), z)) = I(IT (x, t), z)

¬Hide(x, y) ∧Hide(z, y)⇒ IT (IT (x, z), IT (z, y)) = IT (x, y)

TR5 IT (x, I(y, z)) = x

IT (x, I(y, z)) = x

Table 6.2: Transformation Rules for Idle and Inverse Operations

TR3. Consists in the transformation rules for a normal inverse operation against an idle or a inverse
operation. It enforces the inverse rule IP3 for normal and idle operations and ensures that the integrated
form of the inverse of an operation x is equal to the inverse of the integrated form of the operation x.

109

Chapter 6. A Necessary and Sufficient Condition for Undoability

TR4. These rules show how to integrate the effect of an inverse operation into different kinds of op-
erations. It allows for updating the log and eliminating the effect of the undone operation from it. For
instance, integrating y into an operation hidden by y let I(x, y), naturally restores x. Similarly, integrat-
ing the effect of I(y, z) into I(x, y) results I(x, z) since y is undone and the hide relation is transitive.
etc.

TR5. Finally, TR5 states that a normal operation remains the same when transformed against an idle
or an idle inverse operation. This stress the fact that an idle operation does not have an effect on normal
operations.

The question that arises here is whether transformation and undoability properties are satisfied by
these transformation rules. In Appendix A, we illustrate the preservation of these properties by the
transformation rules presented above.

6.3.3 Illustrative Example

Consider a collaborative editor based on the transformation function of Algorithm 14 (see Appendix B).
Figure 6.9 depicts a scenario where three users edit concurrently the initial string of characters ”abc“.
Each user performs an update operation as follows: user 1 originates the request u1 = Upd(1, a, x), user
2 performs the request u2 = Upd(1, a, y) and user 3 performs the request u3 = Upd(1, a, z). When two
concurrent updates target the same position, then the operation with the greater site’s identity hides the
effect of the other one w.r.t. Definition 6.3.918. Accordingly, when u1 is received at site 2 and 3, it is
transformed to u21 = I(u1, u2) and u31 = I(u1, u3) respectively. When the request u2 is received at site 3,
it is transformed to u32 = IT (I(u2, u3), I(u1, u3)) = I(IT (u2, u1), u3) according to the rule TR1 since
¬Hide(u1, u2). After the execution of u1, site 1 receives u2 which is transformed to u12 = Upd(1, x, y).
After a while, it receives u3 and transforms it to u13 = Upd(1, y, z). Similarly, when site 2 receives u3 it
is transformed to u23 = Upd(1, z, t).

site 1
“abc”

site 2
“abc”

site 3
“abc”

u1 = Upd(1, a, x)
** --

u2 = Upd(1, a, y)

++

{{

u3 = Upd(1, a, z)

��
qq

u12 = Upd(1, x, y) u21 = I(u1, u2) u31 = I(u1, u3)

u13 = Upd(1, y, z) u23 = Upd(1, y, z) u32 = I(IT (u2, u1), u3)

“zbc” “zbc” “zbc”

Figure 6.9: An Illustrative Example of our Undo Scheme.

Suppose now, that the request u3 is undone. Intuitively, the effect of the operation u2 and not that
of u1 should be recovered (according to their identities order) (e.g. the character ”y“ and not ”x“ is
recovered). Figure 6.10 shows the state and the log of each site after undoing the operation u3.
As illustrated in Figure 6.10.(a) and (b), undoing u3 at sites 1 and 2 only requires to generate and execute
the operation u13 = u23 = Upd(1, y, z) = Upd(1, z, y). Thus the state after undo is ”ybc“ at sites 1 and 2.
At site 3 (see Figure 6.10.(c)), we generate u3 = Upd(1, z, a), then transform it against u31 = I(u1, u3).

18To simplify, we suppose that the site’s identity refers to its number.

110

6.3. Our Generic Undo Framework

site 1
“abc”

u1 = Upd(1, a, x)

u1
2 = Upd(1, x, y)

u1
3 = Upd(1, y, z) u1

3 = Upd(1, z, y)

qq

“zbc”

“ybc”

(a) Illustrating the Undo Effect.

site 2
“abc”

u2 = Upd(1, a, y)

u2
1 = I(u1, u2)

u2
3 = Upd(1, y, z) u2

3 = Upd(1, z, y)

qq

“zbc”

“ybc”

(b) Undoing u3 at site 2.

site 3
“abc”

u3 = Upd(1, a, z) u3 = Upd(1, z, a)

��
u3
1 = I(u1, u3) u3

′ = Upd(1, x, z)

��

tt
u3
1
′
= u1

u3
2 = I(IT (u2, u1), u3) u3

′′ = Upd(1, z, y)

uu

u3
2
′
= IT (u2, u1)

“zbc”

“ybc”

(c) Undoing u3 at site 3.

Figure 6.10: Undoing u3.

According to the transformation rule TR3, this results in the operation u3′ = IT (u3, u1) = Upd(1, x, z).
Next, we have to integrate the effect of u32 = I(IT (u2, u1), u3) into u3′. It comes from rule TR3 that:

u3
′′ =IT (u3

′, u32)

= IT (u′3, IT (u2, u1))

= IT (Upd(1, x, z), Upd(1, x, y)

= Upd(1, y, z)

= Upd(1, z, y)

Consequently, the final state of site 3 is also ”ybc“ . The convergence is then obtained.
The following step consists in updating the log of each site by integrating the effect of u3 into the

the operations that follow u3 in the log. As depicted in Figure 6.10, integrating the effect of u3 int
the operation u31 = I(u1, u3) results in the operation u31

′
= u1 according to the rule TR4. As for

u32 = I(IT (u2, u1), u3), it is transformed to u32
′

= IT (u2, u1). Thereby, the effect of u3 is correctly
eliminated from the log (see Definition 5.2.2).

In the following, we discuss the asymptotic time complexity of our approach and show it has a linear
complexity which is of relevance for real time applications.

6.3.4 Asymptotic Time Complexity of the Undo Command

To undo a cooperative request rci in the log H , our undo command proceeds as follows:

1. Find rci in H;

2. mark rci as an undone operation,

3. generate rci ,

4. For all operation rcj (i+ 1 ≤ j < |H|)

• calculate rci = IT (rci , H[j]) (integrate the effect of H[j] into rci ;

• replace H[j] by IT (H[j], rci) (exclude the effect of rci from the log),

111

Chapter 6. A Necessary and Sufficient Condition for Undoability

5. execute rci
′.

Note that we need neither to store transformed forms of rci nor original forms of any operation as it is
required in [97,101] since puzzles are solved directly by our transformation rules TR1−5 (see Table 6.2).

The worst case of the algorithm corresponds to undoing the first operation in the log. The complexity
is then linear and equal to O(|H|). To see the impact of our selective undo solution originated by the
security layer, we also calculate the complexity of undoing all the log as the worst case faced during the
violation of the security policy which is a quadratic complexity (O(|H|2)). Fortunately, we don’t face
such a case in practice, mainly if communication time is negligible (e.g. a user cannot generate an big
number of requests before receiving administrative revocations).

6.4 Conclusion

In this Chapter, we defined a necessary and sufficient condition to achieve correct undoability. Indeed,
we proved that it is impossible for non commutative sets of operations. Our proof required the use of CSP
theory to formalize the undoability problem and find the different IT evaluations leading to undoablilty.

Even though it is negative, this result is interesting for OT-based object developers as well as re-
searchers working on undoability for collaborative applications. Indeed, they can be aware that achieving
undoability is impossible for objects without idle operations and based on non commutative operations.
To overcome this negative result, we investigate whether or no the idle operation allows to achieve the
undoability and extend its semantic. However, convergence requires that the enhanced set of operations
satisfy the transformation function properties namely TP1 and TP2.

Given any coordination framework, our solution consists in adding a new form of the idle oper-
ation according to the Hide relation deduced from the initial transformation algorithm. This requires
to correctly transform idle operations as well as the inverse operations. For this, we defined a set of
transformation rules in the first logic order and proved these rules preserve the inverse as well as the
transformation properties.

Our solution has a linear complexity and could be integrated to any OT-based coordination frame-
work since it only requires to extend the set of operations by the new semantic of the idle operation
captured from the initial transformation function and to enforce the transformation rules TR1− 5 that
are semantic-independent.

112

Chapter 7

Experimental Study and Performance
Measurements

Contents

7.1 Coordination Framework . 114
7.1.1 OPTIC Characteristics . 114
7.1.2 Garbage Collector for Cooperative Logs . 116

7.2 Developement Frameworks . 116
7.2.1 JXTA . 116
7.2.2 NetBeans . 117
7.2.3 Grid’5000 . 117

7.3 Experimental Results for the Coordination Layer 118
7.3.1 Metrics . 119
7.3.2 Performances of the Desktop Application . 119
7.3.3 Performances of the Mobile Devices Application 121

7.4 Experimental Results for the Security Layer . 125
7.4.1 P2PAgenda Prototype . 126
7.4.2 Processing Time for Checking Local and Remote Requests 126
7.4.3 Response Time Variation with Peers Number 128
7.4.4 Access Control Overhead . 129

7.5 Conclusion . 130

Experiments are necessary to understand what the asymptotic complexities mean when interactive
constraints are present in the system and to validate our formal access control model presented in Chap-
ter 3.

In order to gain a better understanding of how to use our security protocols, we have implemented
both single and multi-administrator approaches. We have developed two prototypes based on the coor-
dination framework OPTIC [48] a collaborative text editor P2PEdit, and a shared calendar application
p2pAgenda. Furthermore, we have performed experiments modularizing code on the distributed grid
platform GRID’5000.

This chapter is organized as follows. First, we present the coordination framework OPTIC on the top
of which we implemented our access control model in Section 7.1. Section 7.2 presents experimental
environments used to implement our prototypes. Then, Section 7.3, shows the experimental results of
the coordination layer for both prototypes P2PEdit and P2PAgenda. Finally, Section 7.4, highlights
experimental results of our access control model.

113

Chapter 7. Experimental Study and Performance Measurements

7.1 Coordination Framework

In this Section, we present the characteristics of the coordination framework OPTIC [50]. Furthermore,
we discuss different extensions that we provide to improve this framework and enhance its functioning
especially, the garbage collection module for cooperative logs. Indeed, the garbage module allows for
cleaning log and extending OPTIC to mobile devices.

7.1.1 OPTIC Characteristics

OPTIC [48, 50] represents a scalable coordination model for real-time collaborative editors. It offers a
framework for collaborative editing that addresses the weakness of previous OT works and satisfies all
collaborative editing requirements mentioned in Chapter 2. It is characterized by the following aspects:

1. This framework supports an unconstrained collaborative editing work (without the necessity of
central coordination). Using optimistic replication scheme, it provides simultaneous access to
shared documents.

2. Instead of vector timestamps, it uses a simple technique to preserve causality dependency. This
technique is minimal because only direct dependency information between updates is used. It is
independent on the number of users and it provides high concurrency in comparison with vector
timestamps.

3. Using OT approach, reconciliation of divergent copies is done automatically in a decentralized
fashion.

4. The framework can scale naturally thanks to the minimal causality dependency relation. In other
words, it may be deployed easily in Peer-to-Peer (P2P) networks.

Initially, OPTIC dealt with linear data-structure using only a set of insert and delete operations.The
first extension was to enhance the set of operations by the update cooperative operation [19]. Moreover,
the signature of the delete operation were modified in order to support undo. The final set of operations
supported by OPTIC is the following:

• Ins(p, e, ω) where p is the insertion position, e the element to be added at position p and ω is the
sequence of positions that contains all different positions occupied by e during the transformation
process;

• Del(p, e) which deletes the element e at position p. We add the element in the operation definition
since we will need to restore operations during the undo mechanism (see Chapter 5)

• Upd(p, e, e′) which replaces the element e at position p by the new element e′.

The novelty of OPTIC was the use of a new form of dependency called semantic dependency. This
notion allowed for a completely decentralized and scalable algorithm. Indeed, instead of vector time
stamps, OPTIC resorts to the semantic dependency defined for the set of operations altering a document.

The semantic dependency notion is a minimal dependency relation which is independent of the
number of users, and accordingly, allows for dynamic groups. Studying the semantics of linear ob-
ject (modified by insertion, deletion and update operations) allows to provide dependency relation within
a log [47, 48].For instance, when the added elements are adjacent (at positions p and/or p + 1), their
respective insertion requests are considered as dependent. Also, deleting an element depends on the re-
quest that has inserted this element. Thus, there is no dependency between delete requests and they can

114

7.1. Coordination Framework

be executed among them in any order. Likewise, updating an element depends on the request inserting
this element. At last, we consider two consecutive update requests as dependent if their update positions
are equal and the condition on their site identities is satisfied.

This causal relation builds a dependency tree on the requests where each request has only to store
the request identity whose it directly depends on. For instance, consider the log presented in Figure 7.1
containing four cooperative operations. According to the semantic dependency relation between these
operations the log is equivalent to the tree presented in the same figure.

Figure 7.1: Dependency Tree: the cooperative log (left), the corresponding dependency tree (right).

OPTIC also relies on canonical logs, i.e a particular class of logs where insertion requests are stored
before deletion requests in order to avoid the TP2 puzzle [48]. This class of logs allows to build transfor-
mation paths leading to data convergence. Building canonical logs requires two transformation functions,
IT and ET transformations that we discuss in the following.

Inclusive Transformation. IT algorithm is used to execute concurrent requests in any order. When a
remote cooperative request is received at a given site, IT function includes the effect of all concurrent
requests. The transformation function IT used in OPTIC is given in Appendix B.

Exclusive Transformation. ET algorithm is required to exclude operations effect in order to reorder
logs. Let [r1; r2] be a request sequence so that r2 is defined on the state produced by r1. The exclusive
transformation ET (r2, r1) enables us to exclude the effect of r1 from r2 as if r2 had not been executed
after r1. For instance, when r1 is an insert and r2 is a delete at a position less than that of r1, then
ET (r1, r2) decrements the position of r1. For more details on the function ET used in OPTIC, the
reader is invited to see Appendix B.

Coordination Protocol.The coordination protocol is detailed in Algorithm 16 (for more details, the
reader can refer to Appendix B or [19, 48]). It proceeds as follows:

1. When a user manipulates the local copy of the shared document by generating a cooperative oper-
ation, we determine its causal dependency by the usage of ComputeBF function (see Algorithm 17
in Appendix B) then broadcast it to other users. Note that after each generation of local cooperative
request the log is reorganized (see Algorithm 18 in Appendix B) to keep it canonical.

2. Each site has to determine the new form of every remote request using ComputeFF function (see
Algorithm 19 in Appendix B) in order to take into account concurrent requests and integrate their
effect in the received request. Once the operation is executed, the log is canonized.

In the following, we briefly present the garbage collector designed for the coordination framework
OPTIC in order to maintain logs in a decentralized fashion.

115

Chapter 7. Experimental Study and Performance Measurements

7.1.2 Garbage Collector for Cooperative Logs

Distributed collaborative editors require the storage of document updates in a local buffer. Indeed, it is
necessary to store the track of the operations executed locally or received from remote sites to ensure
the convergence of the shared document and allow the concurrent execution of operations regardless the
reception order.

However, as the document is frequently updated by many users, the size of cooperative logs increases
rapidly. This is troublesome especially when deploying a collaborative editor on mobile devices. Indeed,
such devices have limited storage capacity which may degrade the performances of the application.

Hence we need to devise a garbage collection technique allowing to delete all operations already
seen and executed at collaborating sites at a given time. Thus, many challenges should be taken into
consideration since RCEs have specific requirements (see Chapter 2) that may not match with those
characterizing mobile devices. Moreover, logs are not identical in different collaborating sites as we
allow for the out-of-order execution of operations. Furthermore, the size of the collaborating group is
dynamic due to the churn which complicates the garbage task.

In Appendix B, we investigate the issues raised by the garbage collection module and our solutions to
avoid them as well as algorithms implementing our solution. This contribution was published in [64] and
consists in a decentralized garbage collector that uses the semantic dependency relation for accelerating
the garbage process. Indeed, collaborating sites has only to exchange the leaves of their dependency trees
in order to establish a consensus about the garbage procedure. Meanwhile, users are still able to receive
concurrent updates till the end of the garbage process.

7.2 Developement Frameworks

In this section, we present the different frameworks used in our experimental study.

7.2.1 JXTA

Our prototypes were implemented using the JXTA19 platform. JXTA (Juxtapose) is a programming
language and platform independent Open Source protocol started by Sun Microsystems for peer-to-peer
(P2P) networking in 2001. The JXTA protocols are defined as a set of XML messages which allow any
device connected to a network to exchange messages and collaborate independently of the underlying
network topology (see Figure 7.2).

This technology represents a set of open protocols allowing any connected device on the network,
ranging from cell phones and wireless PDAs to PCs and servers (see Figure 7.2), to communicate and
collaborate in a P2P manner. Consequently, it enables developers to more quickly and easily create P2P
applications.

Since it is based upon a set of open XML protocols, JXTA can be implemented in any modern
computer language. Implementations are currently available for Java SE, C/C++, C# and Java ME. In
our experiments, we used the Java implementation.

JXTA peers create a virtual overlay network which allows a peer to interact with other peers even
when some of the peers and resources are behind firewalls and NATs or use different network transports.
In addition, each resource is identified by a unique ID, a 160 bit SHA-1 URN in the Java binding, so that
a peer can change its localization address while keeping a constant identification number.

19http://jxta.kenai.com/

116

7.2. Developement Frameworks

Figure 7.2: JXTA Architecture [1].

7.2.2 NetBeans

The development framework that we used for implementing our algorithms is NetBeans Integrated De-
velopment Environment IDE20 for software developers. It is a free and open-source development tool
that provides all the tools needed to create professional desktop, enterprise, web, and mobile applica-
tions with the Java platform. It also allows to create professional standards-based user interface with the
NetBeans Swing GUI Builder.

7.2.3 Grid’5000

Performance measurements of our algorithms, were done on the Grid’5000 platform since it represents
a scientific instrument for the study of large scale parallel and distributed systems. It aims to ease
research works on grid infrastructures by providing a highly reconfigurable and controllable experimental
platform to its users. It provides resources that could be shared by many users and reserved for specific
experiments.

The infrastructure of Grid’5000 is geographically distributed on different sites hosting the instrument,
initially 9 sites in France (10 since 2011) as shown in Figure 7.3. Porto Alegre, Brazil is now officially
becoming the first site abroad [2].

Figure 7.3: Grid’5000 Sites [2].

The Grid’5000 platform is made of 13 clusters, including 1047 nodes for 2094 CPUs. Within each
cluster, the nodes are located in the same geographic area and communicate through Gigabyte Ethernet
links. Communications between clusters are made through the French academic network (RENATER)21.

20http://netbeans.org/features/index.html
21http://www.renater.fr/

117

Chapter 7. Experimental Study and Performance Measurements

Connexion to Grid’5000 requires the usage of the SSH protocol as shown in Figure 7.4 where it is
possible to connect to many frontends at the same time.

Figure 7.4: Grid’5000 Access with SSH Protocol [2].

In Figure 7.5, we show how we connect to the Nancy frontend. Next step consists in submitting a
job by reserving the nodes required as well as the wall-time for the experiment (see Figure 7.6).

Figure 7.5: Connexion to the Grid.

7.3 Experimental Results for the Coordination Layer

Our Java prototypes running on grid’5000 have been developed to forecast the performance of our op-
timistic access control model on JXTA platform and to assess the feasibility of the approach. Besides
this objective, we developed two applications for collaborative editing in computer and mobile devices.
The objective of these prototypes is to demonstrate the flexibility of the approach. Toward this goal, two
scenarios have been selected, exhibiting two rather different application’s profiles regarding the way the

118

7.3. Experimental Results for the Coordination Layer

Figure 7.6: Job Creation.

information is administrated (single-administrator versus multi-administrator), the type of this informa-
tion (html documents versus shared calendar) with the real time response time requirements.

The application scenario deals with collaborative works. A community of users organises a data
sharing space to exchange and modify textual data like html documents or agendas, address books, etc.
Our approach permits to easily define simple and powerful access control rules on sensitive data (e.g.,
specific appointments in an agenda or some paragraphs on a working document) while handling rule
dynamic (new collaborators join or leave the community).

In the following, we first give details about the experimentation metrics. We then analyse the perfor-
mance of the coordination layer. Next, we study the performance of our access control layer, and access
right checking. Finally, the global performance of the proposed solution is discussed to highlight the
response time evaluation in the presence of an access control layer.

7.3.1 Metrics

For our evaluation performance, we consider the following times (see Figure 7.7) used to calculate the
response time of our model:

• tg is the time required to generate a local operation;

• ti is the time to integrate a remote operation;

• tc is the time required to communicate an operation to a peer through network;

• tr is the response time, we can obviously see that tr = tg + ti + tc.

In general, it is established that the OT-based collaborative editors must provide tr < 100ms [59]. The
lower the response time is, the better the collaboration is. As a matter of fact, the user is able to see
different updates made on the shared documents instantly.

7.3.2 Performances of the Desktop Application

A prototype P2PEdit (see Figure 7.8) based on our flexible access control model has been implemented
in Java. It supports the collaborative editing of HTML pages and it is deployed on P2P JXTA platform.
In this prototype, a user can create a HTML page from scratch by opening a new collaboration group.
Thus, he is the administrator of this group. Other users may join the group (see Figure 7.9) to participate
in HTML page editing, as they may leave this group at any time. Using JXTA platform, users exchange
their operations in real-time in order to support WYSIWIS (What You See Is What I See) principle.

Initially, we did three experiences to study the performance of the coordination model OPTIC. Then,
we compare these results with the improved version of the coordination algorithm. It should be pointed
out that the performance of the coordination layer in OPTIC is mostly determined by the percentage

119

Chapter 7. Experimental Study and Performance Measurements

site 1 site 2

OO

ttotal

��

OO

tr

��

−OO
tg
��

−

−OO
tc
�� ((

OO

tc
��

− −OO

ti

��
−

uu

Figure 7.7: Response Time Metrics.

Figure 7.8: p2pEdit Tool.

of insertion requests inside the cooperative log. Indeed, the worst case corresponds to integrating an
insert cooperative request against a cooperative log containing 0% insertions as the canonization process

120

7.3. Experimental Results for the Coordination Layer

(a) Connect form (b) Join form

Figure 7.9: Connect and Join Forms.

requires to replace the insertion on the top of the log.
Figure 7.10 depicts the execution time22 required to integrate a cooperative request for different

percentages of insertions inside the cooperative log H . These measurements reflect the times tg (left), ti
(right) and their sum tr (middle). This experiment shows that the execution time falls within 100ms for
all |H| ≤ 5000 if H contains 0% INS, |H| ≤ 9000 if H contains 100% INS which is not achieved in
SDT and ABT algorithms [59].

Next, we improved the source code of our algorithm as follows:

• Use of hashed data structures to have direct access to each entry in the cooperative log.

• Implementing the cooperative log as two different sub logs, one for insertions and another for
deletions and updates. Thus, we simplify and accelerate the canonization procedure.

The final response time of the coordination layer in the worst case (processing time required to integrate
an insert request for a log H containing 0% insertion) is given in the curve of Figure 7.11. We obvi-
ously see that the response time falls within 100ms for cooperative logs of size 300000 which is a very
promising result.

In the following, we present the response time of the coordination framework OPTIC extended for
mobile devices to demonstrate both the generic aspect of this framework and the performance of the
garbage collector.

7.3.3 Performances of the Mobile Devices Application

To extend OPTIC for mobile devices, a second prototype was implemented using Java Platform, Micro
Edition (Java ME)23 which provides a robust and flexible environment for the embedded applications,

22The experiments have been performed under Ubunto Linux kernel 2.6.24-19 with an Intel Pentium-4 2.60 GHz CPU and
768 Mo RAM.

23 http://java.sun.com/javame/index.jsp

121

Chapter 7. Experimental Study and Performance Measurements

Figure 7.10: Response Time of the OPTIC Framework (worst case).

Figure 7.11: Response Time of the Improved Version (worst case).

and proposes two configurations to simulate mobile environments: CDC24 (Connected Device Configu-
ration) specifies an environment for terminals connected where memory is usually greater than 512 Kb
such as tablets screen phones, digital television and cell phones as Nokia 9500, Sony Ericsson P990i
and Samsung C6620. CLDC25 (Connected Limited Device Configuration) target devices with limited
or low resources such as mobile phones, PDAs, or light wireless peripheral. For example, BlackBerry,
Nokia (6600,E73,N93,. . .), Motorola (i560,i730,. . .) and Sumsung (A737,D500,. . .) offer CLDC envi-

24http://java.sun.com/javame/technology/cdc/
25http://java.sun.com/products/cldc/

122

7.3. Experimental Results for the Coordination Layer

ronment. The realized prototype was developed with netbeans 6.8 under Windows operating system. In
Figure 7.12.(a), we see different screen shots of the main windows on the CLDC environment while in
Figure 7.12.(b), we illustrate a screen shot of our prototype implemented for CDC environment.

(a) Screen shots of the CLDC prototype. (b)Screen shot of the CDC prototype.

Figure 7.12: Screen Shots of the Mobile prototypes.

7.3.3.1 Response Time

To investigate the performances of our prototype realized for mobile phones, we simulate experimental
tests for the behaviour of the two developed models (CDC and CLDC). Our experiments depict the time
required to generate a cooperative operation and integrate it at a remote site in the worst case.

Figure 7.13 shows the response time for different log size values for the CDC environment. These
measurements reflect the times tg, ti and their sum tr. We conclude from this experiment that the
execution time falls within 100ms for all |H| ≤ 27500.

Log size tg ti tr

1000 0 0 0
2500 0 0 0
5000 0 15 15
7500 0 15 15
10000 16 15 31
12500 16 15 31
15000 31 15 46
17500 47 31 78
20000 47 32 79
30000 63 47 110

Table 7.1: Response Time of CDC Application.

We also evaluate the performance of the p2pEdit framework for CLDC environment (see Figure
7.14). Experiments show the response time for different log size values. In this case, the execution time
falls within 100ms for all |H| ≤ 14000.

123

Chapter 7. Experimental Study and Performance Measurements

Figure 7.13: Response Time for CDC Environment.

The conclusions that can be drawn from this figure are threefold. First, the coordination layer has very
good performance compared with [59] , explained by the fact that the semantic dependency decreases the
whole response time of the coordination layer. Second, the performance of our CDC prototype performs
better than the CLDC one due to the kind of targeted architectures for both environments. Third, we
conclude that beyond 27500 (respc. 14000) for the CDC (respc. CLDC) environment, logs should be
cleaned through garbage collection mechanism. This result is encouraging since it allows for a large
number of operations that users can exchange before reaching the maximal born tolerated for response
time (and thus a lower quality for collaboration). When reaching given sizes, all users will start again the
collaboration with empty logs which makes the collaboration more and more efficient.

In the following, we investigate the time processing required by our distributed garbage collector
designed for the OPTIC framework.

Log size tg ti tr

1000 0 0 0
2500 0 16 16
5000 0 31 31
7500 15 47 62
10000 16 62 78
12500 16 64 80
15000 31 78 109
17500 32 78 110
20000 32 124 156

Table 7.2: Response Time for CLDC Environment.

7.3.3.2 Garbage Collection Time

The following experiment was realized to measure the processing time required to perform garbage
collection and collaborate again. The experiment measures this time for different values of the leaves

124

7.4. Experimental Results for the Security Layer

Figure 7.14: Response Time for CLDC Environment.

set (the set of cooperative operations that represent the leaves of the dependency tree of the garbage
initiator). According to the results shown in Figure 7.15, we deduce that the blockage time is acceptable
till the size 10000, where users have to wait only 5 seconds to start again their collaboration. It should
be noted that 10000 does not represent the log size but rather the set of leaves size which means that the
log could contains more than this number of operations.

Number of leaves Garbage time
100 93
250 140
350 188
500 256
1000 515
2000 1031
3000 1469
4000 1907
5000 2359
10000 4719
15000 7234
20000 9406
50000 32813

Table 7.3: Time Required by the Garbage Collector.

7.4 Experimental Results for the Security Layer

In this section we assess the performances of our approach according to the size of the collaborating
group. We have developed a second Java prototype p2pAgenda and measured the performance of our
prototype on the grid.

125

Chapter 7. Experimental Study and Performance Measurements

Figure 7.15: Garbage Collection Time Variation with Leaves Set Size.

7.4.1 P2PAgenda Prototype

A second prototype P2PAgenda26 (see Figure 7.16) was implemented and extended by our access control
layer to protect shared data in a decentralized fashion. This prototype was published under the APP
reference IDDN.FR.001.150007.000.S.P.2010.000.10000. It allows users to concurrently edit a shared
agenda as well as access rights in order to protect any part of the shared agenda. Thus each user has
a list of access rules that he can update according to the ownership policy. Each user inserts meetings
in the agenda and can specify security rules to control the access of other users to his meetings (see
Figure 7.17). He can dynamically add and remove different authorizations for accessing to his shared
objects according to his needs.

Experiments were done on the distributed platform Grid5000 [2] in order to determine the response
time required to see the effect of a cooperative operation in remote sites after they are checked against
the policy object.

7.4.2 Processing Time for Checking Local and Remote Requests

To assess the performance of our approach when different owner policies sizes are faced, we measured
the performance of our prototype on randomly generated cooperative requests. For these cooperative
requests we generated random access control authorizations. The generated access control policy was
simple and not optimized (i.e. it contains authorization redundancies). Figure 7.18 reports the results
for bench values given in Table 7.4. The figure plots the execution time required for checking both local
and remote requests. We show that our method tackles well very large policies and logs and produces
a throughput ranging from 1,18 to 16 ms, depending on the authorization-list or administrative log size
(in Algorithms 5 and 6, we have to explore either the policy or the administrative log to decide whether
a cooperative request is legal or not). These preliminary results are encouraging when compared with
current response time recommended for collaborative applications (100 ms [59]). Indeed, the experiment
results show that the time required to check an operation is low (about 14 ms for a remote operation and
16 ms for a local one with an owner policy containing 10000 authorizations).

26http://www.loria.fr/ imine/tools/p2pAgenda/p2pAgenda.htm

126

7.4. Experimental Results for the Security Layer

Figure 7.16: Main Screen of p2pAgenda.

Figure 7.17: Administrative Interface of p2pAgenda.

Note that this experiment concerns the worst case where only the last rule in the log grants the right
to be performed by the cooperative operation. This good result is explained by the use of hash set data
structure to have direct access to our objects in each authorization. Consequently, the check time of one
authorization in the owner policy is constant which explains the linear aspect of the curve when varying
the authorizations number. For the sake of our results, it would be better to edit non redundant policies
to optimize local check. Moreover, administrative logs may be pruned or deleted thanks to the garbage

127

Chapter 7. Experimental Study and Performance Measurements

Owner policy/log size Local check Remote check
1000 1,18 2,43
2000 2,66 2,9
3000 4,34 4,44
4000 6,1 6,4
5000 7,91 8,37
6000 9,86 11,01
7000 11,77 11,93
8000 13,1 12,43
9000 14,8 14,09
10000 16 14,13

Table 7.4: Time Processing of Local and Check Remote of a Cooperative Request.

Figure 7.18: Check Time for Local and Remote Requests.

collection mechanism presented in Chapter 3.

7.4.3 Response Time Variation with Peers Number

To validate our experimental setup, we also measured the response time of our security layer for different
sizes of collaborating groups of users. The second experiment shows the response time of the application
for a cooperative log containing 150000 and a policy formed by many owner policies where each one
contains 5000 authorizations. The response time corresponds to the time required by an operation to be
seen at a remote site. Two cases are presented in the curve, the first one concerns the case when the policy
remains the same i.e the context does not change at the sender and the receiver site, and the second one
concerns the case when the policy changes during exchanging updates between users.

We can draw several conclusions from Figure 7.19. First, we can obviously see that for a cooperative
log containing 150000 operations and a policy containing 80 owner policies where each one contains
5000 authorizations, the response time is less than 100 ms. Second, the number of peers does not
degrade the performances of our system since the only parameter that has an impact on the response
time when the group size grows is θ (θ corresponds to the maximum bound needed so that a message

128

7.4. Experimental Results for the Security Layer

Group size Tr (same context) Tr (different contexts)
10 83 91
20 84 92
30 88 96
40 87 95
50 89 97
60 89 97
70 90 98
80 90.5 98.5

Table 7.5: Response Time of Integrating a Cooperative Request.

Figure 7.19: Response Time.

traverses the network from any sender to its receiver, see Section B.2) which only depends on the network
configuration. Finally, we notice that security policy takes less processing time when the context remains
the same which is logical since the check does not produce overhead as the policy does not change
concurrently.

7.4.4 Access Control Overhead

To assess the efficiency of our access control layer, we compare the execution time required by the
coordination layer, the access control and the communication between peers. In Figure 7.20, integration
corresponds to the time required by the underlying coordination layer to execute a cooperative request.
Access control, corresponds to the execution time required to evaluate the access control right for a
cooperative operation by checking it against the corresponding authorization list or log. To measure the
impact of the access control policy, we calculate the relative cost of the access control. Obviously, the
relative cost of the access control is around 21% of the total cost. These measurements are promising
and demonstrate the applicability of the solution.

129

Chapter 7. Experimental Study and Performance Measurements

Figure 7.20: Access Control Overhead.

7.5 Conclusion

In this Chapter, we presented the OPTIC framework on the top of which we have implemented our access
control model. Moreover, we presented the optimizations that extend this framework mainly, the garbage
collection mechanism allowing its deployment on mobile devices.

Performance measurements were done on the distributed platform grid’5000 to see the behaviour of
our model for both desktop and mobile devices environments. This study, obviously showed that our
model has a good response time which is a very encouraging result.

130

Chapter 8

General Conclusion

Contents

8.1 Summary . 131

8.1.1 Why RCE Require Access Control? . 131

8.1.2 Access Control Requirements and Issues . 132

8.1.3 Undoing Operations in RCE . 132

8.2 Summary of the Contributions . 133

8.3 Directions for Future Work . 134

8.1 Summary

The purpose of this thesis was to develop a generic approach to enabling, understanding and managing
access control in collaborative applications in particular RCE.

8.1.1 Why RCE Require Access Control?

Security is a vital component of any application or environment. Indeed, it protects data from unautho-
rized or improper modifications [80].

Important factors motivate today the access control to be enforced in RCE. With the diversity of pos-
sible attacks and the different security properties that a security model should consider, enforcing security
is being more and more complex. In fact, the growing interest for different forms of data dissemination,
the emergence of the data sharing between many users are different factors that lead to address the access
control problem in collaborative applications. Indeed, they provide information and resources character-
ized by different degrees of sensitivity such as customer data in a financial application or patient data in
a healthcare application. Meanwhile, they allow many trusted and untrusted users to share information.

Even though there are several encryption schemes that can be used to secure data, they suffer from a
static way of sharing data [16]. As more and more people are attracted by collaborative applications, it
becomes increasingly important to provide these applications with new security protocols and models to
enforce protection while meeting the requirements of these applications (e.g. distribution, human factors,
high local responsiveness, etc.). These models have to take into account the collaborative aspects in order
to prevent the dissemination of sensitive information which may threat the security of both individuals
and companies.

131

Chapter 8. General Conclusion

8.1.2 Access Control Requirements and Issues

Collaborative editors are specific applications since they must take into account human factors [48].
Consequently, they require:

1. High local responsiveness [32, 48, 99, 100].

2. High concurrency: [32, 48, 99]

3. Consistency [32, 48, 99].

4. Decentralized coordination [48]

5. Scalability [48].

Accordingly, an access control model for RCE must take into account these requirements in order to
keep the full potential of such applications. We investigated which problems could be raised by adding
an access control layer to a real time collaborative editor. As illustrated in Chapter 2, dynamic systems
pose new and significant challenges to access control. In such systems, shared documents as well as the
collaborating group are subject to many changes. This requires to well manage the real time update of
the access control policy. In particular, it is very difficult to meet RCE requirements when deploying an
access control layer due to the high communication latencies (e.g. Internet).

Our objective is to take advantage of replication techniques in order to overcome the latency issue.
Thus, we proposed to replicate not only the shared document at all collaborating sites but also the security
data-structure. Consequently, our access control model is capable of evaluating dynamic access rules on
a shared document where every update of the shared document is checked against the local copy of the
security policy replica.

Nevertheless, maintaining security policy in a decentralized fashion is really a hard task since, pol-
icy views may be different from one site to another which may lead to security holes, not to mention
convergence issues. Indeed, if security policy can be temporarily inconsistent, any given action may be
authorized at one site and yet denied at another. This is troublesome since it may lead to permanent
divergent state of the shared document. Subsequently, we addressed the problem of how policies can be
updated in real-time in order to meet the real time aspect of collaborative editors. The main contribution
focus on reasoning about the real time evolution of access control policies and shared documents concur-
rently, as well as maintaining the convergence of the shared documents. We proposed in Chapter 3 an
optimistic access control model in the sense that temporary violations of the security policy are permit-
ted. In order to achieve convergence, illegal document updates are undone to restore a correct document
view.

8.1.3 Undoing Operations in RCE

Undo feature turns out as an important feature for maintaining convergence of the shared documents
while dynamically managing the security policy updates. Since, undoability is still an open issue in
distributed collaborative editors, we have dedicated the second part of our thesis to addressing the un-
doability problem. We have briefly presented the state of the art in Chapter 5 in order to show the limits
of existing solutions.

Based on the constraint problem theory, we demonstrated in Chapter 6 that it is impossible to reach
undoability for non commutative operations. This is a very important result, of relevance for both re-
searcher and developers since it simplifies the undo problematic by giving additional guidelines and
necessary and sufficient condition for achieving correctness of the undoability problem.

132

8.2. Summary of the Contributions

To overcome this impossibility result, we presented a generic approach to undo operations in OT-
based collaborative applications. Our solution consists in an enhanced set of operations with a new
semantic of the idle operation. We defined a set of transformation rules in the first logic order in order to
take into account the new kind of operations (i.e. idle and inverse operations). Finally, we demonstrated
these rules indeed preserve both transformation and inverse properties. Clearly, our solution does not
produce overhead since it has a linear complexity thus fulfils the high local responsiveness requirement.
Moreover, it can be easily applied to any coordination framework since it only extends the set of oper-
ations basing on the Hide relation easily captured from the transformation function associated with the
initial set of operations.

8.2 Summary of the Contributions

Access Control Requirements. A first contribution of this dissertation is a detailed survey of existing
access control classes and models as well as their shortcomings. We also define an enhanced set of
requirements that should be fulfilled by an access control model in order to meet existing real time
collaborative editors.

Access Control Model. The cornerstone of this thesis is the definition of an optimistic access control
approach that could be implemented on the top of any log-based real time collaborative editor. In order to
achieve our goals and for the sake of our results, we began by conceiving a simple access control model
inspired by the models of [79] since it discusses security policy replication and [89] since it resorts to
a policy specification that allows for a dynamic access control management. As in [79], we replicate
the access control policy in order to allow for high local responsiveness. We therefore introduce the
optimistic fashion to manage access rights. Our access rules specifications resemble to that of [89].
However, we simplify the set of operations and access rights in order to focus on the convergence issues
raised by concurrent policy and document updates. Moreover, since our model is based on administrative
logs to track policy updates, we provide a garbage collection scheme to well manage these logs in a
distributed fashion.

Implementation and Experimental Study. To validate our model, we provided a formal proof of
correctness in Chapter 4. We also developed two JAVA prototypes P2PEdit and P2PAgenda build on
on the top of the OPTIC collaborative editing framework [48]. Our experimental results have been
obtained from these JAVA prototypes running on the distributed platform GRID’5000 to demonstrate the
feasibility our approach. The relative cost of the access control is around 21% of the total cost. These
measurements are promising and demonstrate the applicability of the solution. This work demonstrates
that replicated security solutions give rise to interesting research perspectives. They also may have a
large impact on a growing scale of collaborative applications.

A Distributed Garbage Collector for OPTIC. Another important contribution of this thesis is the de-
sign of a decentralized garbage collector for the OPTIC framework. Our solution consists in a distributed
approach based on the semantic dependency relation defined in [48], to capture a global view on the col-
laboration state before processing the pruning of cooperative logs in a reasonable time. The model was
implemented in an extended version of the OPTIC framework dedicated to mobile frameworks. Our
experimental results demonstrate the relative cost of the garbage process and show it offers a good per-
formance. Indeed, the cost of the garbage process is around 5 s for a set of leaves containing 10000
document updates.

Undoability in Collaborative Editors. The fourth contribution of our thesis is a generic undo approach
for distributed collaborative applications. Indeed, undoing operations is motivated by the optimistic

133

Chapter 8. General Conclusion

aspect of our access control model since we allow for temporary policy violations. However, undoability
represents a hard task since existing undo solutions either are incorrect or have bad complexity which is
to be discarded in RCE. To overcome these difficulties, we first address the undoability problem from
a theoretical point of view. This study allowed us to reason about a necessary and sufficient condition
for undoability. Yet, OT was proposed to go beyond commutativity, we proved that it is impossible
to achieve undoability for non commutative operations. Accordingly, we proposed to extend the set of
operations with a new semantic of the idle operation and proved our solution achieves undoability while
preserving the convergence of the document.

8.3 Directions for Future Work

Our work can be extended in several directions.

Delegation of Access Rights. Even though being flexible and generic, our access control model does not
allow for delegation of rights which would be a very important extension of our proposed access control
model. Indeed, there can be many reasons for a user to delegate his rights to one or more users among the
collaborating group; for instance, the user may physically disconnect from the collaborative application.
A common solution to the disconnection problem is to delegate access rights, whereby collaborators
pass on rights to other users in order to perform actions on their behalf. There are different modes of
delegations; static delegation refers to situations where actions are known in advance of the delegation
while dynamic delegation occurs when tasks are unknown at the time of delegation. In both cases, it
would be very interesting to investigate issues raised by the concurrency between delegations and policy
as well as document updates in a dynamic environments.

Trust Management. Distributed collaborative applications allow to build virtual communities where
many users use and share some resources without being members of the same organization. Thus, it is
important for a successful cooperation, that users trust each other. Trust is especially required to well
and correctly manage delegations of rights mainly without face to face relationships. Trust is defined as
“the willingness of a party to be vulnerable to the actions of another party based on the expectation that
the other will perform a particular action important to the trustor, irrespective of the ability to monitor or
control that other party” [63]. Subsequently, an important direction for future work is to extend our access
control model with an additional trust component that allows users to be aware about the reputation of
other members in the collaborating group.

Generalization of the Impossibility Result. The impossibility result we provide concerns consistent
collaborative objects with every operation different from its inverse. However, there are operations that
are equal to their inverse such as the boolean operation Not, or the standard idle operation. Thus, it is
worth to generalize the impossibility result in order to cover such operations.

Automated Proof of the Undo Solution. Even though, we proposed a hand proof of our generic solution
for undoing operations in collaborative editors, it is desirable to use a theorem prover to automatically
prove our lemmas and theorems. This makes the solution more trusted since there are many cases to
address in order to prove that all properties are fulfilled by our proposed transformation rules. We have
already began the formalization of our solution and intend to use the Spaß prover27 for demonstrating
automatically its correctness.

Implementation of the Undo Module. The undo solution was partially implemented on the OPTIC
framework. As a future work, we will complete the implementation of all the transformation rules on the
latest version of the OPTIC framework and measure the performances of the our undo procedure.

27http://www.spass-prover.org/

134

List of Figures

1.1 Serialization of concurrent update with OT approach 4
1.2 Access Control Problematic. 5
1.3 Replicating Access Control Policy. 6
1.4 Undo last operation produces divergence. 7
1.5 Undo/Redo approach. 8
1.6 Thesis Organizatin. 11

2.1 Different kinds of collaborative editors . 14
2.2 Serialization of concurrent updates . 17
2.3 Example of Access Matrix Model . 21
2.4 Access Control Lists (ACL) . 22
2.5 Capability Lists (CL) . 23
2.6 RBAC model. 25
2.7 TBAC as an Active Security Model [106]. 27
2.8 Main Concepts in TMAC Model [105]. 28
2.9 Space Model Abstraction of an Office Environment [17]. 29
2.10 Environment Roles in Context-aware Access Control [23]. 30

3.1 Collaboration Protocol. 41
3.2 Divergence caused by introducing administrative operations 44
3.3 Causality between administrative and cooperative operations. 45
3.4 Necessity of administrative log. 46
3.5 Validation of cooperative operations . 46
3.6 Divergence caused by a new user . 48
3.7 Time required by a new user to request shared objects. 48
3.8 Useless Undo: First Case. 50
3.9 Useless Undo: case 2 . 51
3.10 Useless Undo: case 3 . 52
3.11 Underlaying Coordination Architecture. 53
3.12 Different layers of secure RCE model. 54
3.13 Interleaving Between a Garbage Request and Cooperative Operation 56

4.1 Collaboration scenario between an administrator and two sites. 72

5.1 Undo Scheme. 81
5.2 Avoiding divergence thanks to canonization. 84
5.3 IP3 violation by IT function presented in Algorithm 12. 86
5.4 Divergence case of the ABTU algorithm. 89

135

List of Figures

6.1 Commutative transformation for a 4-periodic set . 97
6.2 One solution to the eight queens puzzle. 98
6.3 Solutions of the 2-CCO problem. 99
6.4 Solutions of the 4-CCO problem. 100
6.5 Solutions of the 2-CCO problem. 102
6.6 Main Theorem. 103
6.7 Divergence despite the use of the Idle Operation. 104
6.8 Delete-Delete puzzle. 105
6.9 An Illustrative Example of our Undo Scheme. 110
6.10 Undoing u3. 111

7.1 Dependency Tree: the cooperative log (left), the corresponding dependency tree (right). . 115
7.2 JXTA Architecture [1]. 117
7.3 Grid’5000 Sites [2]. 117
7.4 Grid’5000 Access with SSH Protocol [2]. 118
7.5 Connexion to the Grid. 118
7.6 Job Creation. 119
7.7 Response Time Metrics. 120
7.8 p2pEdit Tool. 120
7.9 Connect and Join Forms. 121
7.10 Response Time of the OPTIC Framework (worst case). 122
7.11 Response Time of the Improved Version (worst case). 122
7.12 Screen Shots of the Mobile prototypes. 123
7.13 Response Time for CDC Environment. 124
7.14 Response Time for CLDC Environment. 125
7.15 Garbage Collection Time Variation with Leaves Set Size. 126
7.16 Main Screen of p2pAgenda. 127
7.17 Administrative Interface of p2pAgenda. 127
7.18 Check Time for Local and Remote Requests. 128
7.19 Response Time. 129
7.20 Access Control Overhead. 130

B.1 Divergence caused by garbage collection applied on different contexts 180
B.2 Divergence caused by a new user joining the group. 182
B.3 Garbage collection scenario 1. 185
B.4 Garbage collection scenario 2 (case of a slow peer). 186

136

List of Tables

2.1 Comparison between Access Control Models . 35

5.1 Comparison Between Undo Algorithms . 90

6.1 Transformation Matrix . 99
6.2 Transformation Rules for Idle and Inverse Operations 109

7.1 Response Time of CDC Application. 123
7.2 Response Time for CLDC Environment. 124
7.3 Time Required by the Garbage Collector. 125
7.4 Time Processing of Local and Check Remote of a Cooperative Request. 128
7.5 Response Time of Integrating a Cooperative Request. 129

137

List of Tables

138

List of Algorithms

1 Inclusive transformation of two insertions [78]. 16
2 Concurrency Control Algorithm . 63
3 Generation of Cooperative Request at the Site si . 64
4 Reception of a Remote Cooperative request at the Site si 65
5 Local Check Against the Authorization List . 66
6 Remote Check Algorithm Against Administrative Log L 66
7 Transformation algorithm of a remote cooperative operation against administrative oper-

ation at the i-th site . 67
8 Initialization . 67
9 Generation and Reception of Administrative Requests: single-administrator approach . . 68
10 Generation and Reception of Administrative Request at the i-th Site: multi-administrator

approach . 70
11 Garbage Collection Administrative Logs Procedures at site s 71
12 Transformation Cases for the Set of Binary Operations {Up,Down} 84
13 Extension of Algorithm 12 with the Idle Operation . 104
14 Inclusive transformation. 178
15 Exclusive transformation. 179
16 Control Concurrency Algorithm . 179
17 Detection of Causal Dependency . 179
18 Canonizing Logs . 179
19 Transforming a Request Against a Log . 179
20 Control Concurrency Algorithm with Garbage Collection Scheme 184
21 Receive Garbage Message Procedure . 184
22 Lunch Garbage Collection Procedure . 184

139

LIST OF ALGORITHMS

140

Appendix A

Correctness Proof of the Undo Approach

In this Appendix, we investigate the correctness proof of our undo solution.We show the transformation
rules defined in Chapter 6 satisfy both inverse and transformation properties.

Section A.1 presents the properties of the relation Hide. Next, the preservation of inverse properties
is proved in Section A.2 as for that of transformation properties in Section A.3.

A.1 Hide Relation Properties

In this section, we give some properties of the Hide relation.
The following lemma states that the Hide relation is preserved by transformation (see Lemma 8.1.1).

Given three operations op1, op2 and op3, then
Hide(op1, op3)
∧¬Hide(op2, op3)
∧¬Hide(op2, op1)

⇒ Hide(IT (op1, op2), IT (op3, op2))

Lemma 8.1.1.

Proof. Since ¬Hide(op2, op3) and ¬Hide(op2, op1), we deduce that neither IT (op3, op2), nor
IT (op2, op1) is an idle operation. Furthermore, Hide(op1, op3) means that both operations op1 and
op3 alter the same element of the shared object. Consequently, including the effect of the same oper-
ation op2 in op1 and op3 respectively produces two operations altering the same element of the shared
document. Thereby, Hide(IT (op1, op2), IT (op3, op2)) holds.

Formally, the result is proved by the use of TP2 property. According to Defini-
tion 6.3.9, proving Hide(IT (op1, op2), IT (op3, op2)) is equivalent to proving IT (op1, op2) ·
IT (IT (op3, op2), IT (op1, op2)) ≡ IT (op1, op2). Subsequently, it comes from TP2 and Lemma 6.3.8
that:

IT (op1, op2) · IT (IT (op3, op2), IT (op1, op2)) ≡ IT (op1, op2) · IT (IT (op3, op1), IT (op2, op1))

≡ IT (op1, op2)

The following Lemma states that if two operations hide each other then they are equal.

141

Appendix A. Correctness Proof of the Undo Approach

Given three operations op1, op2 and op3, then

Hide(op1, op2) ∧Hide(op2, op1)⇒ op1 = op2.

Lemma 8.1.2.

Proof. According to Definition 6.3.9, we have:

Hide(op1, op2)⇔ op1 · IT (op2, op1) ≡ op1
Hide(op2, op1)⇔ op2 · IT (op1, op2) ≡ op2

According to TP1 op1 · IT (op2, op1) ≡ op2 · IT (op1, op2) we deduce that op1 = op2.

In Lemma 8.1.3, we show that if a given operation op1 is hidden by two operations op2 and op3, then
IT (IT (op3, op1), IT (op2, op1)) = IT (op3, op2).

Given three operations op1, op2 and op3, then

Hide(op3, op2) ∧Hide(op2, op1)⇒ IT (IT (op3, op1), IT (op2, op1)) = IT (op3, op2).

Lemma 8.1.3.

Proof. Since Hide(op2, op1), then op2 · IT (op1, op2) ≡ op2. According to TP2, we have:

IT ∗(op3, [op1 · IT (op2, op1)]) = IT ∗(op3, [op2 · IT (op1, op2)]) (TP2)
IT (IT (op3, op1), IT (op2, op1)) = IT (op3, op2)

In the following section, we prove that given a transformed RCCO(e.g its transformation function
and set of operations are extended with idle operations)then TP2 is preserved.

A.2 Inverse properties Preservation

Since it is possible to avoid IP2 property by the couple-do-undo pair [97], in the following we focus on
IP3 property and show it is satisfied by our transformation function.

Lemma 8.2.1 shows that our transformation rules allow the preservation of the inverse property IP3.

Let op1 and op2 be two concurrent operations. Consider op′1 = IT (op1, op2) and op′2 =
IT (op2, op1). Then we have:

IT (op1, op
′
2) = op′1.

Theorem 8.2.1 (IP3 preservation).

142

A.3. Transformation Properties Preservation

Proof. Two cases are to be discussed according to the Hide relation between op1 and op2

1. Hide(op1, op2): according to TR3, we have:

IT (op1, op
′
2) = IT (op1, I(op2, op1))

= IT (op1, op2)

2. ¬Hide(op1, op2): according to TR3, we have:

IT (op1, op
′
2) = IT (op1, ET (op′2, op1)

= IT (op1, op2)

Thereby showing that property IP3 is satisfied.

A.3 Transformation Properties Preservation

In this section, we prove that both TP1 and TP2 are preserved for the enhanced set of operations.

A.3.1 TP1 Preservation

Given a CCO C = 〈St,Op, IT 〉, then IT satisfies the transformation property TP1 according to the
Definition 6.3.8. In Theorem 8.3.2, we show that the relaxed form of C noted Cr = 〈St,Op′, IT ′〉 also
satisfies TP1.

Let op1 and op2 be two concurrent operations such that Hide(op1, op2). Consider op′1 =
IT (op1, op2) and op′2 = IT (op2, op1). Then we have:

op1 · op′2 ≡ op2 · op′1.

Theorem 8.3.2 (TP1 Preservation).

Proof. The proof is trivial since for every operations op1 and op2 be two concurrent operations, if
Hide(op1, op2) then op1 · IT (op2, op1) ≡ op1. Since TP1 is satisfied for the initial set of operations,
we also have op1 · op′2 ≡ op1. Thereby proving that op1 · op′2 ≡ op2 · op′1.

A.3.2 TP2 Preservation

Since two idle operations may be semantically different while having the same hidden operation and the
same reflect on the document state, we defining the similarity between two idle operations as follows:

Let three different operations op, op1 and op2. Consider the two idle operations i1 =
I(op, op1) and i2 = I(op, op2 then i1 is similar to i2 (noted i1 ≈ i2) iff i1 = I(op, op1).

Definition 8.3.1 (Similarity between two Idle operations).

143

Appendix A. Correctness Proof of the Undo Approach

Even though they are not equal two similar operations have the same effect on the state. For this
reason, we relax the TP2 property to cover idle operations as follows:

Let op1, op2 and op3 be three concurrent operations. Consider op′1 = IT (op1, op2) and op′2 =
IT (op2, op1). Suppose that one or more of the these operations is an idle operation. We say
that IT preserve RTP2 iff

1. IT ∗(op3, [op1 · op′2]) = IT ∗(op3, [op2 · op′1]); or

2. IT ∗(op3, [op1 · op′2]) ≈ IT ∗(op3, [op2 · op′1]).

Definition 8.3.2 (Relaxed TP2 (RTP2)).

Next, we show that the RTP2 property is satisfied by the relaxed object.

A.3.2.1 RTP2 for Normal Operations Transformed Against Idle Operations

The following Lemma shows that transforming two operations related with the Hide relation against a
third one preserves the RTP2 property.

Given a RCCO Cr = 〈St,Op, IT 〉, then the relaxed TP2 property is satisfied for normal
operations.

Lemma 8.3.4 (RTP2 for Normal Operations).

Proof. Let op1, op2 and op3 be three normal concurrent operations from Op, then three cases are to be
studied:

1. Hide(op1, op2) and Hide(op2, op1): two sub cases are to be discussed:

(a) Hide(op2, op3) and Hide(op1, op3): accordingly, we have:

IT (op3, op1) = I(op3, op1)

IT ∗(op3, op1 · op′2) = IT (I(op3, op1), I(op2, op1))

= I(op3, op2) (TR1 and Hide(op2, op3))

Moreover,

IT (op3, op2) = I(op3, op2)

IT ∗(op3, op2 · op′1) = IT (I(op3, op2), I(op1, op2))

= I(op3, op1) (TR1 and Hide(op1, op3))

Consequently,
IT ∗(op3, op1cdotop

′
2) ≡ IT ∗(op3, op2 · op′1).

144

A.3. Transformation Properties Preservation

(b) ¬Hide(op2, op3) and ¬Hide(op1, op3): int this case, we have:

IT ∗(op3, op1 · op′2) = IT (IT (op3, op1), I(op2, op1))

= IT (op3, op1) (TR5)

Similarly, IT ∗(op3, op2 · op′1) = IT (IT (op3, op2), I(op1, op2)) = IT (op3, op1) by TR5.
According to Lemma 8.1.2, op1 = op2 then IT (op3, op1) = IT (op3, op2). Thus,

IT ∗(op3, op1 · op′1) ≡ IT ∗(op3, op2 · op′1).

2. ¬Hide(op1, op2) and ¬Hide(op2, op1): we discuss the following cases according to the relation
between the operations op1, op2 and the operation op3.

(a) ¬Hide(op3, op1) and ¬Hide(op2, op1): in this case non of the three operations is trans-
formed to idle operation. Then the result is obtained since TP2 is assumed for the initial set
of operation (see Definition 6.3.8).

(b) Hide(op1, op3) and ¬Hide(op2, op3): accordingly, we have:

IT (op3, op1) = I(op3, op1)

IT ∗(op3, op1 · op′2) = IT (I(op3, op1), IT (op2, op1))

= I(IT (op3, op2), op1) (TR2 and ¬Hide(op2, op3)

Additionally,

IT ∗(op3, op2 · op′1) = IT (IT (op3, op2), IT (op1, op2))

= I(IT (op3, op2), op1) (Lemma 8.1.1)

Hence, TP2 is preserved.

3. Hide(op1, op2) and ¬Hide(op2, op1): the following three cases are faced;

(a) Hide(op1, op3) and ¬Hide(op2, op3):

IT ∗(op3, op1 · IT (op2, op1)) = IT (IT (op3, op1), IT (op2, op1))

= IT (I(op3, op1), I(op2, op1))

= I(IT (op3, op2), op1) (TR1 and ¬Hide(op2, op3))

Moreover,

IT ∗(op3, op·; IT (op1, op2)) = IT (IT (op3, op2), IT (op1, op2))

= I(IT (op3, op2), op1) (Lemma 8.1.1)

Consequently, the property RTP2 is satisfied.

145

Appendix A. Correctness Proof of the Undo Approach

(b) Hide(op1, op3) and Hide(op2, op3):

IT ∗(op3, op1 · IT (op2, op1)) = IT (IT (op3, op1), IT (op2, op1))

= IT (I(op3, op1), I(op2, op1))

= I(op3, op2) (TR1 and Hide(op2, op3))

Moreover,

IT ∗(op3, op2 · IT (op1, op2)) = IT (IT (op3, op2), IT (op1, op2))

= IT (I(op3, op2), IT (op1, op2))

= I(op3, op1) (TR2 and Hide(op1, op3))

Thereby showing that the property RTP2 is preserved.

(c) ¬Hide(op1, op3) and ¬Hide(op2, op3):

IT ∗(op3, op1 · IT (op2, op1)) = IT (IT (op3, op1), IT (op2, op1))

= IT (IT (op3, op1), I(op2, op1))

= IT (op3, op1) (TR5)

Moreover,

IT ∗(op3, op2 · IT (op1, op2)) = IT (IT (op3, op2), IT (op1, op2))

= IT (IT (op3, op2), IT (op1, op2))

= IT (op3, op1) (Lemma 8.1.3)

Consequently TP2 is preserved.

Thereby, proving that TP2 is preserved.

A.3.2.2 RTP2 for Hidden Operations

To prove that the property RTP2 is satisfied by idle operations, we have to show that two similar idle
operations remains similar after they are transformed against two equivalence sequence of operations. To
proceed the proof, we first show that the similarity is preserved by transformation against one operation
(see Lemma 8.3.5), then prove it is also preserved by two equal logs (see Lemma 8.3.3) and equivalent
logs (see Lemma 8.3.6).

Let I(op1, op3) and I(op2, op3) be two similar idle operations, then for every operation op, we
have:

IT (I(op1, op2), op) ≈ IT (I(op1, op3), op)

Lemma 8.3.5 (Similarity Preservation by Transformation.).

Proof. There are two cases according to the kind of the operation op (normal or idle)

146

A.3. Transformation Properties Preservation

1. op is a normal operation: then op integrates the effect of op2 and op3, this situation only occurs
whenHide(op2, op3) andHide(op3, op2) which means that op2 = op3 according to Lemma 8.1.2.
Assume that op = IT (opi, op2) = IT (opi, op3), opi being an operation from Op. According to
whether opi hides op1 or not, we have to discuss the following two cases: If Hide(opi, op1), it
follows from TR2 that IT (I(op1, op2), op) = IT (I(op1, op3), op) = I(op1, op). Otherwise,
IT (I(op1, op2), op) = IT (I(op1, op3), op) = I(IT (op1opi), op3).
Consequently, IT (I(op1, op2), op) = IT (I(op1, op3), op).

2. op is an idle operation: Let two operations opi and opj such that op = I(opi, opj). Then, we have
to show that

IT (I(op1, op2), I(opi, opj)) = IT (I(op1, op3), I(opi, opj)

Two cases are possible:

(a) op2 = op3 and opj = op2: in this case, according to TR1 if Hide(opj , op1) then

IT (I(op1, op2), I(opj , op2)) = IT (I(op1, op3), I(opj , op3)) = I(op1, opj).

Otherwise, if ¬Hide(opj , op1) then IT (I(op1, op2), I(opj , op2)) = I(IT (op1, opj), op2)
and IT (I(op1, op3), I(opj , op3)) = I(IT (op1, opj), op3) Since I(IT (op1, opj), op2) ≈
I(IT (op1, opj), op2), the result is obtained.

(b) opj /∈ {op2, op3}: we have IT (I(op1, op2), I(opi, opj)) = I(op2, opi).Moreover,
IT (I(op1, op3), I(opi, opj)) = I(op1, op3) ≈ I(opa, opi).

Accordingly, the similarity is preserved by transformation against normal and idle operations.

Using the precedent Lemma we show that similarity relation is preserved by transformation against
two equal logs.

Given a log H and two similar idle operations op1 and op2. Then the similarity is preserved
after integration against H .

IT ∗(op1, H) ≈ IT ∗(op2, H)

Theorem 8.3.3 (Similarity Preservation by Transformation against two Equal Logs.).

Proof. By induction on H’s size and the use of Lemmas 8.3.5.

Since logs are rather equivalent in a collaborative application, we also have to prove that the sim-
ilarity is preserved when transforming two similar idle operations against two equivalent sequences of
operations.

Given two similar operations I(op, opi) ≈ I(op, opj) and two equivalent sequences of two
operations seq1 and seq2. Then, we have:

IT ∗(I(op, opi), seq1) ≈ IT ∗(I(op, opj), seq2)

Lemma 8.3.6 (RTP2 for Hidden Operations.).

147

Appendix A. Correctness Proof of the Undo Approach

Proof. To obtain two similar operations, it must be that Hide(opi, opj) and Hide(opj , opi) i.e. opi =
opj (see Lemma 8.1.2). We assume that op′i = IT (opi, opj) and op′j = IT (opj , opi). Consider two
operations op1 and op2 integrated after opi and opj . Consider the following transformation forms of op1
and op2:

op′2 = IT ∗(op2, opi · op′j)
op′1 = IT ∗(op1, opi · op′j · op′2)
op′′1 = IT ∗(op1, opj · op′i)
op′′2 = IT ∗(op2, opj · op′i · op′′1)

Without loss f generalization, we assume that opi = opj hides op1. Consider the operation op hidden by
both opi and opj . Then

IT ∗(op, [opi · op′j]) = I(op, opj) ≈ IT ∗(op, [opj · op′i]) = I(op, opi).

Now, we have to prove that

IT ∗(I(op, opj), [op
′
2 · op′1]) ≡ IT ∗(I(op, opi), [op

′′
1 · op′′2]).

According to the Hide relation between the operations op1 and op2 in seq1 and seq2, we discuss the
following cases:

1. Hide(op1, op2) and Hide(op2, op1): The transformation result of op1 after opi and opj is as
follows:

op′1 = I(op1, op2) (TR1 and Hide(op2, op1))

As for op2, it is transformed against opi · op′j as follows:

op′2I(op2, opj) (TR1 and Hide(opj , op2))

In the same way, when op1 is integrated after opj · op′i, we obtain:

op′′1 = I(op1, opi) (TR1 and opiHop1)

As for op2, it is integrated after the same sequence as follows:

op′′2 = I(op2, op1) (TR1 and op1Hop2)

Consequently,

IT ∗(I(op, opj), [op
′
2 · op′1]) = IT (IT (I(op, opj), I(op2, opj)), I(op1, op2))

= IT (I(op, op2), I(op1, op2)) (TR1 and Hide(op2, op))
= I(op, op1) (TR1 and Hide(op1, op))

Similarly,

IT ∗(I(op, opi), [op
′′
1 · op′′2]) = I(op, op2)

Consequently,
IT ∗(I(op, opj), [op

′
2 · op′1]) ≈ IT ∗(I(op, opi), [op

′′
1 · op′′2])

148

A.3. Transformation Properties Preservation

2. Hide(op2, op1) and ¬Hide(op1, op2): The transformation result of these operations after opi and
opj is as follows:

op′2 = I(op2, opj) (TR1 and Hide(opj , op2))

op′1 = I(op1, op2) (TR1 and Hide(op2, op1))

In the same way,

op′′1 = I(op1, opi) (TR1 and Hide(opi, op1))
op′′2 = I(IT (op2, op1), opi) (TR1 and Hide(op1, op2))

According to the relation between op, op1 and op2, we have to discuss the following cases:

(a) ¬Hide(op1, op) and ¬Hide(op2, op): then we have:

IT (I(op, opj), op
′
2) = IT (I(op, opj), I(op2, opj))

= I(IT (op, op2), opj) (TR1 and ¬Hide(op2, op))

Thus,

IT (I(op, opj), [op
′
2 · op′1]) = IT (I(IT (op, op2), opj)), I(op1, op2))

= I(IT (op, op2), opj)

Similarly,

IT (I(op, opi), op
′′
1) = IT (I(op, opi), I(op1, opi))

= I(IT (op, op1), opi) (TR1 and ¬Hide(op1, op))

Thus, according to TR1, it follows from ¬Hide(op2, op) that IT ∗(I(op, opi), [op
′′
1 ·op′′2]) =

IT (I(IT (op, op1), opi), I(IT (op2, op1), opi)). Note that Hide(op, op2) since opi hides
both op and op2 while op2 does not hide op. Accordingly, IT (IT (op, op1), IT (op2, op1)) =
IT (opop2) (see Lemma 8.1.3). Consequently, we have:

IT ∗(I(op, opi), [op
′′
1 · op′′2]) = I(IT (op, op2), opi)

Which leads to

IT ∗(I(op, opj), [op
′
2 · op′1]) ≈ IT ∗(I(op, opi), [op

′′
1 · op′′2])

(b) Hide(op2, op) and ¬Hide(op1, op):

IT (I(op, opj), op
′
2) = IT (I(op, opj), I(op2, opj))

= I(op, op2) (TR1 and Hide(op2, op))

Then,

IT ∗(I(op, opj), [op
′
2 · op′1]) = IT (I(op, op2), I(op1, op2))

= I(IT (op, op1), op2) (TR1 and ¬Hide(op1, op))

149

Appendix A. Correctness Proof of the Undo Approach

Similarly,

IT ∗(I(op, opi), [op
′′
1 · op′′2]) = IT (I(op, opi), I(op1, opi))

= I(IT (op, op1), opi) (TR1 and ¬Hide(op1, op))

Thus,

IT ∗(I(op, opi), [op
′′
1 · op′′2]) = IT (I(IT (op, op1), opi), I(IT (op2, op1), opi)

= I(IT (op, op1), op2) (TR1 and Hide(op2, op))

Consequently,

IT ∗(I(op, opj), [op
′
2 · op′1]) = IT ∗(I(op, opi), [op

′′
1 · op′′2])

(c) Hide(op2, op) and Hide(op1, op): In this case,

IT (I(op, opj), op
′
2) = IT (I(op, opj), I(op2, opj))

= I(op, op2) (TR1 and Hide(op2, op))

Thus,

IT ∗(I(op, opj), [op
′
2 · op′1]) = IT (I(op, op2), I(op1, op2))

= I(op, op1) (TR1 and Hide(op1, op))

Similarly,

IT ∗(I(op, opi), op
′′
1) = IT (I(op, opi), I(op1, opi))

= I(op, op1) (TR1 and Hide(op1, op))

Thus,

IT ∗(I(op, opi), [op
′′
1 · op′′2]) = IT (I(op, op1), I(IT (op2, op1), opi))

= I(op, op1)

Consequently,

IT ∗(I(op, opj), [op
′
2 · op′1]) = IT ∗(I(op, opi), [op

′′
1 · op′′2])

We deduce that the similarity is preserved by transformation against two equivalent sequences of
two operations.

Based on the previous result, we show in Theorem 8.3.4 that the similarity is preserved by transfor-
mation against two equivalent logs.

Given two equivalent logs H1 ≡ H2 and two similar idle operations op1 and op2. The simi-
larity between op1 and op2 is preserved after integration against H1 and H2.

IT ∗(op1, H1) ≈ IT ∗(op2, H2)

Theorem 8.3.4 (Similarity Preservation by Transformation against two Equivalent Logs.).

Proof. By induction on H’s size and the use of Lemma 8.3.6.

150

A.3. Transformation Properties Preservation

A.3.2.3 RTP2 Preservation for Inverse Operations

In this section, we illustrate the preservation of the RTP2 property by inverse operations. We also
demonstrate that the resulting logs are equivalent after undoing a given operation.

In the sequel, we use the notation IT (seq, op), where seq is a sequence of operations and op is an
operation recursively defined as follows:

• IT (∅, op) = ∅;

• IT (op1 · op2, op) = IT (op1, op) · IT (op2, IT (op, op1))

• IT (op1 · op2 · op3 . . . opn, op) = IT (op1 · op2, op) · IT (op3 . . . opn, op).

Let op be an inverse operation, op1 and op2 two concurrent operations. Let op′1 = IT (op1, op),
op′2 = IT (op2, op), op′′1 = IT (op′1, op

′
2) and op′′2 = IT (op′2, op

′
1). Then, we have:

IT ∗(op, op′1 · op′′2) ≈ IT ∗(op, op′2 · op′′1)

IT (op′1 · op′′2, op) ≡ IT (op′2 · op′′1, op)

Lemma 8.3.7 (Transformation of an Inverse Operation against two Equivalent Logs).

Proof. We discuss the following three cases according to the hide relation between op1 and op2:o

First case. Hide(op1, op2) and Hide(op2, op1): We discuss the following two sub cases:

1. ¬Hide(op, op1) and so ¬Hide(op, op2):

op′1 = IT (op1, op)

op′′2 = I(IT (op2, op), op1) (Lemma 8.1.1)
op′2 = IT (op2, op)

op′′1 = I(IT (op1, op), op2) (Lemma 8.1.1)

According to the relation between op′1, op′2 and op, we distinguish the following cases:

(a) ¬Hide(op1, op) then ¬Hide(op2, op): it follows from TR3 that:

IT (op, op′1) = IT (op, op1)

Thus

IT (op, op′1 · op′′2) = IT (IT (op, op1), I(IT (op2, op), op1))

= IT (op, op1) (TR5)

Similarly,

IT (op, op′2 · op′′1) = IT (op, op2) (TR5)

It follows from op1 = op2 (see Lemma 8.1.2) that IT (op, op1) = IT (op, op2). Thereby,
IT (op, op1) = IT (op, op2).

151

Appendix A. Correctness Proof of the Undo Approach

(b) Hide(op1, op) then Hide(op2, op): in this case,

IT (op, op′1) = I(op, op1)

IT (op, op′1 · op′′2) = IT (I(op, op1), I(IT (op2, op), op1)

= I(op, op2) (TR1I and Hide(op2, op)))

In the same way we have,

IT (op, op′2) = I(op, op2)

IT (op, op′2 · op′′1) = IT (I(op, op2), I(IT (op1, op), op2)

= I(op, op1) (TR1I and Hide(op1, op))

Then the result is obtained.

2. opHop1 and so opHop2: In this case

op′1 = I(op1, op)

op′′2 = I(op2, op1) (TR1 and Hide(op1, op2))
op′2 = I(op2, op)

op′′1 = I(op1, op2) (TR1 and Hide(op2, op1)

Two cases are possible according to the hide relation between op1 and op.

(a) Hide(op1, op): in this case we also have Hide(op2, op), which leads to the following se-
quences:

IT (op, op′1) = I(op, op1)

IT (I(op, op1), op
′′
2) = IT (I(op, op1), I(op2, op1))

= I(op, op2) (TR1I and Hide(op2, op))

Similarly

IT (op, op′2) = I(op, op2)

IT (I(op, op2), op
′′
1) = IT (I(op, op2), I(op1, op2))

= I(op, op1) (TR1I and Hide(op1, op))

(b) ¬Hide(op1, op): in this case we also have ¬Hide(op2, op), hence

IT (op, op′1) = IT (op, op1)

IT (IT (op, op1), op
′′
2) = IT (IT (op, op1), I(op2, op1))

= IT (op, op1) (TR5)

Similarly

IT (op, op′2) = IT (op, op2)

IT (IT (op, op2), op
′′
1) = IT (IT (op, op2), I(op1, op2))

= IT (op, op2) (TR5)

It follows from op1 = op2 that IT (op, op1) = IT (op, op2). Consequently, we obtain
IT (op, op1) = IT (op, op2)

152

A.3. Transformation Properties Preservation

Next, we integrate the effect of op into the equivalent sequences of operations.

IT (op′1, op) = IT (IT (op1, op), op)

= op1 (TR4)

IT (op′′2, IT (op, op′1)) = IT (I(IT (op2, op), op1), IT (op, op1))

= I(IT (IT (op2, op), op), op1) (TR4)

= I(op2, op1) (TR4)

Similarly,

IT (op′2, op) = IT (IT (op2, op), op)

= op2 (TR4)

IT (op′′1, IT (op, op′2)) = IT (I(IT (op1, op), op2), IT (op, op2))

= I(op1, op2) (TR4)

Since op2 = op1 we have op1 · I(op2, op1) ≡ op2 · I(op1, op2).
Thus, we deduce that IT (op′1 · op′′2, op) ≡ IT (op′2 · op′′1, op).

Second case. ¬Hide(op1, op2) and also ¬Hide(op2, op1), then the following cases are faced:

1. Hide(op, op1) and so ¬Hide(op, op2): we calculate the integrated forms of op1 and op2

op′1 = I(op1, op)

op′′2 = IT (IT (op2, op), I(op1, op))

= IT (op2, op)

op′2 = IT (op2, op)

op′′1 = IT (I(op1, op), IT (op2, op))

= I(IT (op1, op2), op) (TR2 and ¬Hide(op2, op1))

According to whether op1 hides op or not we discuss the two following cases:

(a) Hide(op1, op):

IT (op, op′1) = IT (op, I(op1, op))

= IT (op, op1) (TR3)

= I(op, op1)

Then,

IT ∗(op, op′1 · op′′2) = IT (I(op, op1), IT (op2, op))

= I(IT (op, op2), op1) (TR2I and ¬Hide(op2, op))

Moreover,

IT (op, op′2) = IT (op, IT (op2, op))

= IT (op, op2) (TR3)

153

Appendix A. Correctness Proof of the Undo Approach

which leads to

IT ∗(op, op′2 · op′′1) = IT (IT (op, op2), I(IT (op1, op2), op))

= IT (IT (op, op2), IT (op1, op2)) (TR3)

= I(IT (op, op1), op1) (Lemma 8.1.1 and Hide(op1, op))

Thus, we have IT ∗(op, op′1 · op′′2) = IT ∗(op, op′2 · op′′1)

(b) ¬Hide(op1, op): In this case,

IT ∗(op, op′1 · op′2) = IT ∗(op, [I(op1, op); IT (op2, op)])

= IT (IT (op, I(op1, op)), IT (op2, op))

= IT (IT (op, op1), IT (op2, op)) (TR3)

According to TP2 assumed for the initial set of operations (see Definition 6.3.8), we have

IT ∗(op2, [op1; IT (op, op1)]) = IT ∗(op2, [op; IT (op1, op)])

IT [IT (op2, op1), IT (op, op1)] = IT [IT (op2, op), I(op1, op)]

IT [IT (op2, op1), IT (op, op1)] = IT (op2, op) (Lemma 6.3.9)

Replacing IT (op2, op) by IT [IT (op2, op1), IT (op, op1)] in the precedent equality leads to:

IT ∗(op, op′1 · op′2) = IT (IT (op, op1), IT (op2, op))

= IT (IT (op, op1), IT [IT (op2, op1), IT (op, op1)])

= IT (IT (op, op1), IT (op2, op1)) (TR3)

Moreover,

IT ∗(op, [op′′2; op′′1]) = IT ∗(op, [I(op2, op); I(IT (op1, op2), op)])

= IT (IT (op, I(op2, op)), I(IT (op1, op2), op))

= IT (IT (op, op2), I(IT (op1, op2), op)) (TR3)

= IT (IT (op, op2), IT (op1, op2)) (TR3)

According TP2 satisfied for normal operations, we have

IT (op, op1), IT (op2, op1) = IT (IT (op, op2), IT (op1, op2))).

Thereby, the result is obtained.

2. ¬Hide(op, op1) and ¬Hide(op, op2): In this case,

op′1 = IT (op1, op)

op′2 = IT (IT (op2, op), IT (op1, op))

op′′2 = IT (op2, op)

op′′1 = IT (IT (op1, op), IT (op2, op))

Consequently, since all operations are normal, and TP2 is satisfied by the initial set of normal
operations (see Definition 6.3.8), we have:

IT ∗(op, op′1 · op′2) = IT ∗(op, op′′2 · op′1)

154

A.3. Transformation Properties Preservation

Now, we integrate the effect of op into the equivalent sequences of operations.

IT (op′1, op) = IT (IT (op1, op), op)

= op1 (TR4)

IT (op′′2, IT (op, op′1)) = IT (IT (op2, op), IT (op, op1))

= IT (op2, op1) TR4 and Hide(op, op1) and ¬Hide(op1, op2))

Similarly,

IT (op′2, op) = IT (IT (op2, op), op)

= op2 (TR4)

IT (op′′1, IT (op, op′2)) = IT (I(IT (op1, op2), op), IT (op, op2))

= IT (op1, op2) (TR4)

Since op2 · IT (op1, op2) ≡ op1 · IT (op2, op1), we deduce that

IT (op′1 · op′′2, op) ≡ IT (op′2 · op′′1, op)

Thereby, we have shown that indeed undoing two similar inverse operations produces equivalent se-
quences.

Third case. Hide(op2, op1) and ¬Hide(op1, op2): according to the relation between op and the two
operations op1 and op2, the following cases may occur:

1. opHop2:so by transitivity, we have opHop1 (see Lemma 6.3.10). Consequently, the transformed
forms of op1 and op2 are:

op′1 = I(op1, op)

op′′2 = IT (I(op2, op), op
′
1)

= IT (I(op2, op), I(op1, op))

= I(IT (op2, op1), op) (TR1 and ¬Hide(op1, op2))
op′2 = I(op2, op)

op′′1 = IT (I(op1, op), op
′
2)

= I(I(op1, op), I(op2, op))

= I(op1, op2) (TR1 and Hide(op2, op1))

Suppose that Hide(op1, op), it follows from the transitivity of the Hide relation and from
Hide(op, op2) thatHide(op1, op2) is true which is false since we supposed that ¬Hide(op1, op2).
Consequently, ¬Hide(op1, op) holds. According to whether op2 hides op or not we discuss the
following two sub cases:

155

Appendix A. Correctness Proof of the Undo Approach

(a) ¬Hide(op2, op):

IT (op, op′1) = IT (op, I(op1, op))

= IT (op, op1) (TR3)

IT (op, op′1 · op′′2) = IT (IT (op, op1), op
′′
2)

= IT (IT (op, op1), I(IT (op2, op1), op))

= IT (IT (op, op1), IT (op2, op1)) (TR3)

= IT (IT (op, op2), IT (op1, op2)) (Lemma 8.3.4)
= IT (op, op2) (Lemma 6.3.8)

On the other hand, we have:

IT (op, op′2) = IT (op, I(op2, op))

= IT (op, op2) (TR3)

IT (op, op′2 · op′′1) = IT (IT (op, op1), op
′′
1)

= IT (IT (op, op2), I(op1, op2))

= IT (op, op2) (TR5)

Then, the result is obtained.
(b) Hide(op2, op):

IT (op, op′1) = IT (op, I(op1, op))

= IT (op, op1) (TR3)

IT ∗(op, op′1 · op′′2) = IT (IT (op, op1), op
′′
2)

= IT (IT (op, op1), I(IT (op2, op1), op))

= IT (IT (op, op1), IT (op2, op1)) (TR3)

= I(IT (op, op1), op2) (Lemma 8.1.1)

In the same way,

IT (op, op′2) = IT (op, I(op2, op))

= IT (op, op2) (TR3)

= I(op, op2)

IT ∗(op, op′2 · op′′1) = IT (I(op, op2), I(op1, op2))

= I(IT (op, op1), op2) (TR1I and ¬Hide(op1, op))

Thereby proving that IT ∗(op, op′2 · op′′1) = IT ∗(op, op′1 · op′′2) i.e. RTP2 is satisfied.
In the following, we integrate the effect of op into the equivalent sequences of operations op′2 ·
op′′1 ≡ op′1 · op′′2 .

IT (op′1, op) = IT (IT (op1, op), op)

= op1 (TR4)

IT (op′′2, IT (op, op′1)) = IT (I(IT (op2, op1), op), IT (op, op1))

= IT (op2, op1) (TR4)

156

A.3. Transformation Properties Preservation

Similarly,

IT (op′2, op) = IT (I(op2, op), op)

= op2 (TR4)

IT (op′′1, IT (op, op′2)) = IT (I(op1, op2), IT (op, op2))

= I(op1, op2) (TR2 and Hide(op, op1))

Since op2 · I(op1, op2) ≡ op1 · IT (op2, op1), we deduce that

IT (op′1 · op′′2, op) ≡ IT (op′2 · op′′1, op)

2. ¬Hide(op, op2) and Hide(op, op1): the integrated forms of op1 and op2 in this case are:

op′1 = I(op1, op)

op′′2 = IT (IT (op2, op), I(op1, op))

= IT (op2, op) (TR5)

op′2 = IT (op2, op)

op′′1 = IT (I(op1, op), op
′
2)

= I(op1, op2) (TR2 and Hide(op2, op1))

Since Hide(op2, op1), we deduce that Hide(op2, op). According to whether op1 hides op or not,
we distinguish the following two case:

(a) Hide(op1, op): the integration of op after op′2 · op′′1 and op′1 · op′′2 leads to:

IT (op, op′1) = IT (op, I(op1, op))

= I(op, op1) (TR3 and Hide(op1, op))

IT ∗(op, op′1 · op′′2) = IT (I(op, op1), IT (op2, op))

= I(op, op2) (TR2 and Hide(op2, op))

Similarly, we have:

IT (op, op′2) = IT (op, IT (op2, op))

= I(op, op2) (TR3 and Hide(op2, op))

IT ∗(op, op′2 · op′′1) = IT (I(op, op2), I(op1, op2))

= I(op, op1) (TR1I and Hide(op1, op))

Since I(op, op2) ≈ I(op, op1), we have

IT ∗(op, op′1 · op′′2) ≈ IT ∗(op, op′2 · op′′1)

It has been shown that indeed, RTP2 holds.

157

Appendix A. Correctness Proof of the Undo Approach

(b) ¬Hide(op1, op): transforming op against op′1 · op′′2 leads to:

IT (op, op′1) = IT (op, I(op1, op))

= IT (op, op1) (TR3)

IT ∗(op, op′1 · op′′2) = IT (IT (op, op1), IT (op2, op))

= IT (IT (op, op1), IT (IT (op2, op), IT (op1, op)))

= IT (IT (op, op1), IT (IT (op2, op1), IT (op, op1))) (Lemma 8.3.4)
= IT (IT (op, op1), IT (op2, op1)) (TR3)

= I(IT (op, op1), op2) (Lemma 8.1.1)

As for transforming op against op′2 · op′′1 , it leads to:

IT (op, op′2) = IT (op, IT (op2, op))

= I(op, op2) (TR3)

IT ∗(op, op′2 · op′′1) = IT (I(op, op2), I(op1, op2))

= I(IT (op, op1), op2) (TR1 and ¬Hide(op1, op))

Thus, the result is obtained.

Accordingly, we have proven that

IT ∗(op, op′1 · op′′2) ≈ IT ∗(op, op′2 · op′′1)

In the following, we integrate the effect of op into the equivalent sequences of operations and prove
resulting logs are equivalent. On one hand, we have:

IT (op′1, op) = IT (IT (op1, op), op)

= op1 (TR4)

IT (op′′2, IT (op, op′1)) = IT (IT (op2, op), IT (op, op1))

= IT (op2, op1) TR4 and Hide(op, op1) and ¬Hide(op1, op2))

On the other hand, we have:

IT (op′2, op) = IT (IT (op2, op), op)

= op2 (TR4)

IT (op′′1, IT (op, op′2)) = IT (I(op1, op2), I(op, op2))

= I(op1, op2) (TR4 and Hide(op, op1))

Since op2 · I(op1, op2) ≡ op1 · IT (op2, op1), we deduce that

IT (op′1 · op′′2, op) ≡ IT (op′2 · op′′1, op)

158

A.3. Transformation Properties Preservation

3. ¬Hide(op, op2) and ¬Hide(op, op1): in this case,

op′1 = IT (op1, op)

op′′2 = IT ∗(op2, [op; op
′
1])

op′2 = IT (op2, op)

op′′1 = IT (IT (op1, op), op
′
2)

= I(IT (op1, op), op2) (Lemma 8.1.3)

The following two cases are faced:

(a) Hide(op1, op): so by transitivity Hide(op2, op), and op is transformed against op′1 · op′′2 as
follows: Here we have,

IT (op, op′1) = IT (op, IT (op1, op))

= I(op, op1) (TR3)

Consequently,

IT ∗(op, op′1 · op′′2) = IT (I(op, op1), IT
∗(op2, op · op′1))

= IT (I(op, op1), IT
∗(op2, op1 · IT (op, op1))) (Lemma 8.3.4)

= IT (I(op, op1), IT (op2, op1)) (Lemma 6.3.8 and Hide(op1, op))

= I(op, op1) (TR2I and Hide(op2, op))

Furthermore, op is transformed against op′2 · op′′1 as follows:

IT (op, op′2) = IT (op, IT (op2, op))

= I(op, op2) (TR3)

IT ∗(op, op′2 · op′′1) = IT (I(op, op2), op
′′
1)

= IT (I(op, op2), I(IT (op1, op), op2))

= I(op, op1) (TR1I and Hide(op1, op))

Consequently,
IT ∗(op, op′1 · op′′2) = IT ∗(op, op′2 · op′′1)

(b) ¬Hide(op1, op) and ¬Hide(op2, op): on the one hand op is transformed as follows:

IT (op, op′1) = IT (op, IT (op1, op))

= IT (op, op1) (TR3)

IT ∗(op, op′1 · op′′2) = IT (IT (op, op1), op
′′
2)

= IT (IT (op, op1), IT (IT (op2, op), IT (op1, op)))

= IT (IT (op, op1), IT (IT (op2, op1), IT (op, op1))) (Lemma 8.3.4)
= IT (IT (op, op1), IT (op2, op1))) (TR3)

= IT (IT (op, op2), IT (op1, op2))) (Lemma 8.3.4)
= IT (op, op2) (Lemma 6.3.8)

159

Appendix A. Correctness Proof of the Undo Approach

On the other hand op is transformed as follows:

IT (op, op′2) = IT (op, IT (op2, op))

= IT (op, op2) (TR3)

IT ∗(op, op′2 · op′′1) = IT (IT (op, op2), op
′′
1)

= IT (IT (op, op2), I(IT (op1, op), op2))

= IT (op, op2) (TR5)

Consequently, property RTP2 is satisfied i.e.

IT ∗(op, op′1 · op′′2) = IT ∗(op, op′2 · op′′1)

Now, we integrate the effect of op into the equivalent sequences of operations op′1 ·op′′2 and op′2 ·op′′1
as follows:

IT (op′1, op) = IT (IT (op1, op), op)

= op1 (TR4)

IT (op′′2, IT (op, op′1)) = IT (IT (IT (op2, op), IT (op1, op)), IT (op, op1))

= IT (IT (IT (op2, op1), IT (op, op1)), IT (op, op1)) (Lemma 8.3.4)
= IT (op2, op1)

Similarly,

IT (op′2, op) = IT (IT (op2, op), op)

= op2 (TR4)

IT (op′′1, IT (op, op′2)) = IT (I(IT (op1, op), op2), IT (op, op2))

= I(IT (IT (op1, op), op), op2) (TR4)

= I(op1, op2)

Since op2 · I(op1, op2) ≡ op1 · IT (op2, op1), we deduce that

IT (op′1 · op′′2, op) ≡ IT (op′2 · op′′1, op)

In the following, we show that the the similarity is preserved for inverse operations.

A.3.2.4 TP2 for Hidden Inverse Operations

To prove that RTP2 is satisfied by the integrated forms of an idle operation during the undo procedure,
we show that the similarity between two hidden inverse operations is preserved after they are transformed
against two equivalent sequences of operations. The following lemma shows that undoing a hidden in-
verse operation followed by a sequence of size 2 satisfies RTP2 and produces two equivalent sequences
of operations.

160

A.3. Transformation Properties Preservation

Given two similar inverse operations I(op1, opi) ≡ I(op1, opj) and two equivalent sequences
seq1 and seq2 where |seq1| = |seq2| = 2. Then, we have:

IT ∗(I(op1, opi), seq1) ≈ IT ∗(I(op1, opj), seq2)

IT (seq1, I(op1, opi)) ≡ IT (seq2, I(op1, opj))

Lemma 8.3.8 (Undoing Hidden Inverse Operations).

Proof. Let op′i = IT (opi, opj) and op′j = IT (opj , opi). To have two similar operations, it must be that
Hide(opi, opj), Hide(opj , opi) and Hide(opi, op1) in which case, we have

op′i = I(opi, opj)

op′j = I(opj , opi)

op′1 = IT ∗(op1, [opi · op′j])
= I(op1, opj) (TR1)

op′′1 = IT ∗(op1, [opj · op′i])
= I(op1, opi) (TR1)

Consider two operations op2 and op3 such that:

op′2 = IT ∗(op2, [opi · op′j · op′1])
op′3 = IT ∗(op3, [opi · op′j · op′2])
op′′3 = IT ∗(op2, [opj · op′i · op′′1])

op′′2 = IT ∗(op3, [opj · op′i · op′′2])

Let the sequences seq1 = [op′2 · op′3] and seq2 = [op′′3, op
′′
2] against which op′1 and op′′1 will be trans-

formed. According to the hide relation between different operations, we discuss the following cases:

First case. Hide(op2, op3) and Hide(op3, op2): according to the hide relation between operations op1,
op2 and op3, we discuss the following cases:

1. Hide(op1, op2) and Hide(op2, op1): this means op1 = op2 = op3 (see Lemma 8.1.2). Thus,
the transitivity of the Hide relation implies that both opi and opj hide op2 and op3. According to
TR1, the transformation results of op1, op2 and op3 after opi and opj are:

op′2 = I(op2, op1)

op′3 = I(op3, op2)

op′′3 = I(op3, op1)

op′′2 = I(op2, op3)

Now, let us prove that the similarity relation between I(op1, opi) and I(op1, opj) is preserved by
transformation i.e

IT ∗(I(op1, opj), seq1) ≈ IT ∗(I(op1, opi), seq2).

161

Appendix A. Correctness Proof of the Undo Approach

First, we have:

IT ∗(I(op1, opj), seq1) = IT (IT (I(op1, opj), I(op2, op1)), I(op3, op2))

= IT (I(op1, opj), I(op3, op2)) (TR2I and Hide(op2, op1))

= I(op1, opj)

Similarly,

IT ∗(I(op1, opi), seq2) = I(op1, opi)

Then the result is obtained.
Now, let us integrate the effect of I(op1, opj) and that of I(op1, opi) into op′2 · op′3 and op′′2 ·
op′′3respectively and show resulting sequences are equivalent.

IT (op′2, I(op1, opj)) = IT (I(op2, op1), I(op1, opj))

= I(op2, opj) (TR4)

IT (op′3, IT (I(op1, opj), op
′
2)) = IT (I(op3, op2), I(op1, opj))

= I(op3, op2)

Similarly,

IT (op′′3, I(op1, opi)) = IT (I(op3, op1), I(op1, opi))

= I(op3, opi) (TR4)

IT (op′′2, IT (I(op1, opi), op
′
3)) = IT (I(op2, op3), I(op1, opi))

= I(op2, op3)

Since I(op2, opj) · I(op3, op2) ≡ I(op3, opi) · I(op2, op3) ≡ ∅, we deduce that

IT (op′2 · op′3, I(op1, opj)) ≡ IT (op′′3 · op′′2, I(op1, opi))

Consequently, resulting logs are equivalent after undoing the hidden inverse operations.

2. ¬Hide(op1, op2) and ¬Hide(op2, op1): in this case, it follows from op2 = op3 that
¬Hide(op1, op3) and ¬Hide(op3, op1). Moreover, ¬Hide(op2, opi), otherwise by transitivity,
Hide(op2, op1). Finally, ¬Hide(opi, op2) since neither op2 hides op1, nor op1 hides op2. Ac-
cordingly, we have:

op′2 = IT (op2, opi) (TR5)

op′3 = I(IT (op3, opi), op2) (TR5 and Lemma 6.3.10)

In the same way,

op′′3 = IT (op3, opj) (TR5)

op′′2 = I(IT (op2, opj), op3) (TR5 and Lemma 6.3.10)

162

A.3. Transformation Properties Preservation

Then,

IT (I(op1, opj), op
′
2) = IT (I(op1, opj), IT (op2, opi))

= I(op1, opj) (TR2I and ¬Hide(op2, op1))

IT ∗(I(op1, opj), seq1) = IT (I(op1, opj), I(IT (op3, opi), op2))

= I(op1, opj)

Similarly,

IT ∗(I(op1, opj), seq2) = I(op1, opi)

Next, we integrate the effect of I(op1, opj) and the effect of I(op1, opi) into op′2 ·op′3 and op′′2 ·op′′3
respectively in order to demonstrate that the resulting sequences are equivalent.

IT (op′2, I(op1, opj)) = IT (IT (op2, opi), I(op1, opj))

= IT (op2, opi) (TR4)

IT (op′3, IT (I(op1, opj), op
′
2)) = IT (I(IT (op3, opi), op2), I(op1, opj))

= I(IT (op3, opi), op2)

Similarly,

IT (op′′3, I(op1, opi)) = IT (IT (op3, opj), I(op1, opi))

= IT (op3, opj) (TR4)

IT (op′′2, IT (I(op1, opi), op
′
3)) = IT (I(IT (op2, opj), op3), I(op1, opi))

= I(IT (op2, opj), op3)

From op2 = op3, we deduce that IT (op2, opi) · I(IT (op3, opi), op2) ≡ IT (op3, opj) ·
I(IT (op2, opj), op3). Hence,

IT (op′2 · op′3, I(op1, opj)) ≡ IT (op′′3 · op′′2, I(op1, opi))

Thereby, showing that undoing two similar hidden inverse operations produces equivalent logs.

3. Hide(op1, op2) and ¬Hide(op2, op1): so by transitivity, both opi and opj hide op2 and op3. This
case is similar to case 1.

4. Hide(op2, op1) and ¬Hide(op1, op2): so neither opi nor opj hides op2. This case is similar to
case 2.

Second case. ¬Hide(op2, op3) and ¬Hide(op3, op2): According to the relation between op1 and both
op2 and op3 we discuss the following cases:

1. Hide(op1, op2) and Hide(op2, op1): then opi and opj hide op2 and do not hide op3. Also,
¬Hide(op3, op1) otherwise, we have Hide(op3, op2) by transitivity of hide relation. In this case
we have:

op′2 = I(op2, op1) (TR1)

op′3 = IT (op3, opi) (TR5)

op′′3 = IT (op3, opj) (TR5)

op′′2 = I(op2, op1) (TR1)

163

Appendix A. Correctness Proof of the Undo Approach

Accordingly, we obtain the following sequences:

IT ∗(I(op1, opj), op
′
2) = IT (I(op1, opj), I(op2, op1))

= I(op1, opj) (TR2I and Hide(op2, op1))

Thus,

IT ∗(I(op1, opj), seq1) = IT (I(op1, opj), IT (op3, opi))

= I(op1, opj)

Similarly,

IT ∗(I(op1, opi), op
′′
3) = IT (I(op1, opi), IT (op3, opj))

= I(op1, opi)

Consequently,

IT ∗(I(op1, opi), seq2) = IT (I(op1, opi), I(op2, op1))

= I(op1, opi) (TR2I and Hide(op2, op1))

Then the similarity is preserved by transformation.

Next, we integrate the effect of I(op1, opj) into op′2 · op′3 and effect of I(op1, opi) into op′′2 · op′′3
and show that the resulting sequences are equivalent.

IT (op′2, I(op1, opj)) = IT (I(op2, op1), I(op1, opj))

= I(op2, opj) (TR4 and Hide(opj , op2))

IT (op′3, IT (I(op1, opj), op
′
2)) = IT (IT (op3, opi), I(op1, opj))

= IT (op3, opi)

Similarly,

IT (op′′3, I(op1, opi)) = IT (IT (op3, opj), I(op1, opi))

= IT (op3, opj) (TR4)

IT (op′′2, IT (I(op1, opi), op
′
3)) = IT (I(op2, op1), I(op1, opi))

= I(op2, opi) (TR4 and Hide(opj , op2))

From opi = opj , we deduce that I(op2, opj) · IT (op3, opi) ≡ IT (op3, opj) · I(op2, opi). Hence,

IT (op′2 · op′3, I(op1, opj)) ≡ IT (op′′3 · op′′2, I(op1, opi))

Thus, we have demonstrated that the sequences that follows similar hidden inverse operations after
they are undone are equivalent.

2. ¬Hide(op1, op2) and ¬Hide(op2, op1): so opi and opj do not hide op2. Two cases are to be
discussed according to the hide relation between opi and op3:

164

A.3. Transformation Properties Preservation

(a) ¬Hide(opi, op3):

op′2 = IT (op2, opi)

op′3 = IT (IT (op3, opi), IT (op2, opi))

op′′3 = IT (op3, opj)

op′′2 = IT (IT (op2, opj), IT (op3, opj))

Then,

IT ∗(I(op1, opj), seq1) = IT (IT (I(op1, opj), IT (op2, opi)), op
′
3)

= IT (I(op1, opj), op
′
3) (TR2I)

= I(op1, opj) (TR2I)

and

IT ∗(I(op1, opi), seq2) = IT (IT (I(op1, opi), IT (op3, opj)), op
′′
2)

= IT (I(op1, opi), IT (IT (op2, opj), IT (op3, opj))) (TR2I)

= I(op1, opi) (TR2I)

Thereby showing that indeed RTP2 is satisfied.
Next, we integrate the effect of I(op1, opj) into op′2·op′3 and effect of I(op1, opi) into op′′2 ·op′′3
and show that the resulting sequences are equivalent.

IT (op′2, I(op1, opj)) = IT (IT (op2, op1), I(op1, opj))

= IT (op2, opj)

IT (op′3, IT (I(op1, opj), op
′
2)) = IT (IT (IT (op3, opi), IT (op2, opi)), I(op1, opj))

= IT (IT (op3, opi), IT (op2, opi))

Similarly,

IT (op′′3, I(op1, opi)) = IT (IT (op3, opj), I(op1, opi))

= IT (op3, opj) (TR4)

IT (op′′2, IT (I(op1, opi), op
′
3)) = IT (IT (IT (op2, opj), IT (op3, opj)), I(op1, opi))

= IT (IT (op2, opj), IT (op3, opj))

From opi = opj and TP1, we deduce that IT (op2, opi) · IT (IT (op3, opi), IT (op2, opi)) ≡
IT (op3, opj) · IT (IT (op2, opj), IT (op3, opj)). Hence,

IT (op′2 · op′3, I(op1, opj)) ≡ IT (op′′3 · op′′2, I(op1, opi))

(b) Hide(opi, op3): since opi hide op1 then according to the relation between op1 and op3, we
discuss the following cases:

i. Hide(op1, op3) and Hide(op3, op1): in this case we have:

op′2 = IT (op2, opi)

op′3 = I(op3, op1)

op′′3 = I(op3, op1)

op′′2 = IT (op2, opj)

165

Appendix A. Correctness Proof of the Undo Approach

Thus,

IT ∗(I(op1, opj), op
′
2) = IT (I(op1, opj), IT (op2, opi))

= I(op1, opj) (TR2I)

Which leads to:

IT ∗(I(op1, opj), seq1) = IT (I(op1, opj), I(op3, op1))

= I(op1, opj) (TR2I and Hide(op3, op1))

Similarly,

IT ∗(I(op1, opi), op
′′
3) = IT (I(op1, opi), I(op3, op1))

= I(op1, opi) (TR2I and Hide(op3, op1))

Thus,

IT ∗(I(op1, opi), seq2) = IT (I(op1, opi), IT (op2, opj))

= I(op1, opi) (TR2I)

Thereby showing that indeed, property RTP2 is satisfied by hidden inverse operations.
Next, we integrate the effect of I(op1, opj) and that of I(op1, opi) into op′2 · op′3 and
op′′2 · op′′3 respectively and show that the resulting sequences are equivalent (the proof is
similar to the two precedent sub cases).

IT (op′2, I(op1, opj)) = IT (IT (op2, opi), I(op1, opj))

= IT (op2, opi) (TR5)

IT (op′3, IT (I(op1, opj), op
′
2)) = IT (I(op3, op1), I(op1, opj))

= I(op3, opj) (TR4 and Hide(opj , op3))

Similarly,

IT (op′′3, I(op1, opi)) = IT (I(op3, op1), I(op1, opi))

= I(op3, opi) (TR4 and Hide(opi, op3))

IT (op′′2, IT (I(op1, opi), op
′
3)) = IT (IT (op2, opj), I(op1, opi))

= IT (op2, opj)

From opi = opj , we deduce that IT (op2, opi) ·I(op3, opj) ≡ I(op3, opi) ·IT (op2, opj).
Hence,

IT (op′2 · op′3, I(op1, opj)) ≡ IT (op′′3 · op′′2, I(op1, opi))

ii. Hide(op3, op1) and ¬Hide(op1, op3): in this case we have:

op′2 = IT (op2, opi)

op′3 = IT (I(IT (op3, op1), opj), IT (op2, opi))

= I(IT (op3, op1), opj)

op′′3 = I(IT (op3, op1), opi)

op′′2 = IT (op2, opj)

166

A.3. Transformation Properties Preservation

To integrate the effect of seq1 into I(op1, opj), we proceed as follows:

IT ∗(I(op1, opj), op
′
2) = IT (I(op1, opj), IT (op2, opi)))

= I(op1, opj) (TR2I)

Then,

IT ∗(I(op1, opj), seq1) = IT (I(op1, opj), I(IT (op3, op1), opj))

= I(op1, op3) (TR1I and Hide(op3, op1))

Similarly, integrating seq2 into I(op1, opi) leads to the following sequences:

IT ∗(I(op1, opi), op
′′
3) = IT (I(op1, opi), I(IT (op3, op1), opi))

= I(op1, op3) (TR1I and Hide(op3, op1))

Thus,

IT ∗(I(op1, opi), seq2) = IT (I(op1, op3), IT (op2, opj))

= I(op1, opi) (TR2I)

The result is then obtained.
Next, we integrate the effect of I(op1, opj) I(op1, opi) into op′2 · op′3 and op′′2 · op′′3
respectively in order to show that the resulting sequences are equivalent.

IT (op′2, I(op1, opj)) = IT (IT (op2, opi), I(op1, opj))

= IT (op2, opi) (TR5)

IT (op′3, IT (I(op1, opj), op
′
2)) = IT (I(IT (op3, op1), opj), I(op1, opj))

= I(op3, opj) (TR4)

Similarly,

IT (op′′3, I(op1, opi)) = IT (I(IT (op3, op1), opi), I(op1, opi))

= I(op3, opi) (TR5)

IT (op′′2, IT (I(op1, opi), op
′
3)) = IT (IT (op3, opj), I(op1, opi))

= IT (op2, opj) (TR5)

From opi = opj , we deduce that IT (op2, opi) ·I(op3, opj) ≡ I(op3, opi) ·IT (op2, opj).
Hence,

IT (op′2 · op′3, I(op1, opj)) ≡ IT (op′′3 · op′′2, I(op1, opi))

3. Hide(op1, op2) and ¬Hide(op2, op1): by transitivity, it comes from Hide(opi, op1) and
Hide(opj , op1) that Hide(opi, op2) and Hide(opj , op2). This leads to the following results:

op′2 = I(op2, op1)

op′3 = IT (op3, opi)

op′′3 = IT (op3, opj)

op′′2 = I(op2, op1)

167

Appendix A. Correctness Proof of the Undo Approach

Accordingly, undoing I(op1, opj) leads to:

IT ∗(I(op1, opj), seq1) = IT (IT (I(op1, opj), I(op2, op1)), IT (op3, opi))

= IT (I(IT (op1, op2), opj), IT (op3, opi)) (TR2I and ¬Hide(op2, op1)
= I(op1, opj) (TR2I)

Furthermore,

IT ∗(I(op1, opi), seq2) = IT (IT (I(op1, opj), IT (op3, opj)), op
′′
2)

= IT (I(op1, opi), I(op2, op1)) (TR2I)

= I(IT (op1, op2), opi) (TR2I and ¬Hide(op2, op1)

Consequently, the similarity is preserved by transformation. Thereby showing that indeed RTP2
is satisfied.

Next, we integrate the effect of I(op1, opj) and I(op1, opi) into op′2 ·op′3 and op′′2 ·op′′3 respectively.
Then we demonstrate that the resulting sequences are equivalent.

IT (op′2, I(op1, opj)) = IT (I(op2, opi), I(op1, opj))

= I(op2, opi)

IT (op′3, IT (I(op1, opj), op
′
2)) = IT (IT (op3, opi), I(IT (op1, op2), opj))

= IT (op3, opi) (TR5)

Similarly,

IT (op′′3, I(op1, opi)) = IT (IT (op3, opj), I(op1, opi))

= IT (op3, opj) (TR5)

IT (op′′2, IT (I(op1, opi), op
′
3)) = IT (I(op2, op1), I(op1, opi))

= I(op2, opi) (TR4)

From opi = opj , we deduce that I(op2, opi) · IT (op3, opi) ≡ IT (op3, opj) · I(op2, opi). Hence,

IT (op′2 · op′3, I(op1, opj)) ≡ IT (op′′3 · op′′2, I(op1, opi))

4. ¬Hide(op1, op2) and Hide(op2, op1): in this case, ¬Hide(op1, op3) otherwise by transitivity of
the relation Hide we obtain Hide(op2, op3) which is false. Moreover, ¬Hide(op3, op1) because
if we suppose that ¬Hide(op3, op1), it implies that there is a hide relation between op2 and op3
which is not the case. Consequently, we discuss two cases according to the relation between
opi = opj and op2.

(a) Hide(opi, op2) and¬Hide(op2, opi): this leads to¬Hide(opi, op3) since there is no relation
between op2 and op3. The following transformations are obtained:

op′2 = I(IT (op2, op1), opj)

op′3 = IT (op3, opi)

op′′3 = IT (op3, opj)

op′′2 = I(IT (op2, op1), opi)

168

A.3. Transformation Properties Preservation

Then,

IT (I(op1, opj), op
′
2) = IT (I(op1, opj), I(IT (op2, op1), opj))

= I(op1, op2) (TR1I and Hide(op2, op1))

So,

IT ∗(I(op1, opj), seq1) = IT (I(op1, op2), IT (op3, opi))

= I(op1, op2) (TR2I)

and

IT ∗(I(op1, opi), seq2) = IT (IT (I(op1, opi), IT (op3, opj)), op
′′
2)

= IT (I(op1, opi), I(IT (op2, op1), opi)) (TR2I)

= I(op1, op2) (TR1I and Hide(op2, op1))

The result is then obtained.
Next, we integrate the effect of I(op1, opj) into op′2·op′3 and effect of I(op1, opi) into op′′2 ·op′′3
and show that the resulting sequences are equivalent.

IT (op′2, I(op1, opj)) = IT (I(IT (op2, op1), opj), I(op1, opj))

= I(op2, opj) (TR4)

IT (op′3, IT (I(op1, opj), op
′
2)) = IT (IT (op3, opi), I(op1, opj))

= IT (op3, opi) (TR5)

Similarly,

IT (op′′3, I(op1, opi)) = IT (IT (op3, opj), I(op1, opi))

= IT (op3, opj) (TR5)

IT (op′′2, IT (I(op1, opi), op
′
3)) = IT (I(IT (op2, op1), opi), I(op1, opi))

= I(op2, opi) (TR4)

From opi = opj , we deduce that I(op2, opj) · IT (op3, opi) ≡ IT (op3, opj) · I(op2, opi).
Hence,

IT (op′2 · op′3, I(op1, opj)) ≡ IT (op′′3 · op′′2, I(op1, opi))

(b) Hide(opi, op2) and Hide(op2, opi): we obtain the same transformations as in the precedent
case.

(c) ¬Hide(opi, op2): in this case we have ¬Hide(opi, op3) otherwise there is a hide relation
between op3 and op1 which is not the case.

op′2 = IT (op2, opi)

op′3 = IT (IT (op3, opi), IT (op2, opi))

= IT ∗(op3, opi · op2)

169

Appendix A. Correctness Proof of the Undo Approach

In the same way,

op′′3 = IT (op3, opj)

op′′2 = IT (IT (op2, opj), IT (op3, opj))

= IT ∗(op2, opj · op3)

Then,

IT ∗(I(op1, opj), seq1) = IT (IT (I(op1, opj), IT (op2, opi))), op
′
3)

= IT (I(op1, opj), IT
∗(op3, opi · op2)) (TR2I)

= I(op1, opj)) (TR2I)

Similarly,

IT ∗(I(op1, opi), seq2) = I(op1, opi))

The result is then obtained.
In the following, we integrate the effect of I(op1, opj) into op′2 · op′3 and the effect of
I(op1, opi) into op′′2 · op′′3 . Then we show that the resulting sequences are equivalent.

IT (op′2, I(op1, opj)) = IT (IT (op2, opi), I(op1, opj))

= I(op2, opj) (TR4)

IT (op′3, IT (I(op1, opj), op
′
2)) = IT (IT (IT (op3, opi), IT (op2, opi)), I(op1, opj))

= IT (IT (op3opi), IT (op2, opi)) (TR5)

Similarly,

IT (op′′3, I(op1, opi)) = IT (IT (op3, opj), I(op1, opi))

= IT (op3, opj) (TR5)

IT (op′′2, IT (I(op1, opi), op
′
3)) = IT (IT (IT (op2, opj), IT (op3, opj)), I(op1, opi))

= IT (IT (op2, opj), IT (op3, opj)) (TR4)

From opi = opj and TP1, we deduce that I(op2, opj) · IT (IT (op3opi), IT (op2, opi)) ≡
IT (op3, opj) · IT (IT (op2, opj), IT (op3, opj)). Hence,

IT (op′2 · op′3, I(op1, opj)) ≡ IT (op′′3 · op′′2, I(op1, opi))

Thereby showing that indeed, undoing two similar hidden inverse operations produces equiv-
alent sequences of operations. Q.E.D.

Third case. Hide(op2, op3) and ¬Hide(op3, op2): According to the relation between op1 and both op2
and op3 we discuss the following cases:

1. Hide(op1, op2) and Hide(op2, op1): suppose that Hide(op3, op1), this leads to Hide(op2, op3)
(see Lemma 6.3.10) which is false. Accordingly, we have:

op′2 = I(op2, op1)

op′3 = I(op3, op2)

op′′3 = I(op3, op1)

op′′2 = I(IT (op2, op3), op1)

170

A.3. Transformation Properties Preservation

We first integrate the effect of seq1 into I(op1, opj) as follows:

IT ∗(I(op1, opj), op
′
2) = IT (I(op1, opj), I(op2, op1))

= I(op1, opj) (TR2I and Hide(op2, op1))

Thus,

IT ∗(I(op1, opj), seq1) = IT (I(op1, opj), I(op3, op2))

= I(IT (op1, op3), opj) (TR2I and ¬Hide(op3, op1))

In the same way,

IT ∗(I(op1, opi), op
′′
3) = IT (I(op1, opi), I(op3, op1))

= I(IT (op1, op3), opi)

Consequently,

IT ∗(I(op1, opi), seq2) = IT (I(IT (op1, op3), opi), I(IT (op2, op3), op1))

= I(IT (op1, op3), opi) (TR2I and Lemma 8.1.1)

Thereby showing that indeed RTP2 is satisfied.

Next, we integrate the effect of I(op1, opj) and I(op1, opi) into op′2 ·op′3 and op′′2 ·op′′3 respectively
and show that the resulting sequences are equivalent.

IT (op′2, I(op1, opj)) = IT (I(op2, op1), I(op1, opj))

= I(op2, opj) (TR4 and Hide(opj , op2))

IT (op′3, IT (I(op1, opj), op
′
2)) = IT (I(op3, op2), I(op1, opj))

= I(op3, opj) (TR5)

Similarly,

IT (op′′3, I(op1, opi)) = IT (I(op3, op1), I(op1, opi))

= I(op3, opj) (TR4 and Hide(opj , op3))

IT (op′′2, IT (I(op1, opi), op
′
3)) = IT (I(IT (op2, op3), op1), I(IT (op1, op3), opi))

= I(IT (op2, op3), opi) (TR4)

Consequently I(op2, opj) · I(op3opj) ≡ I(op3, opj) · I(IT (op2, op3), opi) ≡ ∅. Hence,

IT (op′2 · op′3, I(op1, opj)) ≡ IT (op′′3 · op′′2, I(op1, opi))

2. ¬Hide(op1, op2) and ¬Hide(op2, op1): in this case we have:

op′2 = IT (op2, opi)

op′3 = I(IT (op3, opi), IT (op2, opi))

op′′3 = IT (op3, opj)

op′′2 = IT (IT (op2, opj), IT (op3, opj))

171

Appendix A. Correctness Proof of the Undo Approach

Then, according to TR2I,

IT (I(op1, opj), seq1) = I(op1, opj)

IT ∗(I(op1, opi), seq2) = I(op1, opi)

Since IT (I(op1, opj), seq1) = IT ∗(I(op1, opi), seq2), it has now been proved that property
RTP2 is satisfied by hidden inverse operations. Next, we integrate the effect of I(op1, opj)

into op′2 · op′3 and effect of I(op1, opi) into op′′2 · op′′3 and show that the resulting sequences are
equivalent.

IT (op′2, I(op1, opj)) = IT (IT (op2, opi), I(op1, opj))

= IT (op2, opi) (TR5)

IT (op′3, IT (I(op1, opj), op
′
2)) = IT (I(IT (op3, opi), IT (op2, opi)), I(op1, opj))

= I(IT (op3, opi), IT (op2, opi)) (TR5)

Similarly,

IT (op′′3, I(op1, opi)) = IT (IT (op3, opj), I(op1, opi))

= IT (op3, opj) (TR5)

IT (op′′2, IT (I(op1, opi), op
′
3)) = IT (IT (IT (op2, opj), IT (op3, opj)), I(op1, opi))

= IT (IT (op2, opj), IT (op3, opj)) (TR5)

Since Hide(IT (op2, opj), IT (op3, opj)) and TP2 is assumed for the initial set, we deduce that
IT (op2, opi) · I(IT (op3, opi), IT (op2, opi)) ≡ IT (op3, opj) · IT (IT (op2, opj), IT (op3, opj)).
Hence,

IT (op′2 · op′3, I(op1, opj)) ≡ IT (op′′3 · op′′2, I(op1, opi))

Consequently, it has been proved that undoing two similar hidden inverse produces equivalent
sequences of operations.

3. Hide(op1, op2) and ¬Hide(op2, op1): in this case we have:

op′2 = I(op2, op1)

op′3 = I(op3, op2)

op′′3 = I(op3, op1)

op′′2 = I(IT (op2, op3), op1)

Then,

IT ∗(I(op1, opj), seq1) = IT (IT (I(op1, opj), I(op2, op1)), I(op3, op2))

= IT (I(IT (op1, op2), opj , I(op3, op2)) (TR2I and ¬Hide(op2, op1)
= I(IT (op1, op2), opj)

We also have:

IT ∗(I(op1, opi), seq2) = IT (IT (I(op1, opi), I(op3, op1)), I(IT (op2, op3), op1))

= IT (I(IT (op1, op3), opi), I(IT (op2, op3), op1)) (TR2I and ¬Hide(op3, op1))

= I(IT (IT (op1, op3), IT (op2, op3)), opi) (TR2I and ¬Hide(op2, op1))

= I(IT (IT (op1, op2), IT (op3, op2)), opi) (Lemma 8.3.4)
= I(IT (op1, op2), opi) (Lemma 6.3.8)

172

A.3. Transformation Properties Preservation

Thereby showing that indeed RTP2 is satisfied.
Next, we integrate the effect of I(op1, opj) and I(op1, opi) into op′2 · op′3 and op′′2 · op′′3 and show
that the resulting sequences are equivalent.

IT (op′2, I(op1, opj)) = IT (I(op2, op1), I(op1, opj))

= I(op2, opj) (TR4 and Hide(opj , op2))

IT (op′3, IT (I(op1, opj), op
′
2)) = IT (I(op3, op2), I(IT (op1, op2), opj))

= I(op3, op2) (TR5)

Similarly,

IT (op′′3, I(op1, opi)) = IT (I(op3, op1), I(op1, opi))

= I(op3, opi) (TR4 and Hide(opj , op3))

IT (op′′2, IT (I(op1, opi), op
′
3)) = IT (I(IT (op2, op3), op1), I(IT (op1, op3), opi))

= I(IT (op2, op3), opi) (TR4)

Since I(op2, opj) · I(op3, op2) ≡ I(op3, opj) · I(IT (op2, op3), opi) ≡ ∅, we deduce that

IT (op′2 · op′3, I(op1, opj)) ≡ IT (op′′3 · op′′2, I(op1, opi))

4. ¬Hide(op1, op2) and Hide(op2, op1): without loss of generalisation, we suppose that
Hide(opi, op2). Subsequently, op2 and op3 are transformed as follows according to the relation
between op1 and op3:

(a) Hide(op1, op3) and Hide(op3, op1):

op′2 = I(IT (op2, op1), opj)

op′3 = I(IT (op3, op1), op2) (Lemma 6.3.10)
op′′3 = I(op3, op1)

op′′2 = I(IT (op2, op1), opi)

Accordingly, we have

IT (I(op1, opi), op
′
2) = IT (I(op1, opj), I(op3, op1))

= I(op1, op2) (TR1I and Hide(op2, op1))

Thus,

IT (I(op1, opj), seq1) = IT (I(op1, op2), I(IT (op3, op1), op2))

= I(op1, op2) (TR1I and Hide(op3, op1))

Similarly, we have:

IT (I(op1, opj), op
′
3) = IT (I(op1, opi), I(op3, op1))

= I(op1, opi) (TR1I and Hide(op2, op1))

173

Appendix A. Correctness Proof of the Undo Approach

Thus,

IT (I(op1, opi), seq2) = IT (I(op1, opi), I(IT (op2, op1), opi))

= I(op1, op2) (TR1I and Hide(op3, op1))

Then, the integrated forms of both I(op1, opi) and I(op1, opj) are similar. Thereby showing
that indeed RTP2 is satisfied.
In the following, we integrate the effect of I(op1, opj) and I(op1, opi) into op′2 · op′3 and
op′′2 · op′′3 respectively. then we show that the resulting sequences are equivalent.

IT (op′2, I(op1, opj)) = IT (I(IT (op2, op1), opj), I(op1, opj))

= I(op2, opj) (TR4)

IT (op′3, IT (I(op1, opj), op
′
2)) = IT (I(IT (op3, op1), op2), I(op1, op2))

= I(op3, op2) (TR4)

Similarly,

IT (op′′3, I(op1, opi)) = IT (I(op3, op1), I(op1, opi))

= I(op3, opi) (TR5)

IT (op′′2, IT (I(op1, opi), op
′
3)) = IT (I(IT (op2, op1), opi), I(op1, opi))

= I(op2, opi) (TR5)

I(op2, opj) · I(op3, op2) ≡ IT (op3, opi) · I(op2, opi) ≡ ∅, we deduce that

IT (op′2 · op′3, I(op1, opj)) ≡ IT (op′′3 · op′′2, I(op1, opi))

Q.E.D.

(b) Hide(op1, op3) and ¬Hide(op3, op1):

op′2 = I(IT (op2, op1), opj)

op′3 = I(op3, op1) (TR5)

op′′3 = I(op3, op1)

op′′2 = I(IT (op2, op1), opi)

Thus, we transform I(op1, opj) as follows:

IT (I(op1, opj), op
′
2) = IT (I(op1, opj), I(IT (op2, op1), opj)

= I(op1, op2) (TR1I and Hide(op2, op1))

Consequently,

IT (I(op1, opj), seq1) = IT (I(op1, op2), I(op3, op1))

= I(IT (op1, op3), op2) (TR1I and ¬Hide(op3, op1))

Furthermore, we transform I(op1, opi) as follows:

IT ∗(I(op1, opi), op
′′
3) = IT (I(op1, opi), I(op3, op1))

= I(IT (op1, op3), opi) (TR2I and ¬Hide(op3, op1))

174

A.3. Transformation Properties Preservation

Since Hide(op2, op1), then according to TR1I, we have:

IT ∗(I(op1, opi), seq2) = IT (I(IT (op1, op3), opi), I(IT (op2, op1), opi))

= I(IT (op1, op3), op2)

Then, the similarity is preserved by transformation which means that the property RTP2 is
satisfied.
Next, we integrate the effect of I(op1, opj) and I(op1, opi) into op′2 · op′3 and op′′2 · op′′3
respectively. We then show that the resulting sequences are equivalent.

IT (op′2, I(op1, opj)) = IT (I(IT (op2, op1), opj), I(op1, opj))

= I(op2, opj) (TR4)

IT (op′3, IT (I(op1, opj), op
′
2)) = IT (I(op3, op1), I(op1, op2))

= I(op3, op2) (TR5)

Similarly,

IT (op′′3, I(op1, opi)) = IT (I(op3, op1), I(op1, opi))

= I(op3, opi) (TR4)

It comes from TR4 and ¬Hide(op3, op2) that

IT (op′′2, IT (I(op1, opi), op
′
3)) = IT (I(IT (op2, op1), opi), I(IT (op1, op3), opi))

= I(IT (op2, op3), opi)

Since I(op2, opj) · I(op3, op2) ≡ I(op3, opi) · I(IT (op2, op3), opi) ≡ ∅, we deduce that

IT (op′2 · op′3, I(op1, opj)) ≡ IT (op′′3 · op′′2, I(op1, opi))

It has now been proved that undoing two similar hidden inverse operations leads to equivalent
sequences of operations.

(c) ¬Hide(op1, op3) and Hide(op3, op1):

op′2 = I(IT (op2, op1), opj)

op′3 = I(IT (op3, op1), op2)

op′′3 = I(IT (op3, op1), opi)

op′′2 = I(IT (IT (op2, op1), IT (op3, op1)), opi)

= I(IT (IT (op2, op3), IT (op1, op3)), opi)

= I(IT (op2, op3), opi)

First, we transform I(op1, opj) against op′2 as follows:

IT (I(op1, opj), op
′
2) = IT (I(op1, opj), I(IT (op2, op1), opj))

= I(op1, op2) (TR1I and Hide(op2, op1))

Thus, transforming I(op1, opj) against seq1 leads to the following sequences:

IT (I(op1, opj), seq1) = IT (I(op1, op2), op
′
3)

= IT (I(op1, op2), I(IT (op3, op1), op2))

= I(op1, op3) (TR1I and Hide(op3, op1))

175

Appendix A. Correctness Proof of the Undo Approach

Now, we transform I(op1, opi) against op′′3 as follows:

IT ∗(I(op1, opi), op
′′
3) = IT (I(op1, opi), I(IT (op3, op1), opi))

= I(op1, op3) (TR1I and Hide(op3, op1))

Consequently, the transformation of I(op1, opi) against seq2 is:

IT ∗(I(op1, opi), seq2) = IT (I(op1, op3), I(IT (op2, op3), opi))

= I(op1, op3)

Thereby proving that the similarity is preserved by transformation.
Next, we integrate the effect of I(op1, opj) into op′2 · op′3 and the effect of I(op1, opi) into
op′′2 · op′′3 and show that the resulting sequences are equivalent.

IT (op′2, I(op1, opj)) = IT (I(IT (op2, op1), opj), I(op1, opj))

= I(op2, opj) (TR4)

IT (op′3, IT (I(op1, opj), op
′
2)) = IT (I(IT (op3, op1), op2), I(op1, op2))

= I(op3, op2) (TR4)

Similarly,

IT (op′′3, I(op1, opi)) = IT (I(IT (op3, op1), opi), I(op1, opi))

= I(op3, opi) (TR4)

IT (op′′2, IT (I(op1, opi), op
′
3)) = IT (I(IT (op2, op3), opi), I(op1, op3))

= I(IT (op2, op3), opi)

Since I(op2, opj) · I(op3, op2) ≡ I(op3, opi) · I(IT (op2, op3), opi) ≡ ∅, we deduce that

IT (op′2 · op′3, I(op1, opj)) ≡ IT (op′′3 · op′′2, I(op1, opi))

It has now been proved that undoing two similar hidden inverse operations leads to equivalent
sequences of operations.

According to precedent proof, we demonstrate in Theorem 8.3.5 that property TP2 is preserved for
the enhanced set of operations that includes the new semantic of the idle operation. As for resulting logs
after undoing a hidden inverse operation, they are equivalent. Thereby showing that indeed our undo
approach is correct.

Given two similar inverse operations I(op1, opi) ≡ I(op1, opj) and two equivalent logs H1

and H2. Then, the following statements are true:

IT ∗(I(op, opi), H1) ≡ IT ∗(I(op, opj), H2)

IT (H1, I(op, opi)) ≡ IT (H2, I(op, opj))

Theorem 8.3.5 (Undoing Hidden Inverse Operations).

Proof. By induction on |H| and the use of the precedent lemma.

176

Appendix B

A Distributed Garbage Collector for
Cooperative Logs

Collaborative editors are generally based on log usage, as it is necessary to store the track of the oper-
ations received to ensure the convergence of the shared data. Hence, every site s, has to maintain a log
containing the requests of which site s is informed i.e. the requests originated at site s or originated at
other sites and then communicated to s.

The motivation for maintaining a log at each site is that a remote operation must integrate the effect
of all concurrent operations to be executed on the receiver site. However, not all operations received by
a site must be kept in its log. In particular, an operation can be safely deleted from a site’s log if: (i) it is
already received in all other sites and (ii) all operations that depend on it are received by all sites.

Consequently, it is possible and even recommend to use a garbage collection mechanism in order to
clean logs and makes possible to deploy a log-based collaborative editor on a mobile application.

Indeed, the mobile phone technologies are becoming pervasive in recent years. These items such as
IPhones, IPad and Androïds are very attractive since they provide relatively good resources for a mobile
device. Several works aim at integrating desktop applications in these tools to make them closer to the
real computer. However, adapting desktop applications to these tools is a challenging problem as they
do not have the same features.

We stress that even though mobile phones offer ad-hoc communications and are suitable to host
distributed applications, they are battery-powered so less powerful and have limited storage capacities
compared to those offered by computers.

Deploying RCE based on logs on mobile devices can be costly. Indeed, they require lot of memory
to manage the increasing log size. Consequently, a mechanism of garbage collection must be set up to
allow for log reset at a given time and then to start again the collaboration with empty logs what improves
the performances and response time of the collaborative application.

The motivation for garbage collection is twofold. Firstly, storage capacity is not infinite as in practice
memory always has limited size. Secondly, with the continuous increase of log size, the performances
of the system degrade. Hence we need to devise a garbage collection technique allowing to delete all
operations already seen and executed at collaborating sites at a given time knowing that logs are not
identical in different sites as we allow out-of-order execution of operations. Moreover, group size in
collaboration model is dynamic (churn) which complicates the garbage task.

However, many challenges should be taken considered since RCEs have specific requirements that
may not match with those characterizing mobile devices (see Chapter 1):

• High local responsiveness

177

Appendix B. A Distributed Garbage Collector for Cooperative Logs

• High concurrency

• Consistency

• Decentralized coordination

• Scalability

In the following, we present the OPTIC framework. We illustrate garbage collection issues and show
how we can avoid them. Finally, we present our successful garbage collection scheme that optimally
manages mobile devices resources for the OPTIC framework.

B.1 The Coordination Framework OPTIC

In this section, we present the main features and algorithms of the collaborative framework OPTIC [47,
48]. This framework is characterized by its distribution and high performance. It resorts to a novel
technique called semantic dependency for defining the causality relation between document updates and
resorts to the integration functions IT and ET.

Inclusive Transformation. IT algorithm is used to execute concurrent requests in any order.
The transformation function IT used in OPTIC is defined as follows:

1: IT (q1, q2) = q′1
2: q′1 ← q1
3: Choice of q1 and q2
4: Case: q1 = i1 and q2 = i2
5: if (p2 < p1 or (p2 = p1 and q2.c < q1.c)) then q′1.o← Ins(p1 + 1, e1, p1ω1)

6: Case: q1 = i1 and q2 = d2
7: if (p2 < p1) then q′1.o← Ins(p1 − 1, e1, p1ω1)
8: else if (p2 = p1) then q′1.o← Ins(p1, e1, p1ω1)

9: Case: q1 = d1 and q2 = i2
10: if (p2 ≤ p1) then q′1.o← Del(p1 + 1)

11: Case: q1 = d1 and q2 = d2
12: if (p2 < p1) then q′1.o← Del(p1 − 1)
13: else if (p2 = p1) then q′1.o← Nop()

14: Case: q1 = u1 and q2 = i2
15: if (p2 ≤ p1) then q′1.o← Up(p1 + 1, old(u1), new(u1))

16: Case: q1 = u1 and q2 = u2
17: if (p1 = p2) and (q2.c < q1.c) then q′1.o← Up(p1, new(u2), new(u1))
18: else if (p1 = p2) and (q2.c > q1.c) then q′1.o← Nop()

19: Case: q1 = u1 and q2 = d2
20: if (p2 < p1) then q′1.o← Upd(p1 − 1, old(u1), new(u1))
21: else if (p2 = p1) then q′1.o← Nop()
22: end choice
23: return q′1

Algorithm 14: Inclusive transformation.

Exclusive Transformation ET algorithm is used to exclude operations effect in order to reorder logs.
It is given in Algorithm 15.

The coordination protocol proceeds as follows (see Algorithm 16):

178

B.1. The Coordination Framework OPTIC

1: ET (q1, q2) = q′1
2: q′1 ← q1
3: Choice of q1 and q2
4: Case: q1 = i1 and q2 = i2
5: if (p1 = p2 and q1.c ≥ q2.c) or (p1 = p2 + 1 and q1.c ≤ q2.c)) then return “Undefined”
6: else q′1.o← Ins(p1 − 1, e1, ω1)

7: Case: q1 = i1 and q2 = d2
8: if (p1 = p2) then q′1.o← Ins(p1, e1, T l(ω1)) /* Function T l returns the resulting stack without the top position */
9: else if (p1 > p2) then q′1.o← Ins(p1 + 1, e1, T l(ω1))

10: Case: q1 = d1 and q2 = i2
11: if (p1 ≥ p2 + 1) then q′1.o← Del(p1 − 1)
12: else if (p1 = p2) then return “Undefined”
13: Case : q1 = d1 and q2 = d2
14: if (p1 ≥ p2) then q′1.o← Del(p1 + 1)

15: Case : q1 = u1 and q2 = i2
16: if (p1 > p2) then q′1.o← Up(p1 − 1, old(u1), new(u1))
17: else if (p1 = p2) then return “Undefined”
18: Case : q1 = u1 and q2 = d2
19: if (p1 > p2) then q′1.o← Up(p1 + 1, old(u1), new(u1))

20: Case : q1 = u1 and q2 = u2
21: if (p1 = p2 and q1.c > q2.c) then q′1.o← Up(p1, old(u2), new(u1))
22: else if (p1 = p2) return “Undefined”
23: end choice
24: return q′1

Algorithm 15: Exclusive transformation.

1: Main:
2: INITIALIZATION
3: while not aborted do
4: if there is an input o then
5: GENERATE_REQUEST(o)
6: else
7: RECEIVE_REQUEST
8: INTEGRATE_REMOTE_REQUESTS
9: end if

10: end while

11: INITIALIZATION:
12: Q← []
13: L← []
14: l← l0
15: r ← 1
16: c← Identification of local user

17: GENERATE_REQUEST(o):
18: l← Do(o, l)
19: q ← (c, r, null, o)
20: q′ ← COMPUTEBF(q,L)
21: L← CANONIZE(q,L)
22: broadcast q′ to other users

23: RECEIVE_REQUEST:
24: if there is a request q from a network then
25: Q← Q+ q
26: end if

27: INTEGRATE_REMOTE_REQUEST:
28: if there is q in Q that is causally-ready then
29: Q← Q− q
30: q′ ← COMPUTEFF(q,L)
31: l← Do(q′.o, l)
32: L← CANONIZE(q′,L)
33: end if

Algorithm 16: Control Concurrency
Algorithm

1: COMPUTEBF(q,L) : q′

2: q′ ← q
3: for (i = |L| − 1; i ≥ 0; i−−) do
4: if q′ is not dependent of L[i] then
5: q′ ← ET (q′, L[i])
6: else
7: q′.a = (L[i].p, L[i].k,dfj)

{dfj with j = 1, 2, 3, 4 or 5 according to the depen-
dency form}

8: return q′
9: end if

10: end for
11: return q′

Algorithm 17: Detection of Causal Dependency
1: CANONIZE(q,L) : L′

2: L′ ← [L; q]
3: i← |L′| − 1
4: while L′ is not canonical do
5: < L′[i− 1], L′[i] >← PERM(L′[i], L′[i− 1])
6: i← i− 1
7: end while
8: return L′

Algorithm 18: Canonizing Logs
1: COMPUTEFF(q,L) : q′

2: q′ ← q
3: j ← −1
4: if q′.a 6= null then
5: Let L[j] be the request whose q′ depends on (j ∈

{0, . . . , |L| − 1})
6: Modify q′.o with respect to L[j].o and the dependency

form
7: end if
8: for (i = j + 1; i ≤ |L| − 1; i++) do
9: q′ ← IT (q′, L[i])

10: end for
11: return q′

Algorithm 19: Transforming a Request Against
a Log 179

Appendix B. A Distributed Garbage Collector for Cooperative Logs

1. When a user manipulates the local copy of the shared document by generating a cooperative opera-
tion, we determine its causal dependency by the usage of ComputeBF function (see Algorithm 17)
then broadcast it to other users. Note that after each generation of local cooperative request the log
is reorganized (see Algorithm 18) to keep it canonical.

2. Each site has to determine the new form of every remote request using ComputeFF function (see
Algorithm 19) in order to take into account concurrent requests and integrate their effect in the
received request. Once the operation is executed, the log is canonized.

Given the OPTIC framework, our objective is to extend it with a garbage protocol. In the following,
we investigate the issues raised by the garbage process and our solutions to overcome these issues.

B.2 Garbage Collection Issues

The garbage collection represents a real challenge for collaborative editors especially those based on
peer-to-peer communication. In fact, existing solution only fit fixed group size applications having the
same view of logs in all collaborating sites. It should be noted that in dynamic applications, the garbage
collection faces several issues:

First Issue: Out of order execution between garbage and update operations Since logs are equivalent
and not identical from one site to another due to out of order execution of operations, the log removal
operation may be executed on different contexts from one site to another. In such situation, collaborative
editing after the garbage collection procedure inevitably leads to divergence cases as it is shown in the
scenario of Figure B.1. In this scenario, we consider two users that begin the collaboration with the same
initial state "eact". Site 1 generates o1 = ins(1, r) to insert the character r at position 1 and gets the state
"react". The second site removes the character "e" at position 1 with the operation o2 = del(1) and then
gets the state "act". Concurrently, the site 1 initiates garbage collection, cleans his log and propagates
the removal order to the site 2. The latter receives the garbage collection order before the operation o1.
Hence, when he receives o1 = ins(1, r), he executes it in its received form since IT function has no
impact on o1 (the log is empty). Consequently, the final state at site 2 is "ract". Now, site 1 receives
o2 = del(1) and executes it also in its reception form as his log is empty and then derives the state "eact"
which is different from the state of site 2.

It should be pointed out that an operation may also loose its dependency and remains eternally un-
ready if logs are removed in arbitrary fashion.

site 1
“eact”

site 2
“eact”

o1 = Ins(1, r)

��

o2 = Del(1)

��

“react” “act”

GarbageCollection //

“eact” “ract”

Figure B.1: Divergence caused by garbage collection applied on different contexts

Accordingly, cleaning process requires a global view of the collaboration state in order to ensure that
log removal will be executed at the same context in all collaborating sites. In other words, we must be
able to deduce whether an operation was received by all users or not, and whether it is needed by an

180

B.3. Garbage Collection Algorithm

other operation for an integration process. If it is the case, then the operation could be safely removed
from the log. Otherwise, replicas will diverge.

To overcome this problem, it is necessary to draw a global view on the state of each user in order to
decide about the portion of log that could be deleted without leading to divergence. This is possible to
achieve through request-response messages before log removal. The question that arises here: is global
view possible in a dynamic and distributed collaboration?

Second Issue: Scalability Problem Suppose that the garbage collection only begins when all users are
ready to clean their logs. To know if a user is able to remove his log or not, we must wait for his answer.
However in a peer-to-peer context, a user may leave the group at any time and thus never responds to the
garbage request. A user can also crash down and be prevented to respond. In both cases, it is difficult to
take the correct garbage decision while preserving consistency criteria. Because of message asynchrony,
a user has no safe means to know whether another user has or has not crash. Even the timeout approach
has many inconveniences. For instance, a user may respond just after the timeout expiration. Moreover,
even the timeout itself is difficult to define.

The solution proposed in [99] relies on state vectors to draw a state view for each user. Every silent
user has to send periodically the value of its state vector to other users. State vectors of active sites are
deduced from the operations they perform. These vectors are used to calculate a minimal state vector
allowing for garbage decisions. However, this approach is limited to static groups and could not be used
in the case of dynamic groups because of failure impact on the garbage procedure i.e. when a site is
absent or silent, its state vector remains unchanged, then other users could no more delete operations
from their logs.

Third Issue: Joint Problem Another issue that could be faced when trying to garbage logs in RCE is
when the garbage process is disturbed by the join of a new user. It is known that in peer-to-peer context,
a new user can join the group at any time. When a new peer tries to join the group while its members are
processing a garbage collection procedure, we may diverge if that user receives the current log before
its deletion by all the members of the group. Hence, the new user is able to generate new operations
based on a context completely different from other user contexts. Consequently, we inevitably diverge
according to the scenario presented in Figure B.1.

To illustrate this, let us consider the scenario in Figure B.2 in which we have 3 sites collaborating
together in order to edit the same document. The initial group is only composed of users s1 and s2. Then
site s3 decides to join the collaboration. Site s3 requests the log and the state from site s2. Concurrently,
the site s1 initiates a garbage collection and propagates the request to site s2. The latter sends the log and
the state to s3 before receiving the request of the former. Then he decides to empty his log as well as site
s1 does. When s3 is ready to join the group, he has a non empty log while others have empty ones. It is
obvious that the context of s3 is different from that of s1 and s2 which leads to divergence.

B.3 Garbage Collection Algorithm

In this section, we will discuss the concept of garbage and devise solutions for garbage collection. Each
site maintains its own log which can be seen as a dependency tree using the semantic dependency rela-
tions (see Figure 7.1). The leaves of this tree represent a summary about what a site has received since
an operation is causally ready only when its dependency is already executed. Let L be the set of leaves
maintained by each site s. For instance, in the example of Figure 7.1, L = {o3, o4}. Consequently, two
sites having the same set of leaves means that they have executed the same set of operations and hence
they have equivalent logs. This set of leaves is updated each time a local operation is generated or a
distant one is received by replacing old leaves by new ones. The root of the dependency tree noted R

181

Appendix B. A Distributed Garbage Collector for Cooperative Logs

s1 s2 s3

Initiate garbage collection

..

Request state
and log from s2

tt

Send state and log

))End garbage
and delete log

((
End garbage

and delete log
begin the collaboration

with non empty log

ttrr

Figure B.2: Divergence caused by a new user joining the group.

represents the identity of the site that performed the last the garbage collection procedure. The root has
no effect on the state but rather serves as a break point indicating a garbage collection initiation. We
assume that initially every site begins with an empty root.

It is obvious that the tree structure helps to draw the set of leaves and thus facilitates the comparison
between different user logs. Consequently we reduce the size of parsed operations to decide whether the
garbage procedure is allowed or not since we only compare the set of leaves rather than the entire logs.
The tree structure allowing for leaves comparison is used in order to check whether all users have the
same context or not thus we overcome the First Issue presented in Section B.2.

To proceed garbage collection, the collaborating sites exchange some garbage messages to decide
whether it is possible to clean logs or not. In fact, it is not always possible to delete operations from the
log. For instance, two sites having different sets of leaves are unable to clean their logs since we can
deduce that there are operations in network not yet received by all sites. To do so, collaborating sites
have to exchange the following messages in order to decide about the garbage:

• Garbage collection initiation (GCI): is a message sent by the site initiating the garbage collection
procedure; the GCI contains the site identity as well as the set of leaves L.

• Acquirement (ACK): when a site receives the GCI message, he computes the difference between
his set of leaves L and that received in the GCI, then sends the result to the initiator.

• Garbage collection order (GCO): this message contains the root of the new empty tree that will
replace the old one. Thus, when it is received from the initiator, it leads to the removal of the log.

A user can have different three states according to the collaboration state: blocked, active and passive.
He is blocked when a garbage collection procedure is processing and as soon as the garbage ends he turns
to the active state. Otherwise, the user is passive (this is the state when a user joins the group).

In Algorithm 16, we give all the steps of the control concurrency algorithm taking into account the
garbage collection messages.

When a user generates a local operation, he invokes the function that will integrate remote operations
(INTEGRATE_LOCAL_OPERATION). When a user decides to initiate a garbage collection, he processes
the LUNCH_GC procedure. Now, when he receives a garbage collection message, he calls the RE-
CEIVE_GCI_MESSAGE (m) procedure detailed in Algorithm 21 where we can see that according to the

182

B.3. Garbage Collection Algorithm

type of the received message (GCI, ACK or GCO) the user will apply the corresponding processing.
If the message received is a GCI, the user invokes the RECEIVE_GCI_MESSAGE (m) procedure. To
summarize, the garbage collection scheme proceeds in five steps:

1. The garbage collection initiating site stops the local generation of the operations to turn into
blocked state, and sends the GCI message to the rest of the group. At the mean time, the ini-
tiator continues the integration of remote operations.

2. When receiving a GCI message, each site stops the local generation of operations, and checks if
the operations contained in the GCI leaves have already been executed or not. To check it, we
simply compute the difference between the receiver set of leaves and the GCI one. The resulting
set is returned to the initiator in an ACK message. The difference represents the leaves executed
by the site and not yet seen by the initiator site.

3. Each time the initiator receives an ACK message, he stores the difference locally in his own list of
waited operationsW . This list is updated every time he receives one of the waited operations by
extracting this operation from the set. In other words, an ACK message is causally ready when all
leaves it contains are locally executed.

4. The initiator remains blocked until all ACK are received and all waited operations are executed
locally. Note that waited ACK concerns only connected peers that were discovered initially by the
initiator and are continuing the collaboration. New peers or disconnected peers are ignored. Thus
we ensure that the initiator will not wait indefinitely for ACKs and overcome the Second Issue.
When all waited ACK are received andW = ∅, the initiator destroys his log and sends the garbage
order GCO to all the group (see Algorithm 22).

5. When receiving the GCO message, a site executes il when it is causally ready. A GCO message
is causally ready when all operations in its leaves set are already executed at the receiver site.
Otherwise, the GCO is not ready and thus the log removal could not be executed. When the GCO
message is causally ready, we verify whether the set of leaves that it contains is equal to the local
set of leaves. If not, the user is ignored and considered as a new user in the group (he must
request the log from other users). Otherwise, the site deletes its local log and start again the local
generation with an empty log containing the same root received in the GCO.

Note that each collaborating site can generate a garbage collection at any time. Hence, it is possible,
that two or more users initiate two garbage procedures concurrently. To address this case, we associate
a unique identifier that is randomly generated in order to ensure fairness and offer to all users the same
opportunities to initiate a garbage collection procedure. We assume that these identifiers are totally
ordered according to their priorities. The initiator identifier is sent in the GCI. If an initiator receives a
remote GCI, he just compares his identifier to that received in the GCI message (see Algorithm 21). If
he has the high priority, he continues his garbage otherwise, he stops the local garbage procedure and
respond to the initiator by an ACK messages as normal users (see Algorithm 22).

As our algorithm meets peer-to peer networks, users can join the group at any time. The question
that arises here is: what to do when a new user joins the group during a garbage collection procedure?
In fact, as discussed in Section B.2, this situation can lead to replicas divergence if the user that receives
the new one request for log and state has not yet received the GCI message. To avoid the Third Issue
mentioned in section B.2, we simply force the new peer to wait θ time before requesting the log from
the nearest peer. The time θ corresponds to the maximal bound needed by a message to traverse the
network from any sender to its receiver. In our model, we consider that θ is a parameter depending on
network configurations. Consequently, the new users should follow the following steps. First, he sets

183

Appendix B. A Distributed Garbage Collector for Cooperative Logs

his state to passive and waits θ time then sends a request to the nearest peer in order to get the log and
the state. If the user who receives this request is in a blocked state, then the requestor must wait until the
requested user is unblocked. If it is not the case (i.e the requested peer is in active state) he sends his log
and state to the requestor. Otherwise, he waits the reception of the GCO message and then responds (see
Algorithm 20).

1: Main:
2: JOIN
3: INITIALIZATION
4: while not aborted do
5: if there is an input message m then
6: GENERATE_MESSAGE(m)
7: else
8: RECEIVE_MESSAGE
9: end if

10: end while
11: INITIALIZATION:
12: state← active
13: R← " "
14: W ← ∅
15: L ← ∅
16: s← Identification of local user
17: initiator ← false
18: GENERATE_MESSAGE(m):
19: if m is an operation then
20: INTEGRATE_LOCAL_OPERATION
21: else
22: if m is a GCI then
23: LUNCH_GC()
24: end if
25: end if
26: RECEIVE_MESSAGE:
27: if m is an operation then
28: if m ∈ W then
29: W ←W −m
30: end if
31: INTEGRATE_REMOTE_OPERATION
32: else
33: if m is a log request then
34: if state=active then
35: SEND_LOG
36: end if
37: end if
38: else
39: RECEIVE_GCI_MESSAGE (m)
40: end if
41: JOIN:
42: state← passive
43: wait θ
44: send a request log message
45: wait until receiving log
46: for all operation in the log do
47: INTEGRATE_REMOTE_OPERATION
48: end for

Algorithm 20: Control Concurrency Algorithm
with Garbage Collection Scheme

1: RECEIVE_GC_MESSAGE (m)
2: if m = GCI(s′,L′s) then
3: if s < s′ and initiator = true then
4: initiator ← false {Abort garbage collection ini-

tiation}
5: end if
6: state← blocked
7: Lr ← L \ Ls
8: send ACK(Lr)
9: else

10: if m = ACK(L′, s′) and initiator = true then
11: W ←W ∪L′
12: D ← D \ {s′}
13: end if
14: else
15: if m = GCO(s′,L′) then
16: if GCO is causally ready and L′ = L
17: clean log
18: R← s′

19: state← active
20: end if
21: end if

Algorithm 21: Receive Garbage Message
Procedure

1: LUNCH_GC()
2: initiator ← true
3: state← blocked
4: D ← OnlinePeers()
5: send GCI(s,L)
6: wait until D ∩OnlinePeers() = ∅ andW = ∅
7: send GCO(s,L)
8: initiator ← false
9: clean log

10: state← active

Algorithm 22: Lunch Garbage Collection
Procedure

B.4 Illustrative Examples

Example B.4.1. To illustrate the garbage collection scheme, consider the scenario in Figure B.3. In
this Figure, we consider three collaborating sites s1, s2 and s3 where s1 decides to initiate a garbage
collection. The set of leaves of each site are referred to as Ls1 , Ls2 and Ls3 respectively. To initiate the

184

B.4. Illustrative Examples

garbage collection, site s1 stops the local generation of operations, and sends to other sites a garbage
collection message GCI(s1,Ls1) containing his set of leaves Ls1 . When the GCI message arrives at
sites s2 and s3, each site computes the difference between the received set of leaves Ls1 and the local
one (Ls2 for s2 and Ls3 for s3). Then the resulting set is sent to the initiator of GCI (s1) through the
acquirement message ACK. The set of leaves sent in ACK message by s2 and s3 are added to the set
of waited operations (W) by site s1. This list is updated every time a remote operation is received (by
removing the received operation fromW). The group still blocked until all ACK messages are received
by s1 and hisW is empty (i.e. all waited operations are locally executed). Then s1 cleans the log, adds
his identity as the root the new root of the dependency tree, and sends the GCO containing the cleaning
order to other sites of the group (s1 and s2). After the reception of the GCO message, the three sites
starts again the local generation with empty logs.

s1 s2 s3

GCI(s1,Ls1)

++

!!

L1 = Ls2 − Ls1

ACK(s2,L1)

ss

L2 = Ls3 − Ls1

W = L1 ACK(s3,L2)

qq
W = L1 ∪ L2

while (receive remote o)
W ←W \ {o}

if(W is empty) send GCO(s1,Ls1)

%%

++
Clean Log

Clean Log

Figure B.3: Garbage collection scenario 1.

Example B.4.2. To illustrate how we proceed garbage collection in the case of slow or non responding
peers, let us consider the scenario illustrated in Figure B.4 where we have three collaborating sites s1,
s2 and s3. Let Ls1 , Ls2 and Ls3 be the set of leaves of s1, s2 and s3 respectively. Suppose that site s1
initiates the garbage collection. So, he stops the local generation of operations, and sends to other sites
a garbage collection message GCI(s1,Ls1) containing his set of leaves Ls1 . When the GCI message
arrives at sites s2 and s3, each site computes the difference between the received set of leaves Ls1 and
the local one (Ls2 for s2 and Ls3 for s3). Suppose that Ls1 = ∅ which means that s2 has the same set
of leaves as s1 and that Ls3 6= ∅. Moreover, s3 is a slow peer, thus his ACK is not received by s1. When
s1 receives s2’s ACK, he rediscovers connected peers and finds that s3 does not respond. Consequently,
he only consider the ACK of s2. Since W = ∅, s1 sends the GCO message. When received by s2, he
deletes his log since L1 = L2. However, at site s3, the log removal is not executed until all s1 leaves
are executed at site s3 and Ls3 = Ls1 to be sure that all operations seen at site s1 when initiating the
GC are received by s3. It should be noted that if site s3 has generated an operation concurrently to the

185

Appendix B. A Distributed Garbage Collector for Cooperative Logs

garbage collection procedure (Ls3 6= Ls1), this operation will be lost since the set of leaves is different
from that of the initiator. Consequently, the user will be rejected from the garbage collection procedure
and considered as a new user who joins the group thus needing to request the log and the state after the
garbage ends. This issue does not concern local networks since the loss of messages is not frequent but
may be faced in large networks such as Internet.

s1 s2 s3

GCI(s1,Ls1)

((

!!

L1 = Ls2 − Ls1
= ∅

ACK(s2, ∅)

vv

L2 = Ls3 − Ls1
6= ∅

W = L1 ACK(s3,L2)

xx

W = L1 ∪ L2 Slow peer

GCO(s1,Ls1)

$$

,,

if GCO is causally ready and Ls3 = Ls1

Clean Log Clean Log

Figure B.4: Garbage collection scenario 2 (case of a slow peer).

186

Bibliography

[1] http://medianet.kent.edu/surveys/iad04f-p2papplications-amit/p2pa.html.

[2] www.grid5000.fr.

[3] 29th IEEE International Conference on Distributed Computing Systems (ICDCS 2009), 22-26
June 2009, Montreal, Québec, Canada. IEEE Computer Society, 2009.

[4] B. A. and J. F. Barkley. Space: Spacial access control for collaborative virtual envoronments,
1998.

[5] G. D. Abowd and A. J. Dix. Giving undo attention. Interact. Comput., 4(3):317–342, Dec. 1992.

[6] G.-J. Ahn and R. S. Sandhu. The rsl99 language for role-based separation of duty constraints. In
ACM Workshop on Role-Based Access Control, pages 43–54, 1999.

[7] J. E. Archer, Jr. and R. W. Conway. Cope: A cooperative programming environment. Technical
report, Ithaca, NY, USA, 1981.

[8] V. Atluri and W.-k. Huang. An authorization model for workflows. In Proceedings of the 4th
European Symposium on Research in Computer Security: Computer Security, ESORICS ’96,
pages 44–64, London, UK, 1996. Springer-Verlag.

[9] R. M. Baecker, J. Grudin, W. Buxton, and S. Greenberg. Readings in Human-Computer Interac-
tion: Toward the Year 2000. Morgan Kaufmann, Jan. 1995.

[10] M. Y. Becker, C. Fournet, and A. D. Gordon. Secpal: Design and semantics of a decentralized
authorization language. Technical report, In Proceedings of the 20th IEEE Computer Security
Foundations Symposium (CSF, 2006.

[11] K. Berket, A. Essiari, and A. Muratas. Pki-based security for peer-to-peer information sharing,
2004.

[12] T. Berlage. A selective undo mechanism for graphical user interfaces based on command objects.
ACM Trans. Comput.-Hum. Interact., 1(3):269–294, Sept. 1994.

[13] E. Bertino, C. Bettini, E. Ferrari, and P. Samarati. A decentralized temporal autoritzation model.
In SEC, pages 271–280, 1996.

[14] E. Bertino, P. A. Bonatti, and E. Ferrari. A generalized temporal role-based access control model.
Ieee Transactions on Knowledge and Data Engineering, pages 4–23, 2005S.

[15] E. Bertino, S. Castano, and E. Ferrari. Securing xml documents: the author-x project demonstra-
tion. In SIGMOD Conference, page 605, 2001.

187

Bibliography

[16] L. Bouganim, F. D. Ngoc, and P. Pucheral. Client-based access control management for xml
documents. In VLDB, pages 84–95, 2004.

[17] A. Bullock and S. Benford. An access control framework for multi-user collaborative environ-
ments. In GROUP ’99, pages 140–149, New York, NY, USA, 1999. ACM.

[18] P. Cederqvist. Version Management with CVS. Network Theory Ltd., Decembre 2002.

[19] A. Cherif. Du Contrôle d’Accès Dynamique pour les Editeurs Collaboratifs. Mémoire de Master
Recherche, LORIA, Université Henri Poincaré, Nancy, 2008.

[20] A. Cherif and A. Imine. Undo-based access control for distributed collaborative editors. In CDVE,
pages 101–108, 2009.

[21] A. Cherif, A. Imine, and M. Rusinowitch. Optimistic access control for distributed collaborative
editors. In SAC, pages 861–868, 2011.

[22] R. Choudhary and P. Dewan. A general multi-user undo/redo model. In Proceedings of the fourth
conference on European Conference on Computer-Supported Cooperative Work, pages 231–246,
Norwell, MA, USA, 1995. Kluwer Academic Publishers.

[23] M. J. Covington, W. Long, S. Srinivasan, A. K. Dev, M. Ahamad, and G. D. Abowd. Securing
context-aware applications using environment roles. In Proceedings of the sixth ACM symposium
on Access control models and technologies, SACMAT ’01, pages 10–20, New York, NY, USA,
2001. ACM.

[24] B. Crispo, S. Sivasubramanian, P. Mazzoleni, and E. Bertino. P-hera: Scalable fine-grained access
control for p2p infrastructures. Parallel and Distributed Systems, International Conference on,
1:585–591, 2005.

[25] J. F. da Silva, L. P. Gaspary, M. P. Barcellos, and A. Detsch. Policy-based access control in peer-
to-peer grid systems. In GRID ’05: Proceedings of the 6th IEEE/ACM International Workshop on
Grid Computing, pages 107–113, Washington, DC, USA, 2005. IEEE Computer Society.

[26] E. Damiani, S. D. C. di Vimercati, S. Paraboschi, and P. Samarati. A fine-grained access control
system for xml documents. ACM Trans. Inf. Syst. Secur., 5(2):169–202, 2002.

[27] P. Dewan and R. Choudhary. Primitives for programming multi-user interfaces. In UIST, pages
69–78, 1991.

[28] A. Dix, R. Mancini, and S. Levialdi. The cube - extending systems for undo. In In Proc. of
DSVIS’97, pages 473–495. Eurographics, 1997.

[29] J. Douceur and J. S. Donath. The sybil attack. pages 251–260, 2002.

[30] W. K. Edwards. Policies and roles in collaborative applications. In Proceedings of the 1996 ACM
conference on Computer supported cooperative work, CSCW ’96, pages 11–20, New York, NY,
USA, 1996. ACM.

[31] W. K. Edwards. Coordination infrastructure in collaborative systems. In Ph.D. dissertation,
November 22, 1995.

[32] C. A. Ellis and S. J. Gibbs. Concurrency Control in Groupware Systems. In SIGMOD Conference,
volume 18, pages 399–407, 1989.

188

[33] Y. Elrakaiby, F. Cuppens, and N. Cuppens-Boulahia. Interactivity for reactive access control. In
SECRYPT, pages 57–64, 2008.

[34] C. Erbas, S. Sarkeshik, and M. M. Tanik. Different perspectives of the n-queens problem. In
Proceedings of the 1992 ACM annual conference on Communications, CSC ’92, pages 99–108,
New York, NY, USA, 1992. ACM.

[35] D. F. Ferraiolo and J. F. Barkley. Specifying and managing role-based access control within a
corporate intranet. In ACM Workshop on Role-Based Access Control, pages 77–82, 1997.

[36] J. Ferrié, N. Vidot, and M. Cart. Concurrent undo operations in collaborative environments using
operational transformation. In CoopIS/DOA/ODBASE (1), pages 155–173, 2004.

[37] C. K. Georgiadis, I. Mavridis, G. Pangalos, and R. K. Thomas. Flexible team-based access con-
trol using contexts. In Proceedings of the sixth ACM symposium on Access control models and
technologies, SACMAT ’01, pages 21–27, New York, NY, USA, 2001. ACM.

[38] G. S. Graham and P. J. Denning. Protection: principles and practice. In Proceedings of the May
16-18, 1972, spring joint computer conference, AFIPS ’72 (Spring), pages 417–429, New York,
NY, USA, 1972. ACM.

[39] I. Greif and S. Sarin. Data sharing in group work. In Proceedings of the 1986 ACM conference on
Computer-supported cooperative work, CSCW ’86, pages 175–183, New York, NY, USA, 1986.
ACM.

[40] R. Guerraoui and C. Hari. On the consistency problem in mobile distributed computing. In
Proceedings of the second ACM international workshop on Principles of mobile computing, pages
51–57. ACM Press, 2002.

[41] E. Halepovic and R. Deters. The jxta performance model and evaluation. Future Generation
Comp. Syst., 21(3):377–390, 2005.

[42] M. A. Harrison, W. L. Ruzzo, and J. D. Ullman. Protection in operating systems. Commun. ACM,
19:461–471, August 1976.

[43] N. Hayashibara, X. Défago, R. Yared, and T. Katayama. The f accrual failure detector. In SRDS,
pages 66–78, 2004.

[44] C.-T. V. Hu. The policy machine for universal access control. PhD thesis, Moscow, ID, USA,
2002. AAI3055379.

[45] V. C. Hu, D. F. Ferraiolo, and D. R. Kuhn. Assessment of access control systems. Technical
Report 7316, 2006.

[46] C.-L. Ignat and M. C. Norrie. Customizable collaborative editor relying on treeopt algorithm. In
ECSCW, pages 315–334, 2003.

[47] A. Imine. Conception Formelle d’Algorithmes de Réplication Optimiste. Vers l’Edition Collab-
orative dans les Réseaux Pair-à-Pair. Phd thesis, University of Henri Poincaré, Nancy, France„
December 2006.

[48] A. Imine. Coordination model for real-time collaborative editors. In COORDINATION, pages
225–246, 2009.

189

Bibliography

[49] A. Imine, A. Cherif, and M. Rusinowitch. A flexible access control model for distributed collab-
orative editors. In Secure Data Management, pages 89–106, 2009.

[50] A. Imine, M. Rusinowitch, G. Oster, and P. Molli. Formal design and verification of operational
transformation algorithms for copies convergence. Theoretical Computer Science, 351(2):167–
183, 2006.

[51] T. Jaeger and A. Prakash. Requirements of role-based access control for collaborative systems. In
ACM Workshop on Role-Based Access Control, 1995.

[52] T. Jaeger and A. Prakash. Requirements of role-based access control for collaborative systems. In
RBAC ’95, page 16, New York, NY, USA, 1996. ACM.

[53] T. Jaeger and A. Prakash. Requirements of role-based access control for collaborative systems. In
Proceedings of the first ACM Workshop on Role-based access control, RBAC ’95, New York, NY,
USA, 1996. ACM.

[54] M. H. Kang, J. S. Park, and J. N. Froscher. Access control mechanisms for inter-organizational
workflow. In Proceedings of the sixth ACM symposium on Access control models and technologies,
SACMAT ’01, pages 66–74, New York, NY, USA, 2001. ACM.

[55] D. Kulkarni and A. Tripathi. Context-aware role-based access control in pervasive computing
systems. In Proceedings of the 13th ACM symposium on Access control models and technologies,
SACMAT ’08, pages 113–122, New York, NY, USA, 2008. ACM.

[56] L. Lamport. Time, clocks, and the ordering of events in a distributed system. Commun. ACM,
21:558–565, July 1978.

[57] B. W. Lampson. Protection. SIGOPS Oper. Syst. Rev., 8:18–24, January 1974.

[58] D. Li and R. Li. Ensuring Content Intention Consistency in Real-Time Group Editors. In IEEE
ICDCS’04, Tokyo, Japan, March 2004.

[59] D. Li and R. Li. An operational transformation algorithm and performance evaluation. Computer
Supported Cooperative Work, 17(5-6):469–508, 2008.

[60] D. Li and R. Li. An admissibility-based operational transformation framework for collaborative
editing systems. Computer Supported Cooperative Work, 19(1):1–43, 2010.

[61] P. B. Lowry, A. M. Curtis, and M. R. Lowry. A Taxonomy of Collaborative Writing to Improve
Empirical Research, Writing Practice, and Tool Development. Journal of Business Communica-
tion, 41(1):66–99, 2004.

[62] B. Lushman and G. V. Cormack. Proof of correctness of ressel’s adopted algorithm. Information
Processing Letters, 86(3):303–310, 2003.

[63] R. C. Mayer, J. H. Davis, and F. D. Schoorman. An Integrative Model of Organizational Trust.
The Academy of Management Review, 20(3):709–734, 1995.

[64] M. D. Mechaoui, A. Cherif, A. Imine, and F. Bendella. Log garbage collector-based real time
collaborative editor for mobile devices. In CollaborateCom, pages 1–10, 2010.

190

[65] G. Miklau and D. Suciu. Controlling access to published data using cryptography. In Proceedings
of the 29th international conference on Very large data bases - Volume 29, VLDB ’2003, pages
898–909. VLDB Endowment, 2003.

[66] P. Molli, G. Oster, H. Skaf-Molli, and A. Imine. Using the transformational approach to build a
safe and generic data synchronizer. In Proceedings of the 2003 international ACM SIGGROUP
conference on Supporting group work, pages 212–220. ACM Press, 2003.

[67] S. Noël and J.-M. Robert. Empirical study on collaborative writing: What do co-authors do, use,
and like? Comput. Supported Coop. Work, 13(1):63–89, Jan. 2004.

[68] D. A. Norman and S. W. Draper. User Centered System Design; New Perspectives on Human-
Computer Interaction. L. Erlbaum Associates Inc., Hillsdale, NJ, USA, 1986.

[69] S. L. Osborn, R. S. Sandhu, and Q. Munawer. Configuring role-based access control to enforce
mandatory and discretionary access control policies. ACM Trans. Inf. Syst. Secur., 3(2):85–106,
2000.

[70] G. Oster, P. Urso, P. Molli, and A. Imine. Data consistency for p2p collaborative editing. In
CSCW, pages 259–268, 2006.

[71] J. S. Park, R. Sandhu, and G.-J. Ahn. Role-based access control on the web. ACM Trans. Inf. Syst.
Secur., 4:37–71, February 2001.

[72] B. C. Pierce and J. Vouillon. What’s in unison? a formal specification and reference implementa-
tion of a file synchronizer. Technical report, 2004.

[73] D. Povey. Optimistic security: a new access control paradigm. In NSPW ’99: Proceedings of the
1999 workshop on New security paradigms, pages 40–45. ACM, 2000.

[74] A. Prakash and M. J. Knister. A framework for undoing actions in collaborative systems. ACM
Trans. Comput.-Hum. Interact., 1(4):295–330, 1994.

[75] F. Rabitti, E. Bertino, W. Kim, and D. Woelk. A model of authorization for next-generation
database systems. ACM Trans. Database Syst., 16(1):88–131, 1991.

[76] I. Ray and T. Xin. Concurrent and real-time update of access control policies. In DEXA, pages
330–339, 2003.

[77] M. Ressel and R. Gunzenhäuser. Reducing the problems of group undo. In GROUP ’99: Proceed-
ings of the international ACM SIGGROUP conference on Supporting group work, pages 131–139,
New York, NY, USA, 1999. ACM.

[78] M. Ressel, D. Nitsche-Ruhland, and R. Gunzenhauser. An Integrating, Transformation-Oriented
Approach to Concurrency Control and Undo in Group Editors. In ACM CSCW’96, pages 288–297,
Boston, USA, November 1996.

[79] P. Samarati, P. Ammann, and S. Jajodia. Maintaining replicated authorizations in distributed
database systems. Data Knowl. Eng., 18(1):55–84, 1996.

[80] P. Samarati and S. D. C. di Vimercati. Access control: Policies, models, and mechanisms. In
FOSAD, pages 137–196, 2000.

191

Bibliography

[81] P. Samarati and S. D. C. di Vimercati. Access control: Policies, models, and mechanisms. In
FOSAD, pages 137–196, 2000.

[82] R. Sandhu and P. Samarati. Access control: Principles and practice. In IEEE Communications,
pages 40–48, 1994.

[83] R. Sandhu and X. Zhang. Peer-to-peer access control architecture using trusted computing tech-
nology. In Proceedings of the tenth ACM symposium on Access control models and technologies,
SACMAT ’05, pages 147–158, New York, NY, USA, 2005. ACM.

[84] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman. Role-based access control models.
Computer, 29(2):38–47, 1996.

[85] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman. Role-based access control models.
IEEE Computer, 29(2):38–47, 1996.

[86] R. S. Sandhu, D. F. Ferraiolo, and D. R. Kuhn. The nist model for role-based access control:
towards a unified standard. In ACM Workshop on Role-Based Access Control, pages 47–63, 2000.

[87] R. S. Sandhu and R. K. Thomas. Conceptual foundations for a model of task-based authorizations.
In CSFW, pages 66–79, 1994.

[88] B. Shao, D. Li, and N. Gu. An algorithm for selective undo of any operation in collaborative
applications. In GROUP, pages 131–140, 2010.

[89] H. Shen and P. Dewan. Access control for collaborative environments. In CSCW ’92, pages 51–58,
New York, NY, USA, 1992. ACM.

[90] B. SHNEIDERMAN. The future of interactive systems and the emergence of direct manipulation?
Behaviour & Information Technology, 1(3):237–256, 1982.

[91] M. Sohlenkamp and G. Chwelos. Integrating communication, cooperation, and awareness: the
diva virtual office environment. In Proceedings of the 1994 ACM conference on Computer sup-
ported cooperative work, CSCW ’94, pages 331–343, New York, NY, USA, 1994. ACM.

[92] R. Stallman. Gnu emacs manual. Technical report, 2007.

[93] C. Sturm, K. R. Dittrich, and P. Ziegler. An access control mechanism for p2p collaborations. In
Proceedings of the 2008 international workshop on Data management in peer-to-peer systems,
DaMaP ’08, pages 51–58, New York, NY, USA, 2008. ACM.

[94] M. Suleiman, M. Cart, and J. Ferrié. Serialization of concurrent operations in a distributed collab-
orative environment. In ACM GROUP’97, pages 435–445, November 1997.

[95] M. Suleiman, M. Cart, and J. Ferrié. Concurrent operations in a distributed and mobile collabora-
tive environment. In IEEE ICDE’98, pages 36–45, 1998.

[96] C. Sun. Undo any operation at any time in group editors. In In Computer-Supported Cooperative
Work (CSCW, pages 191–200, 2000.

[97] C. Sun. Undo as concurrent inverse in group editors. ACM Trans. Comput.-Hum. Interact.,
9(4):309–361, 2002.

192

[98] C. Sun and C. Ellis. Operational transformation in real-time group editors: issues, algorithms, and
achievements. In ACM CSCW’98, pages 59–68, 1998.

[99] C. Sun, X. Jia, Y. Zhang, Y. Yang, and D. Chen. Achieving Convergence, Causality-preservation
and Intention-preservation in real-time Cooperative Editing Systems. ACM Trans. Comput.-Hum.
Interact., 5(1):63–108, March 1998.

[100] C. Sun, S. Xia, D. Sun, D. Chen, H. Shen, and W. Cai. Transparent adaptation of single-user ap-
plications for multi-user real-time collaboration. ACM Trans. Comput.-Hum. Interact., 13(4):531–
582, 2006.

[101] D. Sun and C. Sun. Context-based operational transformation in distributed collaborative editing
systems. IEEE Trans. Parallel Distrib. Syst., 20(10):1454–1470, 2009.

[102] D. Sun, S. Xia, C. Sun, and D. Chen. Operational transformation for collaborative word process-
ing. In CSCW, pages 437–446, 2004.

[103] S. G. Tammaro, J. N. Mosier, N. C. Goodwin, and G. Spitz. Collaborative writing is hard to
support: A field study of collaborative writing. Comput. Supported Coop. Work, 6(1):19–51, apr
1997.

[104] W. Teitelman. Interlisp reference manual, 1978.

[105] R. K. Thomas. Team-based access control (tmac): a primitive for applying role-based access
controls in collaborative environments. In Proceedings of the second ACM workshop on Role-
based access control, RBAC ’97, pages 13–19, New York, NY, USA, 1997. ACM.

[106] R. K. Thomas and R. S. Sandhu. Task-based authorization controls (tbac): A family of models for
active and enterprise-oriented authorization management. In In Proceedings of the IFIP WG11.3
Workshop on Database Security, Lake Tahoe, pages 166–181, 1997.

[107] W. Tolone, G.-J. Ahn, T. Pai, and S.-P. Hong. Access control in collaborative systems. ACM
Comput. Surv., 37:29–41, March 2005.

[108] E. Tsang. Foundations of constraint satisfaction, 1993.

[109] N. Vidot, M. Cart, J. Ferrié, and M. Suleiman. Copies convergence in a distributed real-time
collaborative environment. In ACM CSCW’00, Philadelphia, USA, December 2000.

[110] J. S. Vitter. User: A new framework for redoing. In Software Development Environments (SDE),
pages 168–176, 1984.

[111] W. Wang. Team-and-role-based organizational context and access control for cooperative hyper-
media environments. In Proceedings of the tenth ACM Conference on Hypertext and hypermedia
: returning to our diverse roots: returning to our diverse roots, HYPERTEXT ’99, pages 37–46,
New York, NY, USA, 1999. ACM.

[112] R. W.Baldwin. Naming and grouping privileges to simplify security management in large
database. In IEEE Computer Society Syposium on Research in Security and Privacy, pages 71–60,
1990.

[113] S. Weiss, P. Urso, and P. Molli. Compensation in Collaborative Editing. Rapport de recherche
RR-6160, INRIA, 2007.

193

Bibliography

[114] S. Weiss, P. Urso, and P. Molli. An Undo Framework for P2P Collaborative Editing. In Elisa
Bertino and James B.D. Joshi, editors, 4th International Conference on Collaborative Comput-
ing : Networking, Applications and Worksharing - CollaborateCom, volume 10, pages 529–544,
Orlando États-Unis, 11 2008. Springer Berlin Heidelberg.

[115] T. Wobber, T. L. Rodeheffer, and D. B. Terry. Policy-based access control for weakly consistent
replication. In Proceedings of the 5th European conference on Computer systems, EuroSys ’10,
pages 293–306, New York, NY, USA, 2010. ACM.

[116] T. Xin and I. Ray. A lattice-based approach for updating access control policies in real-time. Inf.
Syst., 32(5):755–772, 2007.

[117] T. Xin and I. Ray. A lattice-based approach for updating access control policies in real-time. Inf.
Syst., 32:755–772, July 2007.

[118] G. Zhang and M. Parashar. Context-aware dynamic access control for pervasive applications. In In
Communication Networks and Distributed Systems Modeling and Simulation Conference., 2004.

194

Abstract

The importance of collaborative systems in real-world applications has grown significantly over the
recent years. The majority of new applications are designed in a distributed fashion to meet collaborative
work requirements. Among these applications, we focus on Real-Time Collaborative Editors (RCE) that
provide computer support for modifying simultaneously shared documents, such as articles, wiki pages
and programming source code by dispersed users. Although such applications are more and more used
into many fields, the lack of an adequate access control concept is still limiting their full potential. In
fact, controlling access in a decentralized fashion for such systems is a challenging problem, as they
need dynamic access changes and low latency access to shared documents. In this thesis, we propose
a generic access control model based on replicating the shared document and its authorization policy at
the local memory of each user. We consider the propagation of authorizations and their interactions. We
propose a optimistic approach to enforce access control in existing collaborative editing solutions in the
sense that a user can temporarily violate the access control policy. To enforce the policy, we resort to the
selective undo approach in order to eliminate the effect of illegal document updates. Since, the safe undo
is an open issue in collaborative applications. We investigate a theoretical study of the undo problem
and propose a generic solution for selectively undoing operations. Finally, we apply our framework on a
collaboration prototype and measure its performance in the distributed grid GRID’5000 to highlight the
scalability of our solution.

Keywords: Access Control, Collaborative Editors, Operational Transformation Approach (OT), Selec-
tive Undo.

Résumé

L’importance des systèmes collaboratifs a considérablement augmenté au cours des dernières années.
La majorité de nouvelles applications sont conçues de manière distribuée pour répondre aux besoins du
travail collaboratif. Parmi ces applications, nous nous intéressons aux éditeurs collaboratifs temps-réel
(RCE) qui permettent la manipulation de divers objets partagés, tels que les pages wiki ou les articles
scientifiques par plusieurs personnes réparties dans le temps et dans l’espace. Bien que ces applications
sont de plus en plus utilisées dans de nombreux domaines, l’absence d’un modèle de contrôle d’accès
adéquat limite l’exploitation de leur plein potentiel. En effet, contrôler les accès aux documents partagés
de façon décentralisée et sans alourdir les performances du système collaboratif représente un vrai chal-
lenge, surtout que les droits d’accès peuvent changer fréquemment et de façon dynamique au cours du
temps. Dans cette thèse, nous proposons un modèle de contrôle d’accès générique basé sur l’approche
de réplication optimiste du document partagé ainsi que sa politique de contrôle d’accès. Pour cela, nous
proposons une approche optimiste de contrôle d’accès dans la mesure où un utilisateur peut violer tempo-
rairement la politique de sécurité. Pour assurer la convergence, nous faisons recours à l’annulation sélec-
tive pour éliminer l’effet des mises à jour illégales. Vu l’absence d’une solution d’annulation générique
et correcte, nous proposons une étude théorique du problème d’annulation et nous concevons une solu-
tion générique basée sur une nouvelle sémantique de l’opération identité. Afin de valider notre approche
tous nos algorithmes ont été implémentés en Java et testés sur la plateforme distribuée Grid’5000.

Mots-clés: Contrôle d’Accès, Editeurs Collaboratifs, Transformée Opérationnelle, Annulation Sélective.

	Couverture
	Acknowledgments
	Dédicace
	Contents
	General Introduction
	Motivations
	General Context
	Access Control Issues and Requirements in Distributed Collaborative Editors
	Undoability in Distributed Collaborative Editors
	Contributions
	Thesis organization

	State of the Art
	Collaborative Editors
	Real Time Collaborative Editors
	Overview on the Operational Transformation (OT) Approach

	Access Control for Collaborative Editors
	Access Control Issues and Requirements in Collaborative Applications
	Classes of Access Control Policies
	Access Control in Database Area
	Access Control for P2P Systems
	Comparing Existing Solutions

	Conclusion

	Our Generic Access Control Model
	Coordination Model
	Shared Data Object
	Shared Policy Object
	Single and Multi-Administrator Approaches

	Concurrency and Security Issues
	Out-of-order Execution of Cooperative and Administrative Operations
	Joint Issue
	Remote Check and Unnecessary Undo

	A Generic Security Model
	Distributed Garbage Collection for Administrative Logs
	Garbage Collection Issues

	Conclusion

	Concurrency Control Algorithms and Correctness Proof
	Concurrency Control Algorithms
	Cooperative Requests
	Administrative Requests
	Causality Between Cooperative and Administrative Requests
	Control Procedures
	Check Procedures
	Administrative Procedures
	Asymptotic Time Complexities
	Illustrative Example

	Correctness Proof
	General Principles
	The Correctness Criteria

	Conclusion

	On the Undoability Problem in Distributed Collaborative Editors
	Notations
	Undo Approach
	Principle
	Undo Effect
	Undo Properties
	Illustrative Examples

	Related Work
	Proposed Undo Solutions for Single-user Editors
	Undo Solutions for Collaborative Editors

	Conclusion

	A Necessary and Sufficient Condition for Undoability
	Formal Problem Statement
	Necessary and Sufficient Condition for Undoability
	CCO Properties
	CSP Model
	Necessary and Sufficient Condition for Undoability
	Discussion

	Our Generic Undo Framework
	The Hide Relation
	Transformation Rules
	Illustrative Example
	Asymptotic Time Complexity of the Undo Command

	Conclusion

	Experimental Study and Performance Measurements
	Coordination Framework
	OPTIC Characteristics
	Garbage Collector for Cooperative Logs

	Developement Frameworks
	JXTA
	NetBeans
	Grid'5000

	Experimental Results for the Coordination Layer
	Metrics
	Performances of the Desktop Application
	Performances of the Mobile Devices Application

	Experimental Results for the Security Layer
	P2PAgenda Prototype
	Processing Time for Checking Local and Remote Requests
	Response Time Variation with Peers Number
	Access Control Overhead

	Conclusion

	General Conclusion
	Summary
	Why RCE Require Access Control?
	Access Control Requirements and Issues
	Undoing Operations in RCE

	Summary of the Contributions
	Directions for Future Work

	Correctness Proof of the Undo Approach
	 Hide Relation Properties
	Inverse properties Preservation
	Transformation Properties Preservation
	TP1 Preservation
	TP2 Preservation

	A Distributed Garbage Collector for Cooperative Logs
	The Coordination Framework OPTIC
	Garbage Collection Issues
	Garbage Collection Algorithm
	Illustrative Examples

	Bibliography
	Abstract
	Résumé

