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1.1 Motivations

The project summarized in this thesis aims at developing techniques to support access control in dis-
tributed collaborative editors. The ever-increasing role of Computer Supported Cooperative Work
(CSCW) in academic, industry and society comforts the expansion of data sharing and raises grow-
ing concerns about the security of these shared data. The last technological advances have allowed for a
distributed storage of the shared data which open up opportunities to communicate and cooperate on a
given task while being geographically dispersed. With more and more data shared between many users,
controlling access to this data has emerged as one of the main challenges of computer security. Conse-
quently, access control in collaborative applications is increasingly attracting the attention of researcher
intrigued by the multidisciplinary aspect and reach of such applications. Indeed, CSCW can be deployed
on a wide range of applications such as collaborative editing, data sharing, video conferencing, workflow
management, and so on. One major issue when considering security in collaborative applications is the
management of a dynamic environment where the security policy may evolve over time, and of course,
the shared document may be frequently updated. Moreover, an access control model has to satisfy the
collaborative applications requirements namely, the distribution and the high local responsiveness. How-
ever, maintaining security policy while meeting these requirements is really a hard task since, policy view
may be different from one site to another which may lead to security holes, not to mention convergence
issues. Indeed, if security policy can be temporarily inconsistent, any given action may be authorized at
one site and yet denied at another. This is troublesome since it may lead to permanent divergent state of
the shared document.

Collaborative Editors. Collaborative editing systems are famous applications allowing people dis-
tributed in time and space to work together on shared documents in order to perform a given task. These
systems are more and more used since they have many benefits such as shorting the production time
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of the final document, improving the final result by reducing errors, getting different viewpoints and
skills [|67,{103},113]]. Collaborative editors are especially used by committees producing reports and sci-
entists collaborating on a research project [[67]. The most famous collaborative editor is Google Docs
which enables many users in different locations to collaborate simultaneously on the same document.

Access Control. Access control specifies mechanisms to enforce a security policy that regulates the
actions a user can perform. For instance, the read, write and execute permissions associated with Unix
files represent a typical example of access rights allowing users and programs to securely share resources
of the same system. Most modern operating systems define sets of permissions that are variations or
extensions of these three basic types of access. It is worth to mention that privacy and security issues are
the foremost arguments for controlling access to data. Access control especially aims at preventing the
dissemination of sensitive information which may threat the security of both individuals and companies.

Many researches were conducted towards formalizing access control since year 1971, shortly after
the commercialization of time sharing systems. The access matrix model [38,42,|57]], represents the
policy for user authentication, and has several implementations such as access control lists (ACL) and
capability lists (CL). It is used to describe which users have access to what objects. This model provides
the basic framework to describe protection systems [89]. However, it does not specify the exact nature
of the subjects, objects or access rights [89]]. Another important model for access control is the Role
Based Access Control (RBAC) [84}112] model where a role-based policy is a policy that regulates
access control of users to resources or objects in the system according to the organizational activities and
responsibilities of each user in the system. RBAC is appropriate to business activities since it naturally
maps to an organization’s structure [80].

Few researches have addressed access control issues in collaborative applications. A collaborative
environment has to manage the frequent changing of access rights by users. Unfortunately, Access Con-
trol Lists (ACL) and Capability Lists (CL) do not suit very well dynamic change of permissions [[107]].
As a matter of fact, the administrator of collaborative environments often sets stricter permissions, as
multiple users with different levels of privileges will try to access shared resources [89].

Approaches based on RBAC [84] overcome some problems with dynamic change of rights thanks to
the session notion [52]. However, the "session" concept also prevents a dynamic reassignment of roles
since roles cannot be changed within a single session. To solve this problem, Spatial Access Control
(SAC) has been proposed [17]] where instead of splitting users into groups as in RBAC, SAC divides the
collaborative environment into abstract spaces. However, this needs prior knowledge of the practice used
in the collaborative system. Moreover, this solution requires locking data-structures since every access
needs to check the underlying access data-structures which reduces collaborative work performance.

Other works addressed security in peer-to-peer (P2P) environments (e.g. [11]). Some of them rely on
eXtensible Access Control Markup Language (XACML) policies [24}25] to specify the access restric-
tions on the data offered by the peers for hierarchical P2P networks. However, none of these solutions
considers existing access control components and collaborative applications residing on the peers [93]].

In database area, some works propose a replicated access control [13}/79,|116]. For maintaining
authorization consistency, these works generally rely on concurrency control techniques that are suit-
able for database systems such as explicit locking or transaction processing which are inappropriate for
Real Time Collaborative Editors (RCE) [32]. For instance, [79] proposes an access control model for
replicated databases. However, authorizations are timestamped and hence the solution does not scale.

Bouganim et al. [[16] proposed a client-based evaluator of access control rules for regulating access
to XML documents based on the access control model of Samarati [[26]] and [[15]]. However, this evaluator
only concerns passive users that only have the right to read shared documents and can not update them.
The approach of Wobber et al. [[115]] dealt with security issues in weakly consistent state-based replicated
systems. The proposed authorization policy allows only for positive rights, i.e no explicit access denial

2
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is supported. Although delegation is allowed, the revocation is limited in order to avoid ambiguity. Fur-
thermore, policy enforcement relies on a trust anchor for all collaborating items. The crash of this single
root would create security problems and blocks the collaboration unless it delegates all his capabilities
to another user.

1.2 General Context

A collaborative system provides a set of shared textual or graphical objects that may be accessed by users
at any time. According to the communication type offered by a CSCW system, two kinds of systems are
known:

e Synchronous systems which allow users to cooperate in a real time fashion. In fact, updates of
the shared objects are carried out and broadcast immediately to other users. Collaborative editors
represent a typical example of these systems since they provide interactivity between users [32}[78}
94,[102]]. Indeed, each user edits his local document then sends his modifications to other users in
order to see immediately the effect of his updates on their copies of the shared document.

e Asynchronous systems which enable users to collaborate at different times [9]. Thus, users con-
tributions may be observed with a delay. Versions management tools such as CVS [18]] and file
synchronizers such as Unison [[72] support asynchronous communications. For instance, a file
synchronizer allows users to edit a shared file at different times then merge their changes later in
order to get the same final view of the shared file.

In our work, we focus on real-time collaborative editors which are distributed systems based on
the interaction of several users trying to edit simultaneously shared documents, such as articles, wiki
pages and program source code. To improve availability of data, each user has a local copy of the
shared documents. In general, the collaboration is performed as follows: each user’s updates are locally
executed in a non blocking manner and then are propagated to the other sites in order to be executed
on remote copies. Although being distributed applications, RCE are specific in the sense that they must
consider human factors. So, they are characterized by the following requirements [48]]:

e High local responsiveness: the system has to be as responsive as a single-user editor [32,/99,100];

e High concurrency: the users must be able to concurrently and freely modify any part of the shared
document at any time [32,99];

e Consistency: the users must eventually be able to see a converged view of all copies [32,99];

o Decentralized coordination: all concurrent updates must be synchronized in a decentralized fash-
ion in order to avoid a single point of failure;

e Scalability: a group must be dynamic in the sense that users may join or leave the group at any
time [48]].

It is very difficult to meet these requirements when deploying RCE in networks with high com-
munication latencies (e.g. Internet). Due to replication and arbitrary exchange of updates, consistency
maintenance in a scalable and decentralized manner is a challenging problem. Traditional concurrency
control techniques, such as (pessimistic/optimistic) locking and serialization, turned out to be ineffective
because they may ensure consistency at the expense of responsiveness and loss of updates [32}58,99].

To maintain consistency, while maintaining concurrency, an Operational Transformation (OT) ap-
proach has been proposed in [[32//98]]. Another approach was proposed in [3]], it is based on Commutative
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Replicated Data Type (CRDT). For such data type, convergence is obtained for free [3|]. The main issue
here is how to uniquely identify the shared document’s elements in order to enforce a natural commuta-
tivity between concurrent updates.

In our thesis, we focus on OT-based RCE since OT is application-independent and used in many col-
laborative editors including Joint Emacs [78]] (a groupware based on Emacs text editor), CoWord [[100]]
and CoPowerPoint [[100] and a file synchronizer [66| distributed with the LibreSource Communityﬂ and
Google Wave OT also has been proposed as a consistency model for replicated mobile computing [40].

To deal with concurrent operations, OT uses an algorithm, called inclusive transformation [98|] and
denoted by function IT, to merge these operations regardless reception order. Let op; and ops be two
concurrent operations. Intuitively, I7'(op;, op2) transforms op; against ops in order to include the effect
of opz in op;. The transformed form of op; is then executed after ops. For instance, consider the
scenario presented in Figure [I.T| where two users work on a shared document. Just to simplify, we
consider that the document is represented by a sequence of characters. These characters are addressed
from 1 to the end of the document. Initially, both copies hold the string “efecte”. User 1 executes
operation op; = Ins(2, f,1) to insert the character ‘f* at position 2. Concurrently, user 2 performs
opz = Del(6,2) to delete the character ‘e’ at position 6. At site 1, ops needs to be transformed in order
to include the effect of op;: opy = IT((Del(6,2),Ins(2, f,1)) = Del(7,2). The deletion position of
op2 is incremented because op; has inserted a character at position 1, which is before the the position of
the character deleted by ops.

site 1 site 2
“efecte” “efecte”
op1 = Ins(2, f,1) opa = Del(6,2)

i
IT(opa2,0p1) = Del(7,2) IT(op1,0p2) = Ins(2, f,1)

Figure 1.1: Serialization of concurrent update with OT approach

1.3 Access Control Issues and Requirements in Distributed Collaborative
Editors

Access Control represents an essential part of any information sharing system. In particular, coordi-
nating access to shared information is currently a hot topic in CSCW. As more and more people are
working together in a collaborative manner in order to edit the same shared document, across wide areas,
it becomes increasingly important to provide collaborative editing applications with flexible yet simple
access mechanisms to keep shared information secure. Indeed, collaborative applications provide infor-
mation and resources characterized by different degrees of sensitivity such as customer data in a financial
application or patient data in a healthcare application.

However, it is really hard to balance the competing goals of collaboration and security. Indeed
interaction in collaborative applications is aimed at making shared documents available to all who need

"http://dev.libresource.org
http://www.waveprotocol.org/whitepapers/operational-transform
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it (by replicating the shared document), whereas access control seeks to ensure this availability only to
users with proper authorization.

The major latency problem in access control for collaborative editors is due to the use of a shared
data-structure containing access rights that is stored on a central server as shown in Figure where
we consider IV users collaborating to edit the same document using a collaborative editing system that
satisfies the requirements mentioned in Section [I.2] We assume that each user holds a replica of the
shared document and has the ability to alter the state of his replica with respect to an access control
policy. In Figure [I.2] the security policy is enforced at site ¢, so controlling access consists in locking
the security data-structure stored at site ¢ and verifying whether this access is valid. Subsequently, high
responsiveness is lost because every update must be granted by some authorization coming from the
central server, namely user .

Access control - ) Local copy of the
data-structure shared document

i
User N\ —>—— A
ﬂ//

Q User 3

Useri

Figure 1.2: Access Control Problematic.

To overcome the latency problem, we propose an access control model based on replicating the
access data-structure on every site. Thus, a user will own two copies: the shared document and the
access data-structure (see Figure [I.3)). It is clear that this replication enables users to gain performance
since when they want to manipulate (read or update) the shared document, this manipulation will be
granted or denied by controlling only the local copy of the access data-structure.

However, moving access control from the central server to every collaborating site leads to several is-
sues. Indeed, unlike traditional single-user models, collaborative applications have to allow for dynamic
change of access rights, as some users can join and leave the group in an ad-hoc manner. Likewise, there
are many situations where access control rules are user specific and difficult to predict [[16].

Combining dynamic access control with consistent replication is a challenging task if the resulting
system is to support consistency of the shared document. Indeed, the shared document’s updates and the
access data-structure’s updates are applied in different orders at different user sites. The absence of safe
coordination between these different updates may cause security holes (i.e. permitting illegal updates
or rejecting legal updates on the shared document). Without a careful design, permanently divergent
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document’s state may be produced.

Local copy of the access Local copy of the
control data-structure shared document

Figure 1.3: Replicating Access Control Policy.

Consequently, providing an access control model for collaborative editing solutions is a hard task
since it must meet the following requirements:

e Unlike traditional systems where access control has been explored, access decisions in a collabora-
tive application have to consider dynamic policy changes that are concurrent to document updates.

e All requirements of RCE (as previously mentioned) should be preserved. For instance, a security
layer atop RCE must incur significantly less overhead to maintain the high local responsiveness.

e The security layer has to be generic and appropriate for existing collaborative editors regardless
the underlying coordination algorithm.

e A significant requirement of the security architecture for emerging applications is that security
policy is enforced in all sites.

First Goal: The main objective of the thesis is to propose a generic model for
access control in real-time distributed collaborative editors. To deal with dynamic
policies and preserve all RCE’s requirements, we propose an optimistic approach
that tolerates momentary violation of access rights but then ensures the copies to be
restored in valid states with respect to the stabilized access control policy.

This thesis is part of a larger effort from the community to develop an optimistic access control
for real time collaborative editors relying on replicating the access control policy. To the best of our
knowledge, our work is the first that addresses the frequent and dynamic updates of both replicated
access control policy and shared documents.

6
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1.4 Undoability in Distributed Collaborative Editors

Undoing operations is an indispensable feature in interactive applications [68,90]]. It is a standard feature
in most single-user interactive applications and is becoming more and more available in collaborative
applications [5,/121|22}28,,74177}/78,96L97, 101]]. In particular, it represents a very useful mechanism for
collaborative editors since it allows for error recovery by providing the ability to restore a correct state
of the shared data after erroneous operations.

Providing an undo feature for collaborative editing applications decreases the gap between single-
user and multi-user collaborative editors since the former allow users to undo operations.

A history has to be maintained at every collaborating site for supporting undo. Then a user can select
the operation to be undone from the history buffer. Selective undo allows users to undo the effect of an
isolated action selected from all past actions [12] by reordering operations in the history. Hence, undo is
generally combined with OT approach as it allows to rearrange operations [97,99]]. However supporting
undo in collaborative applications is a challenging problem because of the interleaving between updates
performed by multiple users in a collaborative computing environment [22}74,97]].

To better illustrate the complexity of undo, consider the scenario of Figure |1.4] where we suppose
that two users collaborate to edit the same sequence of characters initially equal to "undo last operation".
User 1 alters the document’s state by executing the operation op; = Del(6,”last”) which deletes the
word last at the position 6. Concurrently, user 2, inserts the word "any" to get the state "undo anylast
operation”. The OT principle consists in integrating the effect of concurrent operations at remote sites.
Thus, operation op; is transformed to op} = Del(9,”last”) at site 2 as for ops, it is transformed to
oph, = ops at site 1. Clearly, both sites 1 and 2 converge to the state "undo any operation".

To simplify, suppose that undo request is generated to undo the last operation. Unfortunately, last
operation is not the same at all sites, since operations are not always stored in execution order, then
considering the undo request as an error recovery for the last operation would produce divergence. Ob-
viously, undoing the last operation at site 1 undoes op’, while it undoes op} at site 2 (see Figure [1.4).
Additional issues are encountered when the undo request interleaves with other document updates.

site 1 site 2
“undo last operation” “undo last operation”

op1 = Del(6,”last”) op2 = Ins(6,”any”)

“undo operation” | >(“undo anylast operation”|

/ \
ophy = Ins(6,” any”) opy = Del(6,”last”)

“undo any 0perati0n”|

“undo any operation”|

send undo request — " receive undo request

“undo operation”

“undo anylast operation”

Figure 1.4: Undo last operation produces divergence.

Accordingly, the correct way to manage undo in collaborative applications is to select the operation
to be undone. Hence, instead of undoing the last operation as illustrated in Figure an undo(op)
operation is executed and broadcast to other sites (see Figure where ops is undone at site 2 but its
new form op/, is undone at site 1. The challenging task in selective undo, is to maintain convergence by
producing the same final state after undoing two different forms of the same operation.
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site 1 site 2
“undo last operation” “undo last operation”

op1 = Del(6,”last”)  opa = Ins(6,”any”)

=

opy = Ins(6,”any”) opy = Del{(6,”last”)

“undo any operation”|

“undo any operation”l

undo oph, = undo ops
undo(opl) undo(op})

“undo anylast operation”

undo(op2)

“undo last:operation”

redo(op)

“undo operation” “undo operation”

Figure 1.5: Undo/Redo approach.

An intuitive solution would be to undo all the operations in the inverse chronological order, i.e from
the last to the wanted operation as it is proposed in [[77]]. So, considering the same example presented in
Figure undoing op- at site 2 would require to undo op’l, op then, redo op. As shown in Figure
both sites converge to the same final state "undo last operation".

However, the undo/redo scheme is expensive since it requires to perform many steps to achieve undo.
Moreover, it does not allow undo in all cases. In fact, an operation may not be undoable if another later
operation performed by the same user has not been undone.

Another solution consists in generating the inverse of the operation to be undone then transform it
against the following operations in the history so as to take into account the effect of all operations that
follows in the log using OT approach. However, combining OT and undo approaches while ensuring
data convergence is difficult as there are many properties to be preserved for both OT and undo. To be
correct, OT functions must fulfil two transformation properties namely, TP1 and TP2 [74,[78]]. Also, an
undo command has to fulfil some inverse properties IP1, IP2 and IP3 [36174,97,/101]]. Consequently,
undoing operations may itself lead to divergence cases called undo puzzles [97|] due to the violation of
one of these properties.

Significant researches have been made to address OT-based selective undo [74,(77,(97,(101]. Even
though various undo solutions have been proposed over the recent years, either they do not allow to
undo any operation at any time e.g [77] or have exponential complexity such as AnyUndo and COT
algorithms [97,/101]] which is not of relevance in distributed collaborative applications since they require
high responsiveness.

Furthermore, verifying correctness of an existing undo solution is error-prone due to the absence of
formal guidelines for undo. Providing such guidelines is a hard task, since there are many constraints to
be considered. That is why some approaches resort to avoid some constraints at the expense of perfor-
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mance degradation [101]].
Accordingly, undo in collaborative applications remains an open and challenging issue. Providing an
undo solution for collaborative applications has to take into account three main issues:

e Formalizing the correctness criteria of an undo solution.
e Designing an undo algorithm and prove its correctness.

o Ensuring efficiency of the undo algorithm.

Second Goal: The second objective of the thesis is to provide a theoretical study
of the undoability problem in the context of collaborative applications. This study
enables us to design a generic and safe undo solution appropriate for collaborative
editing applications.

1.5 Contributions

The main contributions of this thesis are as follows:

Access Control. We survey existing access control solutions and present the access control requirements
in the context of real-time collaborative editors. This study would be useful for future investigation in
this area. Based on the previous study, we discuss the main security and convergence issues arising
when adding an access control layer to a collaborative writing framework. The main contribution of this
dissertation is an optimistic and decentralized access control model that overcomes these issues [[21,/49].
Furthermore, our access control model is generic and enables programmers to separate the access control
layer from the coordination layer, thereby greatly simplifying algorithmic development of the access
control on the top of a given coordination framework and enabling to reuse the access control for different
collaborative applications.

We also propose a garbage collection mechanism in order to improve the performance of our so-
lution [64] since our access control model is based on logging access permissions. Consequently, our
model can be easily deployed on mobile devices.

The design goals of any access control model in RCE are:

e Simplifying the editing and management of access control permissions;
e Separating access control data structures and coordination algorithms;
e Being easily extensible and reusable.

Our access control model achieves these goals through its careful separation between access control
and coordination layers. All algorithms were implemented on the top of the collaboration framework
OPTIC [47,48] to demonstrate the feasibility of our model. Additionally, we provide performance mea-
surements of the above algorithms to highlight the efficiency of our solution. To the best of our knowl-
edge, these measurements are the first demonstration of access control implementation for decentralized
collaborative editors.

Undoability for Collaborative Applications. A significant part of this work was dedicated to the un-
doability problem in distributed collaborative applications since undo represents a main feature of our
optimistic access control model.

On the one hand, we addressed the principles of undoability in collaborative applications from a
theoretical point of view. We show that designing an undoable object is a combinatorial problem and
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propose a novel approach to analyse this problem based on constraint programming. As a main result, we
define a necessary and sufficient condition for undoing replicated objects based on operational transfor-
mation approach with respect to inverse and transformation properties.. We showed that it is impossible
to achieve correct undoability unless the updates performed on the shared object commute. Although it
is an impossibility result, it is interesting for OT-based object developers as well as researchers working
on undoability for collaborative applications.

On the other hand, we propose an enhanced set of operations in order to achieve undoability in a rea-
sonable time. Our solution has a linear complexity and thus is appropriate for collaborative applications.
Moreover, it could be integrated in any existing collaborative editing algorithm.

Publications. The results of this thesis have been partially published in fourth conference papers:

e Our access control model was first introduced in [49ﬂ This paper also discusses the access control
requirements for RCE and proposes an optimistic approach to regulate access in a collaborative
application. However, the paper only considers a mandatory access control policy.

e An extension of the previous paper was presented in [21ﬂ This paper proposes a multi-
administrator access control and investigates the generic aspect of the access control layer to meet
a large variety of collaborative editing solutions.

e Since our model was implemented on the top of the OPTIC framework based on log usage [47,48]],
we investigate a garbage collection scheme in [64ﬂ This paper presents the issues raised by the
garbage collection in a collaborative application and our solutions to address these issues as well
as an implementation of the solution on mobile devices.

e Our first contribution to the undoability problem for collaborative editors appeared in [ZOﬂ This
papers proposes a new semantic for idle operations in order to achieve undoability.

1.6 Thesis organization

The remainder of this thesis is structured as follows.

In Chapter 2| we present the state of the art of collaborative editing as well as their requirements .
We also give an overview on existing access control models and compare them.

In Chapter 3| we propose our generic and optimistic access control model for distributed collabora-
tive editors. In this chapter, we stress the security and convergence issues that motivated our conceptual
choices.

In Chapter 4] we detail our algorithms and prove the correctness of our access control model. Ex-
perimental study is given in Chapter [7| to demonstrate the feasibility of our access control model and
show its good performance and scalability.

The second part of this dissertation is dedicated to the undoability problem in collaborative applica-
tions as a main feature of our access control model and is organized as follows:

3 Abdessamad Imine, Asma Cherif and Michaél Rusinowitch : A Flexible Access Control Model for Distributed Collabora-
tive Editors. SDM 2009: 89-106.

* Asma Cherif, Abdessamad Imine and Michaél Rusinowitch: Optimistic Access Control for Collaborative Editing Systems.
ACM Symposium on Applied Computing SAC 2011.

>Moulay Driss Mechaoui, Asma Cherif, Abdessamad Imine and Fatima Bendella: Log Garbage Collector-based Real Time
Collaborative Editor for Mobile Devices. CollaborateCom 2010.

6 Asma Cherif, Abdessamad Imine : Undo-Based Access Control for Distributed Collaborative Editors. CDVE 2009: 101-
108.
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In Chapter 5] we present the undoability challenges as well as existing solutions and their limits.
Then, a theoretical study of the undoability problem is provided in Chapter [§]in order to well understand
the undoability problem and provide guidelines of the undo command. In this chapter, we formalised the
undoability problem as a Constraint Satisfaction Problem and a provide a necessary and sufficient
condition to achieve undoability. Moreover, we presented our solution to overcome this impossibility
result. It consists in a generic framework for undoing operations in OT-based collaborative frameworks.

Finally, Chapter 8| discuss our achievements and provide directions that could be conducted in the
future.

To more illustrate the organization of our thesis we present different chapters in Figure [I.6]

1. General Introduction |
N )
- ' -
— 2. State of the Art P
Y ' " Y

3. Our Generic Access ) (5. On the Undoability Problem )
Control Model ‘ ‘ in Distributed Collaborative ‘
Editors

4. Concurrency Control N '

Algorithms and Correctness
Proof

‘ 6. A Necessary and Sufficient ‘
Condition for Undoability

[

) Experimental Study and
Performance Measurements

.

9. General Conclusion |

Figure 1.6: Thesis Organizatin.
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Collaborative editors are very important applications since they allow many dispersed users to col-
laboratively edit the same shared document. However editing the same document collaboratively is
a complex [46] and dynamic group process in which many considerations and issues must be ad-
dressed [61]]. Such applications necessitate a careful design and a good attention since they allow for
a human-computer-human interaction. Adding an access control layer on the top of any collaborative
editing solution is a hard task. In fact, the access control must respect the requirements of such applica-
tions without additional overhead in order to allow for the high responsiveness required by collaborative
editors. Moreover, consistency of the shared document must be preserved. Accordingly, security mea-
surements must not lead to divergence cases and provide the same view of the shared document for all
users. Furthermore, the security model must be designed in a decentralized fashion.

In this chapter we begin by giving an overview on collaborative editors in Section 2.1] in order to
illustrate the requirements of such systems. Then we discuss the access control solutions in Section 2.2}
We present the most popular solutions and discuss their limitations in order to well define an access
control layer for collaborative editors that fulfil the requirements discussed below.

2.1 Collaborative Editors

Most usually, collaborative editing is applied to textual documents such as wikis or programmatic source
code such as version control. Generally, these applications allow for recording changes in order to
see who contributed what changes. The most famous collaborative editing framework is Google Docs.

13
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It provides collaborative both synchronous and asynchronous editing functionalities based on revision
control. Also, Wikipedia represents a large scale collaborative editing project.
The advantages of collaborative writing are:

e provide projects that are richer and more complex than those produced by individuals which is
very useful for academic as well as commercial communities.

e improve learning experiences and the process of reviewing documents.

There are two kinds of collaborative editors (see Figure[2.T)): (i) real-time collaborative editors (RCE)
are a class of distributed systems based on the interaction of several users trying to edit simultaneously
shared documents (ii) and non-real-time collaborative editors which do not allow editing of the same
document at the same time, thus being similar to revision control systems.

Collaborative Editors

/\

Real-Time Non Real-Time

Centralized Decentralized

adOPTed, SOCT2,
SOCT4, GOT GOTO, SDT and OPTIC

Figure 2.1: Different kinds of collaborative editors

Real-time collaborative editors are based on two kinds of collaborative editing algorithms: central-
ized and decentralized algorithms.

Centralized algorithms. Editors based on these algorithms require the presence of a central server to
coordinate between updates performed on the shared document. For instance, Google Docs, SOCT4
algorithm [[109]], GOT [99] as well as COT [101] rely on client-server architecture in order to get a global
and unique order of execution, hence do not scale well.

Decentralized algorithms. The second approach allows concurrent requests to be executed in any or-
der, but does not allow necessarily for an arbitrary number of users. For example in adOPTed [78]],
SOCT?2 [95]], GOTO [98]], and SDT [58]], the use of state vectors is necessary to detect causality relation-
ship between different updates. Consequently, these solutions do not scale well and it would be difficult
to adapt them for a P2P context. To the best of our knowledge, the first coordination algorithm allowing
for an arbitrary number of users is OPTIC [47,48]| thanks to the use of semantic dependency in order to
coordinate concurrent updates.

In our thesis, we focus on real time collaborative editors regardless the algorithm used to coordinate
different updates. However, we aim at providing a decentralised access control model in order to reach
the high responsiveness as well as scalability requirements. In the following, we are interested in these
requirements.

14
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2.1.1 Real Time Collaborative Editors

Real-time Collaborative Editors (RCE) are special class of distributed applications that allow users to col-
laboratively edit a shared document. These applications allow for a human-computer-human interaction
which necessitates a careful design.

Although being distributed applications, RCE are specific in the sense that they must consider human
factors [48]]. So, they are characterized by the following requirements:

1. High local responsiveness: the system has to be as responsive as its single-user editors [[32/99100].
The response to the local user’s actions must be quick, even though collaborating users may reside
on different machines connected via the Internet with a long and non-deterministic communica-
tion latency. High responsiveness is very important because it presents a main indicator of the
good quality of a collaborative system. Moreover, poor responsiveness decreases the system’s
effectiveness in supporting collaborative work.

2. High concurrency: the users must be able to concurrently and freely modify any part of the shared
document at any time [32,/99]] in order to facilitate the flow of information among collaborating
users.

3. Consistency: the users must eventually be able to see a converged view of all copies [32,99].
Maintaining consistency is the major challenge since it is hard to manage the multiple streams of
concurrent activities performed by multiple users which may lead to conflicting scenarios [48].

4. Decentralized coordination: all concurrent updates must be synchronized in a decentralized fash-
ion in order to avoid a single point of failure.

5. Scalability: a group must be dynamic in the sense that users may join or leave the group at any
time [48]].

It is very difficult to meet these requirements when deploying RCE in networks with high com-
munication latencies (e.g. Internet). Due to replication and arbitrary exchange of updates, consistency
maintenance in a scalable and decentralized manner is a challenging problem. Traditional concurrency
control techniques, such as (pessimistic/optimistic) locking and serialization, turned out to be ineffective
because they may ensure consistency at the expense of responsiveness and loss of updates [|32,/48./58,99]|.

Since collaborative editors allow multiple users to concurrently edit the same shared document, di-
vergence cases may be encountered. Consistency maintenance in the face of concurrent accesses and
updates to shared document is one of the main issues in the design of collaborative editing systems.
Operational transformation (OT) is a technique originally invented to ensure consistency and avoid di-
vergence occurring when many users edit concurrently the same document.

2.1.2 Overview on the Operational Transformation (OT) Approach

OT is an optimistic replication technique originally invented to allow many users (or sites) to concurrently
modify the shared data and next to synchronize their divergent replicas in order to obtain the same data.

This approach is considered as the efficient and safe method for consistency maintenance in the
literature of collaborative editors. Indeed, it is aimed at ensuring copies convergence even though the
users’s updates are executed in any order on different copies.

After two decades of research, this technique has extended its capabilities and expanded its ap-
plications to include group undo, locking, conflict resolution, operation notification and compression,
group-awareness, HTML/XML and tree-structured document editing, collaborative office productivity
tools, application-sharing, and collaborative computer-aided media design tools. Recently, OT has been
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adopted as a core technique behind the collaboration features in Google Wave and Google Docs, which
are taking OT to a new range of web-based applicationsﬂ

OT approach requires that every site stores all executed operations in a buffer also called a log. It is
known that collaborative editors manipulate shared objects that own a linear data-structure [32,/98}/100]
(e.g. alist). This list is a sequence of elements from some data type, such as a character, a paragraph, a
page, an XML node, etc. In [[100], it has been shown that this linear structure can be easily extended to
arange of multimedia documents, such as MicroSoft Word and PowerPoint documents [48]].

Two primitive operations are generally used to modify the shared document:

e Ins(p,e, s) to insert the element e at position p;
e Del(p, s) to delete the element at position p.

The parameter s is the identity of the site issuing the operation. Every site has a unique identity. The
set of site identities is assumed totally ordered.

To deal with concurrent operations, OT uses an algorithm, called inclusive transformation [98|] and
denoted by function IT, to merge these operations regardless reception order. Let op; and ops be two
concurrent operations. Intuitively, I7'(op1, op2) transforms op; against ops in order to include the effect
of ops in op;. The transformed form of op; is then executed after opy. For instance, here are two
transformation cases given in the I'l" algorithm proposed by Ressel et al. [[78]]:

1: IT(Ins(p1,e1,$1), Ins(pa, ez, s2)):
2: if (p1 < po or (p1 = ps and s1 < $2)) then
3:  return Ins(pi,ep,si)

4: else

5:  return Ins(pi + 1,e1,$1)

6: end if

7. IT(Ins(p1,e1, s1), Del(pa, s2)):

8: if (p1 > p2) then

9:

10: return Ins(p; —1,e1,s1)

11: else

12:  return Ins(pi,e1,s1)

13: end if

Algorithm 1: Inclusive transformation of two insertions [78].

The site identities are used to tie-break conflict situations (e.g. two concurrent operations inserting
elements at the same position).

To illustrate the importance of the OT approach, consider the scenario in Figure [2.2](a) where two
users work on a shared document represented by a sequence of characters. These characters are addressed
from 1 to the end of the document. Initially, both copies hold the string “efecte”. User 1 executes
operation op; = Ins(2, f,1) to insert the character ‘f* at position 2. Concurrently, user 2 performs
opy = Del(6,2) to delete the character ‘e’ at position 6. When op; is received and executed on site 2,
it produces the expected string “‘effect”. But, at site 1, opy does not take into account that op; has been
executed before it and it produces the string “effece”. The result at site 1 is different from the result of
site 2 and it apparently violates the intention of ops since the last character ‘e’, which was intended to be
deleted, is still present in the final string. It should be pointed out that even if a serialization protocol [32]

"http://en.wikipedia.org/wiki/Operational_transformation
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was used to require that all sites execute op; and ops in the same order (i.e. a global order on concurrent
operations) to obtain an identical result effece, this identical result is still inconsistent with the original
intention of ops.

In Figure [2.2](b), we illustrate the effect of I7" on the previous example. At site 1, opa needs to be
transformed in order to include the effects of op1: op, = IT((Del(6,2), Ins(2, f,1)) = Del(7,2). The

deletion position of ops is incremented because op; has inserted a character at position 1, which is before
the character deleted by opo.

site 1 site 2 site 1 site 2
“efecte” “efecte” “efecte” “efecte”
op1 = Ins(2, f,1) opa = Del(6,2) op1 = Ins(2, f,1) opy = Del(6,2)
Del(6,2) Ins(2, f,1) IT(opa,0p1) = Del(7,2) IT(op1,0p2) = Ins(2, f,1)
(a) Incorrect integration. (b) Correct integration.

Figure 2.2: Serialization of concurrent updates

Many collaborative applications are based on the OT approach such as Joint Emacs [78] (a group-
ware based on text editor Emacs), CoWord [100] (a collaborative Microsoft word processor) and CoPow-
erPoint [[100] (a real-time collaborative multimedia slides creation and presentation system) and a file
synchronizer [|66] distributed with the industrial collaborative development environment LibreSource
Communit OT also has been proposed as a consistency model for replicated mobile computing [40].

2.1.2.1 OT Properties

Using an IT algorithm requires to satisfy two properties 7'P1 and T'P2 in order to ensure conver-
gence [78].

[Deﬁnition 2.1.1 (TPl).J

For all op, op; and opy pairwise concurrent operations with op} = IT (op1, op2) and opl, =
IT (op2, op1), it must be that:

[op1 ; 0p5) = [op2; 0p],

i.e. sequences [op; ; oph] and [ops ; op)] are equivalent and have the same effect on the docu-
ment.

Property T'P1 defines a state identity and ensures that if op; and ops are concurrent, the effect of

executing op; before opy is the same as executing opy before op;. This property is necessary but not
sufficient when the number of sites is greater than two.

$http://dev.libresource.org
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[Deﬁnition 2.1.2 (TP2).}

For all op, op; and opy pairwise concurrent operations with opy = IT(op1, op2) and oph, =
IT (op2, op1), it must be that:

IT(IT (op,op1),0ps) = IT(IT(op,ops),op})

Property T'P2 defines an operation identity and ensures that transforming op along equivalent and
different operation sequences will give the same operation.

Properties T'P1 and T P2 are sufficient to ensure the convergence for any number of concurrent
operations which can be executed in arbitrary order [62,[78]]. Accordingly, by these properties, it is
not necessary to enforce a global total order between concurrent operations because data divergence can
always be repaired by operational transformation.

To better understand our work, all examples given in the following use characters as elements to be
inserted/deleted.

2.1.2.2 Integration Algorithms

In OT-based coordination frameworks, every site is equipped with two main components: the integration
algorithm and the transformation algorithm. The first algorithm is responsible for receiving, broadcasting
and executing operations. It is independent of the collaborative objects semantics. Several integration
algorithms were proposed in the literature of collaborative editors, such as dOPT [32[], adOPTed [78]],
SOCT2,4 [95,{109], GOTO [98]], OPTIC [48], and COT [101]]. Each of these integration algorithms
uses a set of transformation algorithms for serializing concurrent operations defined on the same state.
In contrast to integration algorithms, transformation algorithms depends on the semantics of the shared
objects.

Every site generates document updates, executes them on its local copy of the shared document,
then stores them in a local history also called log. When a site receives a remote operation let op, the
integration algorithm proceeds as follows:

e Find all operations in the local log that are concurrent to op.

o Integrate op against all concurrent operations using the transformation functions.
o Execute the integrated form of op at the current document state.

e Store the integrated form of op in the local log.

Thus, integration algorithms allow for building the local logs while preserving the causal relation
between different document updates. Obviously, logs are different from one site to another but they are
equivalent thanks to properties TP1 and TP2.

Given a coordination framework equipped with integration and transformation algorithms, our ob-
jective is to build on the top of this coordination layer, an access control model to ensure the security
of the shared documents. In the following, we investigate the requirements of access control models in
collaborative editors. Then, we survey existing models proposed for collaborative applications.
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2.2 Access Control for Collaborative Editors

Protecting data and resources is one of the most important requirements of any information manage-
ment system. Indeed, it ensures (i) confidentiality: protecting data from unauthorized disclosure and
(ii) integrity: protecting data from unauthorized or improper modifications.

To enforce protection, every access to the data must be controlled. Moreover, only authorized ac-
cesses can be allowed. To develop an access control system, we need to define the regulation of the
access to the data as well as the functions to be executed in order to implement these regulations in a
computer machine. In general, the development process of access control systems relies on the concepts
cited below [81]]:

1. Security policy defines the rules of the access control, for instance saying that a site s has the right
to modify the shared document is a rule.

2. Security mechanism defines the functions that will be executed on the computer machine. These
functions illustrate the access control policy defined by the security policy and formalized by the
security model.

It should be pointed out that defining a security policy model is not a trivial task [81]. It is a subtle and
challenging task. Indeed, designing a security model relies on interpreting real world security policies
which are often ambiguous and complex in a unambiguous and simple way in order to be executed on a
computer machine [81]. Moreover, a security policy depends on the nature of the application in which it
will be enforced and must take into consideration malicious behaviour.

Controlling access is more and more complex in collaborative applications since they have special
requirements. In the following, we detail these requirements and show how they complicate the access
control task.

2.2.1 Access Control Issues and Requirements in Collaborative Applications

There are many issues faced when trying to apply an access control model for a collaborative application.
First of all, it is difficult to balance the competing goals of collaboration and security [107]. In fact,
collaboration aims at allowing many users to access to shared resources by building useful connection
among users, tools and information. However, security aims at ensuring confidentiality and integrity
of shared information. Several requirements must be addressed in order to ensure security for such
systems where the behavior of users is unpredictable and interactions between users and resources are
unexpected. Consequently, protecting resources in a collaborative application needs to address many
requirements not raised by normal single-user applications.

Moreover, collaborative systems contain resources with different degree of sensitivity. For instance,
some resources could be top secret such as military documents or information of a patient in a healthcare
application while other resources are just confidential such as academic emails. Thus, it is difficult to
manage access control for different resources at the same time.

Furthermore, some policies require real time updates which means that the policy is changed while
it is in effect. However updating the policy while it is deployed may inevitably lead to security holes.
To further illustrate this issue, suppose that in a financial company, the user Bob has the right to update
a given resource but concurrently the policy is updated to revoke this right. Since the policy update is
not enforced immediately, Bob may perform updates while policy is changing which obviously lead to
policy violation and may introduce financial loss to the company.

Another important issue that must be kept in mind is that policy enforcement should be managed
in a distributed fashion. Meanwhile, inconsistencies as well as security breaches or unavailability of
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resources due to latencies introduced by the remote check of access rights must be avoided in order to
respect the real time aspect of the collaboration while enforcing the security of the shared resources.
Finally, access control introduces additional processing time which must be very low in a collabo-
rative application. High responsiveness must be taken into account to meet human factor requirements
that become more important during collaborations since the user is responsible of the group progress in
contrary of a single-user application.

Several research studies addressed the requirements for access control in collaborative systems [4,
30,354153,(107]. In the following, we state the main requirements that must be taken into account before
the design of an access control model for any collaborative application:

. Distribution: access control must be enforced in a distributed system. Thus it must meet the

requirements of such a system. Otherwise, the full potential of the distributed application will be
limited.

. Generic: the model for access control should meet a large variety of cooperative applications. It

should be generic with the minimal changes from one application to another in order to be deployed
on different applications easily.

. Transparency and flexibility: the access control must be transparent for users having correct access

rights. The management of access rules has to be as flexible as possible without constraining the
application on which it is deployed.

High level specification: helps to concentrate on access layer independently from the collaboration
complexity of the underlying coordination layer.

Dynamic: since collaborative applications are designed for dynamic groups, access control must
take into account the dynamic aspect of the collaboration and allows dynamic change of the policy
in order to meet the frequent changes of access rights.

. Good performance: we stress the fact that access control must be kept with low overhead to meet

the real-time aspect of communications.

. Scalability: it should be possible for the access control model to be deployed in a large scale in

order to support a large number of users and operations in a collaborative application as well as
the churn (i.e users can join and leave the application in an ad-hoc manner).

In the following, we illustrate different access control classes that have been proposed in the literature
also investigating their limitations with regards to the requirements mentioned before.

2.2.2 Classes of Access Control Policies

In this section, we present the main access control classes [[81}/107]:

20

1.

Discretionary (DAC): in this class the policy is based on authorizations to define access control
rules stating what user is allowed to do what action.

. Mandatory (MAC): Mandatory policies control access based on regulations defined by a central

authority.

. Role-based (RBAC): users are divided up into different roles and accesses are granted according

to the rules defining what actions are allowed to a given role.
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4. Task-based (TBAC): this model incorporates contextual information into access rules in order to
better recognize the context in which security access arises.

5. Team-based (TMAC): this approach considers that the appropriate way to group users is based on
the notion of team instead of roles since, work inside organizations is managed in teams.

6. Spatial: this model suites environments that can be represented in terms of regions. The access
into regions is based on credentials.

7. Context-aware: this model is also an extension of the RBAC model in order to export its usage for
context-aware applications.

2.2.2.1 Discretionary Access Control (DAC)

Discretionary policies define access control on the basis of access right requestor identity. Access rules
are specified to assign access rights to requestors. Then, accesses are granted or denied based on these
access rules. In this security model, users can have the right to delegate their access control capabilities
where from the name discretionary.

DAC policy is characterized by its flexibility and is widely used in many sectors. The most famous
discretionary model that was proposed in the literature is the access matrix model. This model is based on
the subject-object distinction which represents the key concept in this model [82]. It was first proposed
in [57] and allows for describing discretionary access control in operating system context. Then, the
model was refined by Graham [38]]. The formalization of the access matrix model called HRU model
was proposed by Harisson, Ruzo and Ullman [42].

Three kinds of entities are defined: (i) Objects: which represent the resources to be protected such
as files in file systems or shared documents in collaborative editors; (ii) Subjects: are the users of the
objects to be protected; (iii) Access rights: are the operations to be executed by subjects on the protected
objects.

An access matrix is a matrix containing subjects in rows and objects in column. Each entry of the
matrix denotes the rights a subject has on a given object. To check an access rule, an action is granted to
a user if and only if his access matrix entry contains the appropriate rights allowing action performance.

Figure [2.3] represents an example of the access control model with a small set of subjects ({Alice,
Bob, Carl}) having the possibility to own, read, write and execute rights on four files. This matrix
specifies for example, that Alice has the right to read and write the file number 2.

File 1 File 2 File 3 File 4
Alice lgezr:i sverig Execute
Write
Bob Read b
crntl

Figure 2.3: Example of Access Matrix Model
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ACLs are by far the most common approach for implementing DAC policies; [45]. An ACL asso-

ciates the permitted operation to an object and specifies all the subjects that can access the object. That
is, each entry in the list specifies access rights given to a subject. From another point of view, this im-
plementation stores the matrix by columns [[80]. An example of the ACL implementation is given in
Figure 2.4 showing the ACLs corresponding to the access matrix of Figure[2.3]

Alice(Own, Read,
write)

4+~ ™~  Bob(Read)

Filel e—»

File2 «———» Alice(Read, write)

File3 e———» Bob(Read, write)

Filea «——»  Alice(Execute) -~ ~{Carl (Execute, Read)

Figure 2.4: Access Control Lists (ACL)

ACLs are used in many commercial operating systems such as Microsoft Windows 2000, 2003,

and XP. UNIX (and UNIX variants such as LINUX and FreeBSD) also support the implementation of
ACLs [45].
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Among the collaborative frameworks that use ACLs, we cite:

1. RTCAL: RTCAL (Real-Time CALendaring) [39] is a collaborative application that allows users

to collaboratively schedule meeting times. RTCAL is based on two kinds of data: private and
public. Each user has access to a shared and a private column. The first one displays whether
the time slot is free for all users or not. The second one shows details of any appointment of that
user at that time. In this approach there are two kinds of commands: application commands and
conference-control commands. The former manipulate the calendar where only the controller has
the ability to enter these commands at any time. The latter are performed by participants in order
to pass control, enter and leave the conference. Note that there is a special role (chairperson) that
has the authority to end the conference and determine who is the current controller.

. Grove Outline Editor: Like RTCAL, GROVE (GRoup Outline Viewing Editor) [32], is an almost

WYSWIS group outline editor. However, it allows for fine-grained access control. Grove repre-
sents a simple outline-only editor for small groups and works as a tightly-coupled synchronous
editor. GROVE outline is based on a recursive structure consisting of structured items. It is based
on three important concepts: (i) View: each user has access to a view which is a subset of Grove
that may be private (only visible locally), public (visible by all), or shared (by invitation only).
This is specified by the user when starting a Grove session. Private and shared views may be
dynamically forked from existing shared and public views.(ii) Viewer: a viewer is a window that
displays an outline view. (iii) Viewport: Each user displays a view of the outline in a viewport.
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All changes made by a user are immediately transmitted to the collaborators. It is also possible
for many users to change an item simultaneously. Grove ensures that they see these changes in the
same logical order in an optimistic way (transformation functions) without centralization or aborts
usage. Moreover, it does not support locking, and relies on social protocol to prevent conflicts.
However, accidental deletion may occur enough which makes Undo necessary.

. Diva [91]]: is a prototype virtual office environment replacement for the ubiquitous graphical user

interface (GUI) desktop that provides integrated support for awareness of coworkers, tools for
performing shared tasks, and facilities to support communication, in both the synchronous and
asynchronous modes of work. To manage access control, DIVA provides availability states for
rooms. Consequently, users have the control over both their availability and the awareness infor-
mation about others. The model includes access lists to give users control over the use of rooms
and documents.

Another approach to implement access control matrix are Capability lists (CL). This approach is dual
to ACL approach and stores the matrix by rows. It associate a list with appropriate access on object for
each subject in the matrix. Figure [2.5]shows the CLs corresponding to the access matrix of Figure[2.3]

Bob

Alice ————» File1(?v\:i/tne.)Read, «[~ % File2(Read, write) | -~ File4(Execute)
e  File1(Read) 4~ File3(Read, write)

Carl

«——» File4(Execute, Read)

Figure 2.5: Capability Lists (CL)

In the following, we state the shortcomings of this model and its implementation.
Although it represents a good abstraction of access control, the matrix model has some weaknesses:

Inappropriate to complex access policies: indeed sophisticated policies such that policies that
regulate access based on competency or conflict-of-interest rules are difficult to describe with
access matrix because they generally associate credentials to subject when granting or revoking
actions [107]).

Static access rules: ACLs and CLs are not adequate to implement dynamic changes of access rights
which represents a mean feature of a collaborative application where rules may change at any time
of the collaboration according to the behavior of users [[107]. Moreover, with ACLs, it is easy to
revoke all access rights of an object by deleting the corresponding list. However, determining all
granted access to a given user is very difficult to achieve since it needs to examine all ACLs in
the system. Consequently, revoking all rights of a subject is very expensive [80,/107]]. The dual
problem is faced in the case of CL, it is very difficult to revoke all accesses on a given object.

ACLs are platform-dependent since different systems have their own format of ACL, which is
inconvenient, subject to error, slow, and makes it difficult to identify or model the overall “policy”
that is enforced by the system [44L/45].
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e In some collaborative applications, ownership must not be at the discretion of the user in which
case the system must own resources. However, ACLs as well as CLs are mostly appropriate to file
systems and do not allow to define access rights on some attributes of a resource content, attribute
or contextual information [|107].

2.2.2.2 Mandatory Access Control (MAC)

The mandatory access control model manages access to resources based on a central authority. The need
for a MAC model arises when protection decisions must not be decided by the object owner as in DAC
model but rather enforced by the system.

The most common form of mandatory policy is the multilevel security policy [80] based on the clas-
sification of subjects and objects in the controlled system where subjects request access to the objects.
The notion of subjects is different from that of DAC model. In fact, users or groups may be considered
as subjects in DAC model. However, in MAC model, there is a distinction between users (human beings
accessing to objects) and subjects that represent processes performed by users. This allows for con-
trolling indirect access resulting from processes execution since the same user is able to execute many
processes [80].

In the MAC model, an access class is assigned to each subject. Thus, the policy is specified as a set
of partially ordered set of classes where each class dominates the following one according to the partial
order. An example of classes would be Top Secret (T'5), Secret (.5), Confidential (C') and Unclassified
(U) where T'S dominates S which dominates itself C' which dominates U [80].

The MAC model offers a high level of security and is generally is used in multilevel systems to
protect highly sensitive data such as military information.

2.2.2.3 Role-based Access Control (RBAC)

The RBAC model is based on groups or roles rather than individuals to regulate access to resources. The
main idea of RBAC is grouping privileges. This idea was firstly introduced by [[112] for an SQL-based
framework. In general, roles are statically created, then users are assigned to roles according to their
responsibilities and/or qualifications. Different approaches [|6,511691/85}[86] of RBAC have been made
with the concept “role” that may be related to the user’s job or to designate a task (i.e order processing,
administration, efc).

In this model, there is a distinction between two logical parts where the first assigns users to roles
while the second assigns access rights to roles (see Figure [2.6). In RBAC, access rights are grouped
by role name and access to resource is regulated according roles membership where users are granted
membership into roles based on their role in the organization. For instance, in an academic system, the
role of teacher can include operations to prepare courses and/or exams, correct exams while the role of
student can be limited to consulting information for studies, answer online exams/exercises.

Consequently, access is regulated according to the role instead of specifying rules for each action
performed by each user. The way access is enforced by assigning first roles to users then assigning
access rules to roles simplifies the security policy management. Indeed, user membership into roles can
be revoked easily. Furthermore, updating roles does not require to update the privileges for every user.
Moreover, in many applications, there is a natural hierarchy between roles which can be exploited to
imply authorizations. This greatly simplifies the access control specification and management.

The RBAC model is very practical for traditional as well as collaborative environments, it provides a
promising paradigm for many commercial and government organizations. However, it is limited by the
following shortcomings:
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Permissions

Roles

Users

Figure 2.6: RBAC model.

e Static role assignment: the earlier implementations of RBAC model defines roles and assign users
to them at the beginning. Hence, dynamic changes of role assignments were badly managed. One
can designate this kind of roles as static roles lacking flexibility and not responding to dynamic
applications requirements [107]).

e Static session roles: the family of models RBAC96 presented in [84] overcomes some problems
with dynamic change of rights since it introduces the notion of session associated to each user [|53].
A session starts when the user authenticates with the system and ends when he exits the system and
allows him/her to activate the permissions of a subset of roles that he/she belongs to. For every
session, users can be assigned new permissions. However, the concept of session also prevents
a dynamic reassignment of roles since the user roles cannot be changed within a single session.
Indeed, every user has to authenticate again in order to obtain new permissions.

e Lack of fine-grained control: in collaborative systems, users may need specific access rights in-
dependently of the role to which they belong or additional access rights inside their membership.
This is not supported by the RBAC model since it is not possible to define fine-grained access con-
trol on individuals or objects. For instance, suppose that the user having the role secretary need to
replace her manager during his absence. Suppose that she needs only some administrative rights
granted to the role manager and not all of them. In this situation, it is not tolerated from a security
point of view, to assign all the rights of manager role to the secretary.

e In some systems mainly those that do not follow organizational scheme, least privilege is difficult
or costly to achieve due to ambiguity and difficulty to tailor access based on various attributes or
constraints. In fact, the concept of least privilege requires many steps: first, the user’s job functions
must be identified, then the minimum set of privileges has to be defined , finally each user must be
restricted to a domain with those privileges.

2.2.2.4 The Intermezzo and Suite Models

In the following, we briefly discuss two famous approaches based on both access lists and roles in
conjunction.
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The Intermezzo model. Edwards et al. [30] propose a system for implementing a variety of policies
mainly in the areas of awareness and collaboration. The model supports dynamic policies and is imple-
mented atop the Intermezzo collaboration environment [31]]. Intermezzo framework supports replication
and coordination in the form of session management and provides awareness information for users. It
provides access control for reading, writing, removing and testing the existence for objects. Denial of
access is achieved thanks to a special right NONE.

Policies are described in terms of access control rights on data objects, and are assigned to roles
(groups of users) where roles represent not only statically-defined collections of users, but also dynamic
descriptions of users evaluated at the run-time of the application. This dynamic aspect of roles allows
them to meet flexibly the collaboration dynamism. This is achieved by determining users membership
at the moment of evaluation of a given request thanks to predicate functions instead of using static
membership lists.

The implementation of the access policies are based on poor scaling ACL. Moreover, access rights
are validated at a remote server which degrades the performance of the application. Furthermore, author
did not discuss how to manage security when the server crashes in which case, users may be prevented
to perform actions.

The SUITE model. The SUITE access control model [89]] proposed by Shen and Dewan is an extension
for the matrix model that was implemented in the collaborative Suite multi-user framework allowing for
collaborative editing [27].

The model is characterized by:

o A large set of access rights that meets the SUITE framework [27]. For instance, in addition to
classical access rights (read, write, delete) access rights like viewing, eliding and hiding was intro-
duced [89].

e Negative rights: the notion of negative rights was previously introduced in database area [[75[]. This
notion allows for explicit denial of access and facilitates access right specifying in presence of a
large amount of controlled objects and/or subjects. For instance, consider the scenario where a
user u wants to grant the read right to all group members except the user v. Without negative right
specification, u would require to grant read right to each one of collaborators except v. Thanks to
negative rights, the problem is easily solved by granting a positive read right to all users and an
explicit negative read right to v.

e Inheritance-based specification: the model allows for access right specification for groups of users,
objects and rights. Moreover, entries of the access matrix are not necessarily specified and can be
inferred from other values in the matrix which meets very well the dynamic aspect of collabora-
tion [89].

This approach is a good mixture between matrix and RBAC model since it allows for grouping
users. However, since it specifies a large set of rights, inheritance and implication relations were defined
in order to infer access rules and simplify access specification to the user. Unfortunately, these two
relations introduce conflicts when two contradictory access control actions (grant and revoke) may be
inferred at the same time. This requires conflict resolution rules which complicates the model as well as
its mechanisms and makes it difficult to be generalized for any collaborative application.

2.2.2.5 Task-based Authorization Control (TBAC)

TBAC is an access control model proposed for active and enterprize-oriented authorization management.
It models access control from a task-oriented perspective rather than the traditional subject-object per-
spective where access mediation involves authorizations at various points during the completion of tasks.
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It is supposed to meet the requirements of agent-based distributed computing and workflow manage-
ment [106].

Preliminary ideas for TBAC were presented in [87]. Then a workflow authorization model named
WAM was proposed in [8]]. These works recognized the need for active security and just-in-time permis-
sions. However, TBAC is more comprehensive and conceived better than WAM since the latter proposes
a primitive authorization concept [106]. Furthermore, TBAC provides many features such as holding
permissions temporarily, tracking the usage of permissions, etc.

Access control in this model is managed in many steps related to the progress and life-cycle of tasks.
A protection state is associated to each step (see Figure 2.7). This protection state contains a set of
permissions that change according to the task evolution. Consequently, the model is considered as an
active model since it deals with constant changes of a task allowing by this for dynamic management
of permissions. Moreover, authorizations in the TBAC model have a strict runtime usage, validity, and
expiration characteristics defined according to the task and its protection state.

As shown in Figure [2.7] the main components of the TBAC model are entities of the workfolw and
protection states associated to each of them. TBAC is based on the use of type-based access control and
dynamic check-in and out of permissions from protection states.

Al
- gttivate
—
workflows,
authornzations
dependencies, A € - .
task instances o deactivate- -

A N . A2
access_ p \ -~ =
decssnonl yesio ’

types, tYPe A
domains,
roles
PROTECTION
STATES
subjects,objects,
Type-based access control e

Instance and usage based access control

Figure 2.7: TBAC as an Active Security Model [[106].

Shortcomings. The TBAC model has some weaknesses [[107]]:

o TBAC systems mainly suit task-based or workflow applications. Nevertheless, collaborative work
is not always based on tasks. To illustrate this point, consider a simple collaborative application
allowing for editing shared text document such as a wiki. In this application, each user has the
ability to update the document without the need of assigning users to tasks or following a workflow
scheme.

e Permissions are activated and deactivated in a just-in-time fashion which may cause problems
in the case of a centralized access control management. In fact, if the central authority crashes,
security holes may occur. This necessitates additional constraints to well manage just-in-time
permissions.
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e Specification of complex policies as well as delegation and revocation of authorizations are very
primitive in TBAC.

e Even though TBAC meets enterprise applications more than the subject-object approach, it needs
to be used within other access control models. For instance, in [[54,/71]], authors associate TBAC
and RBAC to define access control models for inter-organizational workflow.

2.2.2.6 Team-based Access Control (TMAC)

In contrary with RBAC model, the TMAC model is based on a more natural way to group users among
organizations and enterprises based on teams. The approach proposes a fine-grained access control
allowing access assignments to individuals on object instances which is not supported by RBAC. This
model was proposed by [105]]. As shown in Figure [2.8] this model introduces two important notions:

1. User context: aims at identifying users playing a role into a given team at any given moment;

2. Object context: identifies which objects are needed by a collaboration session.

Team permissions Object types

Collaboration Context
(runtime binding)

Object
Team instances
members
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Figure 2.8: Main Concepts in TMAC Model [|105].

The TMAC model allows for grouping users as well as fine-grained access control in contrary to
RBAC model. It was extended by the C-TMAC approach [37] in order to take into account contextual
information (time, place, etc).

Even though the TMAC and C-TMAC support contextual specifications, they have the following
shortcomings [[107]

e The models have not been fully developed and tested to demonstrate they are applicable.

e There is a lack of a fine grained access right specification allowing to specify access assignments
concerning entities and relations.
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e The model was used in conjunction with RBAC for Hypermedia environments [111] where roles
are defined across teams. This proves that TMAC model needs some extension to be applicable in
real word applications.

2.2.2.7 Spatial Access Control (SPACE)

Spatial Access Control (SPACE) has been proposed to solve the problem of role migration within a
session [17]]. Instead of splitting users into groups as in RBAC, SPACE divides the collaborative envi-
ronment into abstract spaces in which subjects and objects reside. Users migrate from space to space in
a session based on a set of predefined rules. SPACE is modelled by an access graph, where nodes are
the spaces and the arcs are the rules. The access graph aims at defining constraints to move from one
region to another. The model also uses credential to allow access within regions, these credentials label
the edges of the graph (see Figure[2.9).
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Figure 2.9: Space Model Abstraction of an Office Environment [|17].

The SPACE model was implemented in the graphical collaborative virtual environment Spline [4]). It
has the following limits:

e Not generic: SAC implementation needs prior knowledge of the practice used in some collabora-
tive system, in order to produce a set of rules that are generic enough to match most of the daily
access patterns. This model is appropriate only for the collaborative environments with regions
and boundaries.

e Locking: Every access needs to check the underlying access data-structures which requires locking
data-structures and reduces collaborative work performance.

e Lack of fine-grained access specification: This model does not provide a fine-grained control
since it concerns only navigational access requirements i.e “Can i get into this office?”, hence does
not suit applications with specific controls or very large number of objects such as collaborative
editors [[17].

2.2.2.8 Context-aware Access Control

The RBAC model was extended in order to provide security for context-aware applications. In [23]],
RBAC was extended with the environment notion, environment role [23]] were used instead of traditional
roles in order to capture environment state of a role (see Figure [2.10). Roles are activated according to
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environmental conditions (e.g time, location) when a request is issued. Permissions are assigned to a set
of roles where a set may include both subject and environment roles. Thus, the approach is considered
as a generalization of the RBAC traditional model.

Support for Environment Roles in Access Control
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Figure 2.10: Environment Roles in Context-aware Access Control [23]].

This approach is useful for ubiquitous computing. However, it requires to be tested whether it meets
collaborative applications or not [[107]. Moreover, as in RBAC, the system administrator must define
environment roles at the beginning. Furthermore, each subject or client in the model must contact a
server to obtain authorization to access the desired service. The administration of access is centralized
due to the nature of the targeted systems (ubiquitous computing systems such as Aware Home).

Other works have focused on extending RBAC with context-awareness and dynamic activation of
permissions. The DRBAC [[118] model provides context aware access control for pervasive applications.
DRBAC also extends the RBAC model by dynamically adjusting role and permission assignments based
on context information. However, DRBAC must be combined with feasible authentication mechanisms
to secure pervasive applications in the real world [[118]].

The GTRBAC model [14] provides mechanisms for enabling and disabling roles based on temporal
constraints. The CA-RBAC [55] uses context-based constraints that include temporal and spatial con-
straints. They are specified as part of role admission/validation and role operation preconditions. This
approach supports fine-grained access control requirements. Indeed, it is possible to selectively revoke a
user’s membership from a role, or activate/deactivate specific role permissions, instead of enabling/dis-
abling a role.

The Or-BAC [33]] also generalizes the RBAC model by introducing two abstractions of action and
object called activity and view. The central concept in Or-BAC is the Organization that can be seen as
an organized group of subjects. Furthermore, the Or-BAC model allows for specifying contextual infor-
mation to better manage situations specific to a given context (e.g. bad connexion, temporal information,
etc.). These extensions have introduced the notion of contextual or environmental roles to handle some
events in the system. Consequently, it is possible to assign roles dynamically.
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2.2.3 Access Control in Database Area

An important requirement for collaborative applications is the high response time. To avoid additional
time processing needed by the security policy in order to validate accesses, we believe that security policy
must be replicated on all collaborating sites. Hence, we study the solutions that replicate the policy and
allow for concurrent updates targeting the policy.

Samarati et al. [[79|] addressed authorization replication in database area. They dealt with the propaga-
tion of authorizations in distributed relational database systems. Authors proposed an optimistic replica
control algorithm ensuring consistency even though transient inconsistency are allowed. Indeed, the
replica control algorithm allows the out of order execution between different updates performed on the
authorizations policy. Consistency is maintained thanks to reprocessing updates that have been recog-
nized as received out of order without resorting to undo-redo mechanism but with time stamps usage.
Time stamps may be defined in a centralized fashion or in a distributed one. The latter may be achieved
through the Lamport clock [[56]]. However even though it allows for distributed timing, it assumes a fixed
number of users which limits the scalability of the system.

Moreover, the presented model allows for discretionary administration. It should be pointed out that
managing discretionary administration is a hard task in a distributed and replicated access control model.
Indeed, the out of order execution between policy updates leads inevitably to violations and divergence.
However, since the model is based on using time stamps it is always possible to know the correct order
of different updates and grants performed on the policy.

However, the proposed model does not allow for grouping users. Instead, it deals with individual
subjects (users) and objects (tables/tuples). Moreover the model presented above is not generic since it
only deals with relational databases and resorts to Lamport time stamps.

Another work of relevance is that of Ray and Xin [76,|117]] where authors focus on real time update
of access control policies for database systems. In [76], two algorithms were proposed: syntax-based
and semantic-based in order to allow for concurrent and real time update of the security policy.

The security model is based on a simple authorization-based policy where an access policy is asso-
ciated with each object. Access rights are represented in a binary n-element vector, n being the number
of access rights. For instance, suppose that two access rights (Read and write) are allowed. The binary
vector [01] of a given object allows write but not read on that object.

In [[117], a third algorithm were proposed to deal with conflicting situations when multiple access
right policies are specified over the same object. Priorities are assigned to policies to overcome this
problem. However, even priorities are subject to concurrent modifications in which case a lattice-based
approach is used to distinguish between policy relaxation and restriction.

Similarly to [[79]], access rights are specified only for one user on one object. Hence, it is not possible
to define access rights for group of users or objects. Moreover, while the approach addresses concurrency
in updating security policy, it does not allow users to update at any time since it is based on locking mech-
anisms for both shared data and policy object in order to prevent inconsistencies of both objects which
leads to poor performance and many aborts of operations. To increase concurrency, authors propose to
distinguish between policy restriction and relaxation in order to limit aborts. Nevertheless, cooperative
systems need to exploit the full potential of concurrency and avoid locks in order to offer high response
time as well as availability of both data and security policy. Moreover, this approach does not allow for
explicit revocations and replication.

2.2.4 Access Control for P2P Systems

Several works addressed security in peer-to-peer (P2P) environments. In [65]], authors propose an
encryption-based access control mechanism for a p2p file sharing system. A framework for enforc-
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ing access control policies on published XML documents was proposed. In this framework the owner
publishes a partially encrypted single data instance. The solution is based on a declarative language
for access policies. The data owner enforces an access control policy by granting keys to users. This
approach concerns the sharing of data and not concurrent updates of the shared data by several users.

Another approach was presented in [[16] for managing access control in a distributed fashion in a
p2p network. This approach is based on the access control model of Bertino [15]] and Samarati [26]. It
proposes a client-based access control evaluator motivated by the emergence of hardware and software
security elements on client devices as well as the erosion of trusting servers due to internal and external
attacks. Even though, this model manages the replication of access rules in client devices, it only con-
cerns sharing of data. Moreover, the abstraction of target applications makes no assumption on how the
policy is updated and by whom.

Another approach based on trusted computing is proposed in [83]] in order to enforce access control
policies in application layer of a P2P application. The proposed framework is an abstract platform
beyond the layer mechanisms of trust computing (including kernel architecture, hardware and attestation
mechanism). This framework is based on using cryptography in conjunction with RBAC model with the
aim to control data dissemination in order to restrict the misuse of data. Note that obtaining certificate
for a given role requires a central server called role server as well as a trusted third party (certificate
authority) or direct anonymous attestation to certify users. Examples of targeted applications would be
a document dissemination control application or P2P VoIP applications. The work does not discuss the
concurrent modification of shared objects.

Another security approach for information sharing systems was proposed in [[11]]. This solution
distributes the authorization and authentication enforcement in order to avoid single point of failure.
However it relies on centralized knowledge to enforce policy to overcome inconsistency problems caused
by autonomous authentication.

Some other approaches rely on eXtensible Access Control Markup Language (XACML) policies [24,
25| to specify the access restrictions on the data. These restrictions are stored in super nodes which limits
the solution to hierarchical P2P networks.

It should be pointed out that none of the solutions presented above considers existing access control
components and collaborative applications residing on the peers [93|]. Moreover, administration distri-
bution is not supported by these approaches which represents an important feature of access control in a
p2p application.

Sturm et al. [93]] provide a fine grained access control mechanism similar to those available in re-
lational database systems. It supports delegation of access rights and is based on XACML. Moreover,
the solution ensures secure authentication thanks to a public key infrastructure (PKI) with certificates
to avoid "sybil" Attacks [29]. However, it does not allow for replicating the security policy which may
introduce additional processing time to check access against the central policy. Users do not have the
ability to check locally their access rights and have to wait for the reception of the access decision.

The solution of [[115]] is proposed to handle security in weakly consistent state-based replicated sys-
tems wherein many items collaborate concurrently (e.g laptop, phone, cloud, etc) and then synchronize
periodically. They propose a logic access control policy formalized with SecPal [[10]. The policy is repli-
cated and allows only for positive rights, i.e no explicit access denial is supported. Although delegation is
allowed, the revocation is limited in order to avoid ambiguity. To more illustrate this, neither revocations
nor delegation of revocations can be revoked which is important in such situation. For instance, if we
delegate the revocation right at a given user then we discover it is a malicious one, we can not revoke
this action and hence this user may prevent some trusted collaborators to perform actions. Furthermore,
policy enforcement relies on a single root of authority trusted by all collaborating items. The crash of
this single root would create security problems and block the collaboration if it does not delegate all its
capabilities to another user.
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2.2.5 Comparing Existing Solutions

After presenting previously some background on main classes of policies in different areas, we are now

in a position to discuss and compare them to better understand the differences between these models.

This step is very important and aims at well defining the appropriate access control model for our work.
The main assessment criteria for access control in collaborative editors are the following

Ease of use: this criteria indicates the simplicity of the model from user point of view [107].
Users should feel comfortable with the access control component and be able to specify access
definitions easily [89]]. the security model should require less effort from users [30].

Expressiveness: the expressive power of a model allows for specifying complex security scenarios
and deals with the ability of the model to capture the range of needs of system users [107].

Applicability: this criteria shows the possibility for the model to be deployed in real world collab-
orative applications [107].

Groups of users support: it indicates whether the model supports the notion of groups and allows
to specify access rights for groups or not [107]].

Policy specification: policy specification is very important and allows for scalability and easy
extension of the model [[107].

Policy enforcement: it is very important to provide means that ensures a correct enforcement of
the policy specification [107].

Fine-grained control: the system should support fine-grained subjects, objects and access
rights [89]. This makes the model able to specify access rules not only for roles but also for
individuals on one or many controlled objects [[107]].

Table [2.1] extends the comparative study given in [107)] and resumes the different access control models
as well as the differences between them.

Since our objective is to develop an access control model that meets RCEs requirements, we aim
at defining a security layer characterized by its dynamic aspect and high responsiveness. Moreover, our
access control model has to provide most importantly high distribution, high concurrency, availability and
high responsiveness. Consequently, the proposed model has take into account these additional criteria:

Simplicity and flexibility: this is a very important aspect since, we need to study many collabo-
ration scenarios, the chosen model should be simple to allow for an exhaustive study of different
issues that may cause divergence.

Generic: it is desirable for an access control model to be generic so that any collaborative system
can deploy it to protect easily shared data without redesigning an access control model each time.

Policy replication: Replicating the access control policy is very important in collaborative appli-
cations. Indeed, this allows to respect the high responsiveness requirement of RCE. Moreover, it
allows to benefit from the full potential of replicating the shared data.

Open group: it is very important in a dynamic collaborative application to allow for open groups.
In fact, many collaboration systems offer to users the ability to join and leave the application at
any time (churn). Consequently, the collaborating group must be open and must have a variable
size.
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To achieve our goals, we deeply concentrate in [79] since it discusses security policy replication
and [|89] since it resorts to a policy specification that allows for a dynamic access control management.
These two works are related to our work and served as a basis of the security model that we propose.
The solution of [115] was published recently assuming it is the first work that address policy and data
replication while our first work was published one year before. However, it relies on partial and state-
based replication in the context of weakly consistent replication while we propose an access control
model for collaborative editors where data is totally replicated.

2.3 Conclusion

Collaborative applications are becoming more and more pervasive. As a matter of fact, many applications
are designed in a distributed fashion in order to meet collaborative work requirements. In our work, we
focus on collaborative editors with the aim to extend them with a security layer since there is a lack of
an adequate access control concept that ensures security of shared documents.

In this chapter, we have discussed the main requirements of a collaborative editing work in real-
time context. Then, we have surveyed the most important access control models in order to well define
an access control model for a distributed collaborative editor. Furthermore, we have highlighted their
weaknesses to meet RCEs requirements. Indeed, controlling access in a decentralized fashion for such
systems is still a challenging problem, as they need dynamic access changes and low latency access to
shared documents.

In the following Chapter, we propose our model that fulfils the main requirements discussed before.
To the best of our knowledge, our model is the first generic access control model based on replicating
the shared document and its authorization policy that addresses document updates.
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Controlling access in RCE while meeting their requirements discussed in Chapter [2is a challenging
task. The major problem of latency in access control-based collaborative editors is due to using one
shared data-structure containing access rights that is stored on a central server. So controlling access
consists in locking this data-structure and verifying whether this access is valid.

Thus, a centralized solution is to be discarded since it limits the potential of the collaborative appli-
cation. Indeed, a central server for verifying access rights leads to high latencies.

To overcome the latency problem, we propose an access control model based on replicating the
access data-structure on every site. Thus, a user will own two copies: the shared document and the
access control policy. It is clear that this replication enables users to gain performance since when they
want to manipulate (read or update) the shared document, this manipulation will be granted or denied by
controlling only the local copy of the access data-structure.

However, combining access control with totally consistent replication presents a real challenge if
the resulting system is to be consistent. Indeed, if authorization policy can be temporarily inconsistent
then any given operation may be authorized at one node and yet denied at another. This is troublesome
because it leads to security holes as well as the divergence of the shared document.

Furthermore, unlike traditional single-user models, collaborative applications have to allow for dy-
namic change of access rights, as users can join and leave the group in an ad-hoc manner.

In this chapter, we describe the design of an access control system for replicated collaborative editing
systems hat satisfies RCE requirements (see Chapter [2)). Our access control model allows for the specifi-
cation of a fine-grained access control over a collection of replicated copies of the shared document. The
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consistency of the replicated data is preserved despite the temporary inconsistency of the access control
policy.
Our contributions are as follows:

1. Access to shared documents is controlled in a decentralized and optimistic fashion in the sense
that every user sees the effect of his modifications immediately even though they were remotely
revoked. Then a correct state is restored after revocations are received locally.

2. Security policy is replicated at every collaborating site in order to instantly control the access to
shared documents.

3. Our model is generic since it meets existing coordination protocols. Moreover, it is characterized
by its good performance since our algorithms have a low complexity.

This chapter is organized as follows: Section [3.1]is dedicated to the access control model and its
ingredients. Section [3.2]discusses security and convergence issues. In Section [3.4] we propose a garbage
collection protocol to clean logs. In Section we demonstrate the generic aspect of our solution.
Finally, Section [3.5]concludes.

3.1 Coordination Model

Every existing collaborative editing solution defines a data object that is shared by all collaborators
having the ability to update it concurrently. In the following, we propose a shared security object to be
deployed on the top of a given shared data object in order to ensure access control to shared objects.

3.1.1 Shared Data Object

We consider collaborative objects shared by many users in order to perform a common task simultane-
ously. Operations altering the shared object are called cooperative operations and referred to with the
letter c. Let C be the set of all cooperative operations. These operations are generated locally by each
site and then broadcast to other collaborators.

Example 3.1.1 (Collaborative Text Editors.). For instance a shared object may be a text document. The
document may be considered as a sequence of paragraphs where each paragraph has a unique identifier
and represents an element of the whole shared data object.

Practically, text editor algorithms consider two cooperative operations:

e Ins(p,e) where p is the insertion position and e the element to be added at position p.
e Del(p, e) which deletes the element e at position p.

Some approaches allow for a third operation Upd(p, e, ¢') which replaces the element e at position
p by the new element €' [|19,48,102].

In our work, we consider coordination models allowing for concurrent execution of cooperative
operations. Such systems, generally, use the OT approach to synchronize cooperative operations. Subse-
quently, we assume that every site has a local buffer (see Chapter[2) of cooperative operations also called
cooperative log and referred to with letter H (see Definition |3.1.1]).
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[Deﬁnition 3.1.1 (Cooperative log).J

Each site s maintains a buffer H that stores all cooperative operations. A cooperative log is
represented by the sequence of cooperative operations c; - ¢2 - . . . - ¢, executed at site s.

Given any shared data object based on log usage, we aim at extending it with a security layer to allow
for access control to the different replica hold by collaborators. In the following, we describe the design
of our access control model.

3.1.2 Shared Policy Object

We consider an access control model based on authorization policies. Three sets are used for specifying
authorization policies, namely:

1. S is the set of subjects. A subject can be a user or a group of users.

2. O is the set of objects. An object can be the whole shared document, an element or a group of
elements of this shared document.

3. Ris the set of access rights. Each right is associated with an operation that a user can perform on
shared document. For instance, we can consider the right of inserting an element (7), deleting an
element (d) and updating an element (u). The read right is out of the scope of this thesis but we
plan to give an outlook on future work.

An authorization policy specifies the operations that a user can execute on a shared document.

[Deﬁnition 3.1.2 (Policy).]

A policy is a function that maps a set of subjects and a set of objects to a set of signed rights.
We denote this function by P : P(S) x P(O) — P(R) x {+,—}, where P(S), P(O) and
P(R) are the power sets of subjects, objects and rights respectively. The sign “+” represents
a right attribution and the sign “—” represents a right revocation.

We represent a policy P as an indexed list of authorizations. Each authorization /; € P is a quadruple
(Si, O, Ri,w;) where S; € S, 0; C O, R; C Rand w; € {—,+}. An authorization is said positive
(resp. negative) when w = + (resp. w = —). Negative authorizations are just used to accelerate the
checking process. We use a first-match semantics: when a cooperative operation is generated, the system
checks it against its authorizations one by one, starting from the first authorization and stopping when it
reaches the first authorization [ that matches the cooperative operation. If no matching authorizations are
found, the operation is rejected.

Strings “All” and “Doc” refer to the set of all subjects and all objects respectively. For instance the
authorization [ = (All, Doc, i,+) assign a positive right to insert new objects for all users.

We suppose that the user who assigns authorizations is able to perform administrative operations.
An administrative operation is simply an operation that updates the policy by adding or deleting an
authorization.
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[Deﬁnition 3.1.3 (Administrative Operations).}

The state of a policy is represented by a triple (P, S, O) where P is the list of authorizations.
The administrator can alter the state policy by the following set of administrative operations:

e AddAuth(p,!) to add authorization [ at position p;
e DelAuth(p,l) to remove authorization [ at position p;

An administrative operation «a is called restrictive iff a = AddAuth(p,[) and [ is negative or
a = DelAuth(p,l) and [ is positive.

Notations a.p and a.l refer to the position and authorization of the administrative operation a.

The policy object is replicated in order to avoid high latencies introduced by checking whether a
cooperative operation is valid or not with respect to the policy. The replication aims at satisfying the
high local responsiveness requirement of RCE.

Collaboration Protocol. We consider the collaboration protocol presented in the flow chart of Figure[3.1]
This protocol consists of the following steps:

1. When a user manipulates the local copy of the shared document by generating a cooperative op-
eration, this operation will be granted or denied by only checking it against the local copy of the
policy object (step (1) in Figure [3.1).

2. Once granted and executed, the local cooperative operations are then broadcast to other users. A
user has to check whether or not the remote cooperative operations are authorized by its local
policy object before executing them (step (2) in Figure [3.1)).

3. When an administrator modifies its local policy object by adding or removing authorizations, he
sends these modifications to the other users in order to update their local policy copies (steps (3)

in Figure [3.1).

We assume that messages are sent via secure and reliable communication network, and users are identi-
fied and authenticated in order to associate correctly access to these users.

Although this protocol seems very simple, we show in Section that many security and conver-
gence problems are encountered during collaboration.

Another important aspect of the access control policy is whether the model is mandatory or not.
Indeed, two approaches are possible when building the security layer based on the protocol presented
above: the single-administrator approach and the multi-administrator one. Each approach has its advan-
tages and shortcomings as illustrated subsequently.

3.1.3 Single and Multi-Administrator Approaches

When designing a security model, an important question arises: “is there only one administrator or
more?” even though the answer depends on the targeted application, it is better for our access control
model to be flexible and easily extensible from single to multi-administrator model in order to satisfy a
wide variety of applications.

In the following, we discuss both single and multi-administrator approaches based on motivating
examples for both approaches.
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Figure 3.1: Collaboration Protocol.

Single-Administrator Approach. Many distributed applications require only one administrator in the
group. This form of control is useful to maintain group focus, especially when working toward a strict
deadline [61]]. In a single-administrator application, the administrator is generally the user creating the
group or supervising it. In practice, some editing areas requires a single administrator, generally, the
group creator. In such applications, the group creator prefers to have a full control over the application
wherein mandatory model is of relevance. This is especially required when the administrator is the owner
of the shared document. Among these applications, we cite that of preparing online exams where only
the course’s supervisor needs to assign rights to other users. To illustrate more, consider the example
of the master degree specialized in “Natural Language Processing” taught in common by the Computer
Science Departments of the Henri Poincaré University and the University of Nancy 2. Suppose that the
course of Web Technologies is taught by two professors, the professor Bob gives theoretical courses and
the professor Carl ensures practical class. When the supervisor prepares the exam for students, he wants
that each professor prepares only his dedicated part (Bob for the theoretical part and Carl for the practical
one). In such a situation, since the supervisor administrates the online exam, he has the ability to give
each professor the appropriate access of his part of the document.

Another example would be a community of programmers where the supervisor of a development
team has the whole authority on the collaborating group. He must be able to assign rights to programmers
according to his needs and to the competence of each programmer while programmers should not have
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the right to assign right to other programmers. Let Bob be a supervisor administrating a group of two
programmers Alice and Carl where Carl is a new programmer in the company. Consequently, Carl is less
experienced and trusted than Alice and has just the right to develop some parts of the code that are not
critical.

The main advantage of such a model is its simplicity. Indeed, it allows for an easy update of the
policy since only one administrator changes access rights. However, from a security point of view, it is
harder to control all users mainly in the case of large collaboration groups. Moreover, the absence of the
administrator site due to crashes or physical absence inevitably leads to a static policy. For these rea-
sons, the mandatory model does not meet all applications’ requirements and depends on the application
preferences and policy.

Multi-Administrator Approach. There are several distributed collaborative applications that require
a multi administrator feature. In such applications, each user must be able to control the access to
his objects since users may leave and join the group at any time without being members of the same
community. Even though collaborative applications aim at making data available for many users, users
may need to protect their data according to the nature of the collaborative application.

Shared calendars fall under the collaborative applications umbrella, where a multi-administrator pol-
icy would be of relevance. For instance, in professional context, a secretary may need to instantly see
the activity of his/her manager in order to organize his meetings. On the other side, the manager can see
the activities of his employees and so on. To underline the necessity of a multi-administrator policy in
such an application, let us consider the case when the leader of a company is unable to edit his calendar
and that in the meantime one of his/her customers wants to change the date of an important meeting with
him/her. It would be more practical if the secretary were able to update the appropriate meeting of the
manager’s calendar. Hence, it is interesting to give the leader the ability to grant update right on all or
parts of his shared calendar to his secretary. The secretary (his/her)self may need to grant some rights on
his/her calendar to other secretaries or employees in order to get help.

Another motivating example is that of a collaborative application allowing for a community of re-
searchers, doctors, patients and students to share a piece of information concerning a special disease. In
such an application a researcher may allow doctors to read his scientific results for diagnosing reasons
and students for analysing reasons. Moreover, a doctor may grant writing on his diagnoses to researchers.

According to these two examples, it is crucial to allow for a multi-administrator access control in
existing collaborative applications.

Considering these motivations, we extend the shared policy object in order to take into account multi-
administrator access control. In the multi-administrator access control, we refer to the user ownership
approach in the sense that only the owner of an object has the right to assign rights to other users on
that object. Otherwise the administrative operation is rejected. Hence, for a multi-administrator access
control model, we consider the following meta-access-control policy:

1. Each user who joins the collaborating group is able to create new objects.

2. Each user who creates an object has the right to assign rights to other users on that object.

Accordingly, each user has an owner policy and every policy evolutes independently from other
policies. Each administrator is able to specify access rights to other users on his objects. Owner policies
are defined below.

[Deﬁnition 3.1.4 (Owner Policy).}

An owner policy of a user 7 referred to as P; is a policy administrated by user ¢ on its own
objects.
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Moreover each user is able to perform the same administrative operations as in the single-
administrator model to alter the state of its own policy F;.

[Deﬁnition 3.1.5 (Global Policy).]

A global policy is a set of a finite number n of couples (P;, L;) where P; is the owner
policy of the site 7 and L; is its owner administrative log. We denote this set by P, =
{(P1,L1),(Pa, L), ...,(Py, L,)} where n represents the size of the collaborating group.

Let o and c be a shared object and a cooperative operation respectively such that c alters o. We
consider the primitive Administrator(c) which returns the owner of the object o altered by the cooper-
ative operation c. This primitive allows for identifying the owner policy of o’s administrator in order to
correctly check a remote cooperative operation.

Note that the multi-administrator approach is more general than the single-administrator one and is
required by many applications since it offers a higher flexibility and allows many users to edit access
rights.

In the following, we investigate the issues raised by our protocol presented in Figure [3.1] for both
approaches and present our solutions to overcome these issues.

3.2 Concurrency and Security Issues

The replication of the shared data object and the policy object is twofold beneficial: (i) firstly it ensures
the availability of the shared document, (ii) and secondly it allows for flexibility in access rights checking.

However, this replication may create violation of access rights which inevitably leads to violate the
consistency of shared data required by RCE as mentioned in chapter [2] Indeed, the cooperative and
administrative operations are performed in different orders on different copies of the shared data and
security objects.

In the following, we illustrate the issues raised by the performance of the administrative operations
concurrently to cooperative ones and we present our solutions to address these issues. To better illustrate
the problem, we use the shared text given in Example[3.1.1]

3.2.1 Out-of-order Execution of Cooperative and Administrative Operations

Performing cooperative and administrative operations in different orders at every user site may inevitably
lead to security holes. and, most importantly, data divergence. To underline these issues we will present
in the following four scenarios.

3.2.1.1 First scenario: Divergence caused by administrative operations

Consider a group composed of three users s1, s3 and s3. Initially, the three sites have the same shared
document “abc” (where the characters “a”, “b” and “c” are inserted by s1, so and s3 respectively) and
the owner policies P, Ps, and Ps, respectively where Ps, authorizes sy to delete the character “a” (see
Figure[3.2). Suppose that s; revokes the deletion right to so and sends this administrative operation to sz
and s3 so that it is applied on their local policy copies. Concurrently so executes a cooperative operation
Del(1,a) to derive the state “bc” as it is granted by its local policy. When s receives the so’s operation,
it will be ignored (as it is not granted by the s;’s owner policy) and then the final state still remain
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“abc”. As s3 receives the so’s delete operation before its revocation, he reaches the state “bc” that will be
unchanged even after having executed the revocation operation. We are in presence of data divergence
even though the policy object is the same in all sites due to out-of-order execution of administrative and
cooperative operations.

S1 52 53
“abC” “abc” “abc”

Revoke deletion  pej (1,a)

0

right to s3 on “a \

Accepted

Ignored

Figure 3.2: Divergence caused by introducing administrative operations

The new policy object is not uniformly enforced among all sites because of the out-of-order execution
of administrative and cooperative operations. Thus, security holes may be created. For instance some
sites can accept cooperative operations that are illegal with respect to the new policy which is the case of
sites s9 and s3.

As our objective is to deploy such model in a decentralized environment, the solution based on
enforcing a total order between both operations is to be discarded as it would require a central server
or a total-order broadcast protocol [43]] which is not appropriate for dynamic groups. Achieving this
objective raises a critical question: how the enforcement of the new policy is performed with respect to
concurrent cooperative operations? It should be pointed out that this enforcement may be delayed by
either the latency of the network or malicious users.

To solve this problem, we apply the principles of optimistic security [[73]] in such a way that the
enforcement of the new policy may be retroactive with respect to concurrent cooperative operations.
This means that users are able to violate the policy temporarily until receiving concurrent administrative
operations. Then, operations that violate the new policy enforcement are undone. Hence, only illegal
operations are undone. For instance, in Figure Del(1, a) should be undone in s2 and s3 after the
execution of the revocation.

To detect concurrency, each operation generated to alter an element e locally by a non owner of e
is considered as a tentative. Hence, a remote administrative operation coming from a user s will be
concurrent to all tentative operations performed on the objects administrated by s.

3.2.1.2 Second scenario: Causality between cooperative and administrative operations

In the scenario of the Figure we address the causality between a cooperative and administrative
operation. We firstly consider that the user sy has not the right to delete characters. Then the s; grants
him the deletion right for character “a”. Thus, he becomes able to perform a delete operation (in our case
the operation Del(1, a) is permitted). Now, if we suppose that the deletion arrives before the grant at the
site s1, we will obviously diverge since the deletion is rejected.

Intuitively, our solution consists in capturing the causal relations between cooperative operations and
the policy copies on which they are generated. The causality reflects a dependency between cooperative
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Figure 3.3: Causality between administrative and cooperative operations.

and administrative operations. Since every cooperative operation is generated at a given context (the
version of the local copy of the policy object), every local policy copy has to maintain a monotonically
increasing counter that is incremented by generating local or receiving remote administrative operations.
If each granted cooperative operation is associated with the local counter of the policy object at the time
of its creation, then we can correctly integrate it in every remote site.

3.2.1.3 Third scenario: Necessity of administrative logs

In this scenario, we depict the necessity of using administrative logs in order to keep a local trace of
policy updates. In the scenario of Figure three users see initially the same document “abc” and they
use the same policy object containing only one authorization | = ({s3}, {a}, d, +) allowing user s3 to
delete characters from the shared document. Firstly, s; revokes the deletion right to s3 by removing
the authorization (the policy becomes empty). Concurrently, s3 performs Del(1, a) to obtain the state
“bc”. Once the revocation arrives at ss3, it updates the local policy copy and it enforces the new policy by
undoing Del(1,a) and restoring the state to “abc”.

The question that arises here is how to integrate the remote operation Del(1,a) at s1 and so? Before
to execute this operation, if we check it directly against the local policy at sq, it will be rejected since
the policy is empty. After a while of receiving and ignoring operation Del(1,a), s; decides to grant
once again the deletion right to s3. At s, the execution of both administrative operations leads to a
policy copy allowing s3 to delete characters. Before to execute Del(1,a), if we check it directly with
respect to the local policy of s, then it will be granted and its execution will lead to data divergence.
Indeed, the generation context of Del(1, a) i.e the local policy on which it was checked at s3 is different
from the current execution context at s; and ss due to precedent executions of concurrent administrative
operations.

To overcome this issue, when the cooperative operation’s counter is less than the policy copy’s
counter of another site then this operation need to be checked with respect to precedent concurrent
administrative operations before its execution and not with respect to the policy. Therefore, we propose
in our model to store administrative operations in a log at every site in order to validate the remote coop-
erative operations at appropriate context. For instance, in Figure we can deduce that Del(1, a) will
be ignored at se by simply checking it against the first revocation. Otherwise if the cooperative opera-
tion counter is greater than the policy version, the operation should wait until it is at the correct context.
Finally, if both counters are equal, we deduce that the policy is the same at the sender and receiver sites.
Consequently, it is considered as granted and is executed.
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Figure 3.4: Necessity of administrative log.

3

3.2.1.4 Fourth scenario: Necessity of the ‘“Validate’” administrative operation

Using the above solution, the administrative operations will be totally ordered as only the administrator
modifies the policy object and we associate to every version of this object a monotonically increasing
counter.

Consider the scenario illustrated in Figure 3.5 where s is initially authorized to insert any character.
Suppose that s; performs the operation Ins(1,x). When adm revokes the insertion right to s, he has
already seen the effect of the s1’s insertion. If sy receives the revocation before the insertion, he will
ignore this insertion as it is checked against the revocation. It is clear that the insertion may be delayed at
s either by the latency of the network or by a malicious user. We observe that there is a causal relation
at adm between the insertion and the revocation. This causal relation is not respected at s and the
out-of-order execution of operations creates a security hole as ss rejects a legal insertion.

adm 81 S2
‘ﬂabc” “abc’7 “abc7!
Ins(l,z)

revoke insertion
rightito so

Accepted

revoke insertion

rightito sg

revoke insertion
right:to so

“XabC” “XabC” “abC”

Figure 3.5: Validation of cooperative operations

Ignored
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Before it is received at the administrator site, we consider a cooperative operation as tentative. So,
our solution consists of an additional administrative operation that does not modify the policy object but
increments the local counter. This operation validates each received and accepted cooperative operation
at the administrator site. Consequently, every administrative operation is concurrent to all tentative op-
erations. The policy modifications done after the validation of a cooperative operation are executed after
this operation in all sites, as administrative operations are totally ordered.

In case of our scenario in Figure [3.5] the revocation received at so will not be executed until the
validation of the insertion is received. This avoids blocking legal operations and data divergence.

Accordingly, we define three kinds of cooperative operations in order to detect the concurrency
between administrative and cooperative operations (see Section [3.2)):

e Valid: a cooperative operation c is valid if it is generated by Administrator(c) or by another user
and validated by Administrator(c); For instance, the operation Ins(1,x) in Figure [3.5|is valid
since it is accepted at the administrator site.

e [nvalid: a cooperative operation c is invalid if it violates the policy or is undone by a concurrent
administrative operation. For example, the operation Del(1, a) generated at site s3 (see Figure[3.4)
is invalid since it was concurrent to the revocation originated by the owner site s;. Thus, the
operation is ignored at site s; and undone at site s3.

e Tentative: a cooperative operation c is tentative if it is not generated by Administrator(c). For
instance, the operation Ins(1,x) generated at site sy in Figure is tentative since S is not the
owner of the character ”x*.

Let V, Z and T be the sets of valid, invalid and tentative operations respectively. Note that, the set V
is sufficient to describe the set of all operations since the two others may be calculated from )V and the
cooperative Lo

3.2.2 Joint Issue

Consider the scenario illustrated in Figure [3.6| where we have initially a group of two collaborating sites
51 and s. When s; grants the delete right on “a” to s9, s3 is not yet a member of the group. Suppose
that s3 joins the group just before sy receives the grant from s; and downloads the global policy from
s2. This means that the global policy replica owned by sz is different from that owned by s;. Then sg
receives the administrative operation from s;. Consequently, the security shared object diverges. This
leads to data divergence. In fact, when sy deletes the character “a”, this cooperative operation will be
executed at 51 and s but rejected by s3.

It should be pointed out that this issue does not concern only administrative operations but also
cooperative ones. In fact, a user may loose a cooperative operation when he downloads the log and the
state concurrently to the generation of a cooperative request by another user in the group.

To overcome this issue, there are two possible solutions: (1) The new user must request the policy
object (P;, L;) from its possessor ¢ and not from the nearest user in the P2P network as well as the shared
data object. This solution is costly and to be discarded; (2) The new user must wait the time 6 before
requesting shared objects from the nearest user. The time 6 corresponds to the maximum bound needed
so that a message traverses the network from any sender to its receiver (see Figure [3.7).

°H\V = T |JZ, H being the cooperative log storing the cooperative operations.
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Figure 3.6: Divergence caused by a new user
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***************** Request shared objects

/

Figure 3.7: Time required by a new user to request shared objects.

In our model, we consider that  is a parameter depending on message size and network configuration
on witch the application is running. For instance, § < 175ms for 1KB message propagated through
HTTP connection on the P2P network JXTA 2.0 [41 m

The same problem occurs when a user disconnects then reconnects to the group. In this situation
two cases are possible. A disconnected user may be regarded as a new user to whom we assign a
new identifier. This approach is avoided since policies must be updated each time a user disconnects
and reconnects by replacing old identity by the new one. The second possibility, is to assign the same
identity to the user. However, owner policies of other collaborators may change during his absence.
Consequently, his local replica of the global policy must be updated in the same way as a new user who
joins the group by downloading the new objects from the nearest peer after time 6.

0TXTA is the P2P platform that we used to implement our solution.
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3.2.3 Remote Check and Unnecessary Undo

In this section, we focus on the unnecessary undo issue raised by the remote check. Indeed, tentative
cooperative operations are undone when a concurrent restrictive administrative operation is found at the
receiver site during the check process. However, a cooperative operation ¢ may be revoked due to the
concurrent deletion of an administrative operation granting ¢ while c is legal with respect to the policy
if there are other concurrent administrative operations granting c. This issue occurs due to the fact that
we invalidate or undo tentative operations as soon as a concurrent restrictive administrative operation is
found regardless the semantic of this restrictive operation.

In the following, we detail the scenarios of unnecessary undo operations and show how to exploit the
administrative operations semantics to overcome this issue.

3.2.3.1 First case of useless undo

Consider the scenario presented in Figure [3.8] where two sites s; and s, edit the same shared data object.
Suppose that s; and so begin the collaboration with the initial owner policy of so, Ps, containing {/; =
({s1},{o},u,+);la = (All,{o},u,+)} where o is an object administrated by so. Authorisation Iy
only grants update right to user so while /o grants update right to all users. We also assume that the
authorization list is parsed from the top to the bottom.

Suppose now that user s; performs a tentative cooperative operation ¢ = Upd(p, o) to update the
object o at position p. According to the ownership principle, so performs the restrictive administrative
operation az = DelAuth(0,1;) in order to delete the permission /1. Then, broadcasts the restrictive
administrative operation a3 that revokes the cooperative operation c.

When a3 is received at site s1, it leads to undoing c since it is tentative and revoked by as. At site so,
the remote check of c returns a negative result, since as is a revocation of ¢ generated at a version greater
than that of c.

Note that c is undone while authorized by the permission /5 inserted on the top of the authorization
list. The same issue would be faced if site so inserts a permission o = (s1, {0}, u, —) at a position less
or equal to [2’s position wherein c is invalidated even though it is legal with respect to the authorization
list.

To overcome this problem, we propose to track administrative dependency for every cooperative
operation. Tracking this dependency inside administrative logs enables us to correctly integrate remote
cooperative operations since a cooperative operation depends on the permission allowing its execution.
For instance in the scenario of Figure c is validated thanks to Iy and not [;. Subsequently, the
deletion of [, instead of {; should invalidate c¢. This administrative dependency should be updated when
parsing the administrative log during a remote check process in order to take into account concurrent
administrative operations executed on the local policy of the receiver site.

3.2.3.2 Second case of useless undo

Consider the scenario of Figure [3.9 where two sites s; and sy collaborate with the initial policy object
such as L, = a; with a1 = AddAuth(0,1;) and Ps, = {l; = ({s1},{o},d,+)}. We suppose that s;
performs the cooperative operation ¢ = Del(p, o) verifying Administrator(c) = so then broadcasts ¢
to be executed at site so. After a while, s generates two administrative operations a9 and a3 concurrent to
c. The administrative operation ay inserts the permission ly = (All, {0}, d, +) on the top of [; which also
grants c since [y is more general than /;. However, the administrative operation ag = Del Auth(0, ;)
deletes the permission /; on which depends c.

According to the first useless undo case, ¢ should be undone at site s; and invalidated at site sy
since its administrative dependency [; was deleted concurrently. However, the administrative operation
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a1 = AddAuth(0,11)

Figure 3.8: Useless Undo: First Case.

ay generated after a; also grants c. Consequently, the cooperative operation ¢ must not be undone
even though its dependency was deleted concurrently if there are at least one administrative operation
authorizing its execution. Subsequently, when checking ¢ remotely, we have to take into account the
administrative operation as.

To overcome this issue, we propose to track /o in the administrative dependency of ¢ during the
remote check process. Consequently, the administrative dependency is seen as a list of integers referring
to the positions of all authorizations granting the execution of a given cooperative and inserted on the top
of its initial dependency. This dependency is referred to with c.ad.

Initially, the dependency set of an operation c contains the authorization on which it depends locally.
Next, during the remote check procedure, the set of administrative dependencies is updated by adjust-
ing, adding or removing positions according to the kind of the encountered administrative operation
(AddAuth() or Del Auth()). Accordingly, given a cooperative operation ¢, the administrative depen-
dency of c represents an ordered set of integers where the minimum and the maximum refer to the first
and last administrative operations granting c respectively.

To better illustrate how we update the dependency of a given cooperative operation, we consider the
following example:

Example 3.2.1. Consider a cooperative operation c and the following administrative log where c is
initially granted by aq (e.g c is a delete operation). Then c is checked against the administrative log as
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Figure 3.9: Useless Undo: case 2

follows: Initially ad = [0), it is updated when c is transformed against a1 and becomes |0, 1] (since also
ay grants c). Finally, the deletion of the authorization at position 1 leads to ad = [0].

ay = DelAuth(1, (All, Doc,d, +)) —  c.ad = [0]
a1 = AddAuth(1,(All, Doc,{d,u},+)) — c.ad=1]0,1]
ap = AddAuth(0, (All, Doc,d, +)) —  c.ad = [0]

This transformation is applied both at the remote check and at the reception of a remote administra-
tive operations. In the first case, a cooperative operation is transformed against concurrent administrative
operations stored in the administrative log in order to update the administrative dependency. Thus, the
remote check will proceed correctly by avoiding useless invalidation scenarios. Similarly, the recep-
tion of remote administrative operations updates the administrative dependency of tentative cooperative
operations.

For instance, the cooperative operation c in Figure [3.9] must be updated at site s; at the reception
of the administrative operation ag (i.e c.ad = [0, 1]). Similarly, the reception of a3 has to update the
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administrative dependency of ¢ by deleting 1 (i.e ad = [0]) since the new position of Io is 0 after the
deletion of ;.

Accordingly, a cooperative operation c is undone only when its dependency becomes empty (i.e
ad = () after being transformed against a concurrent administrative operation.

3.2.3.3 Third case of useless undo

The last scenario of useless undo is illustrated in Figure[3.10] In this scenario, we suppose that two sites
s1 and so have the initial policy Ps, allowing s; to delete all objects administrated by s2. Suppose s;
performs a cooperative operation ¢ = Del(p, o) where o is administrated by ss.

Initial policy object state

P82 LSQ
lo = {81}, All,d, + al = (J,dd(o7 lo)
Intermediate policy Intermediate policy

object state for s

¢ = Del(p, o) DelAuth(0, o)
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52
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Ep)
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a1 = AddAuth(0,lo)

"
s2

a3 = DelAuth(0,11)

ay = AddAuth(l, lg)

a; = AddAuth(O, ll)

Figure 3.10: Useless Undo: case 3

Concurrently, s, deletes the permission [y on which depends ¢ (by generating the administrative
operation as = Del Auth(0,lp) then adds the permission I; = (All, All,d,+) which is more general
than [y and grants c. Hence, ¢ will be undone due to the administrative operation ag = Del Auth(1, 1)
generated by sy although the policy allows its execution (thanks to as).

For simplicity reasons, we chose to invalidate a cooperative operation if an invalidation is found
before any new administrative operation granting this operation. Details and algorithms of the remote
check are given in Chapter 4]
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3.3 A Generic Security Model

In this Section, we present the generic architecture of our access control model that can be deployed atop
any log-based collaborative editor. To illustrate the generic aspect of our access control model, we define
an editing application as a structure of three different layers (see Figure[3.12):

1. The Coordination Layer denoted as CL;
2. The Access Control Layer denoted by ACL and;

3. The Generic Interface (GI) that connects CL and ACL;

The Coordination Layer e.g. OPTIC, SDT, .... (see Chapter [2) implements the coordination algo-
rithm responsible of coordinating concurrent updates. This layer is seen as a black box and is independent
of other layers. It ensures the concurrency control as illustrated in Figure [3.T1] where every site first exe-
cutes locally generated document update, then broadcasts them to other users. The receiver site, extracts
remote operations from network and integrates them locally by the CL.

Sender site Receiver site

GUI 'f | GUI

(1)Execute operation (5)Execute operation

(2)Broadcast o ““M (4)Get operation

3)Send operation

Network

Figure 3.11: Underlaying Coordination Architecture.

Note that we only address CLs using logging mechanisms to store different updates performed on
the shared document and that identify each created object with a unique identifier.

To build a generic access control layer (ACL) on the top of a given CL while preserving convergence,
we need to well define the Generic Interface (GI) that connects both layers: ACL and CL. For the sake
of our results, we define the following set of operations that handle the connections between the different
layers mentioned before (see Figure [3.12):

e Check(c) checks whether the cooperative operation ¢ communicated to the generic interface (GI)
is authorized by ACL or not;

e Apply(c) launches the execution of the cooperative operation c on the actual data state;
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e Undo(c) to undo every cooperative operation ¢ in the cooperative log conﬂictingﬂ with the con-

current restrictive administrative operation a received by GI.

We describe below the flow of interactions between the three layers:

1.

When a cooperative operation c is received from the network, it is firstly redirected to the GI
instead of the CL in order to be checked against the policy object through the C'heck(c) module.

If ¢ is authorized by the ACL, then it is communicated to the module Apply(c) of the generic
interface GI. This module will ensure its execution on the current document state state. Otherwise,
the operation is rejected from the ACL and then ignored by CL.

When a remote administrative operation a is received, it is communicated to the GI in order to be
applied in the ACL so to modify the local copy of the shared policy object.

If there are cooperative operations concurrent with 7, and conflicting with it, then the generic
layer will process the Undo(c) module in order to undo all cooperative operations ¢ that are no
more legal after the reception of r,. This step is crucial since it allows for the data convergence
by restoring the correct state seen by the administrator at the moment of the generation of the
administrative operation a.

. When a cooperative operation c is locally generated, it is first executed then redirected to the GI to

check if it is authorized by the ACL or not. If not, it is undone thanks to the Undo(c) moduleEl
Otherwise its effect remains on the document state. Finally, the operation c is broadcast through
the network.

Sender site Receiver site
GUI GUI
}DolU\ndo A Do/Undo .
@ n . \
Check Checl
ACL - ACL
' 4 4
Gl Gl
—
CL Gele'r'ite Integrate CL

—
Brcad%a?*_/ ;ﬁcjve
Network ’ﬂv{ Network

L 4 L y

\
»

Figure 3.12: Different layers of secure RCE model.

""We say that a cooperative operation ¢ is conflicting with an administrative operation when ¢ is concurrent with a,
Administrator(c) is the issuer of a and ¢ violates the rights restricted by a (a is restrictive).
12We suppose that a user is aware of his/her capabilities to limit the repetition of a do/undo mechanism
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3.4 Distributed Garbage Collection for Administrative Logs

Our model requires every site s to maintain an administrative log containing administrative operations of
which site s is informed, i.e. administrative operations generated by s or originated from other sites and
then communicated to s. As discussed in Section the site may need to reconsider the administrative
operations it has received in order to properly check a remote cooperative operation upon reception of
out of order administrative ones. Furthermore, shared objects may not have been received by other users
such as new users or disconnected ones; hence every site must remember the operations it has received
so to communicate them to other sites.

Accordingly, enforcing security requires to store administrative operations in a buffer history, as it is
necessary to track policy updates in order to achieve convergence of the shared data. Unfortunately, with
the continuous increasing of log size, the system performance may be degraded which is inappropriate for
low storage capacity devices and may not be useful after producing many versions of the access control
policy. Moreover, storage capacity is not infinite as memory always has limited size. Secondly, the
motivation for maintaining a log at each site is that a remote administrative operation must be executed
at the same security context on all receiver sites as we have already shown in Section However, not
all operations received by a site must be kept in its log. In particular, an administrative operation can be
safely deleted from a site’s log if it is already received in all other sites.

In this section, we focus on garbage collection as a feature for our access control model. We discuss
issues raised by garbage collection mechanism in collaborative editing context. Finally, we devise a
distributed garbage collection scheme to clean administrative logs.

3.4.1 Garbage Collection Issues

Administrative logs are identical at all sites, since all administrative operations are executed in the same
order dictated by the administrato

Let GARBAGE_ADM_LOG(s,v) be the request allowing for initiating a garbage process for admin-
istrative logs where s is the owner site’s identity and v is the policy version. Such a message is causally
ready at a site s if v = v’ + 1, v’ being the version of the owner policy copy Py of site s1.

The out of order execution of a garbage request and a cooperative operations inevitably leads to
divergence of the shared data object since cooperative operations are checked against the administrative
log. To illustrate this issue, consider the scenario of Figure in which we give the impact of deleting
the administrative log of a site s; on the remote check of cooperative operations received after the log
removal.

In Figure [3.13](a), two sites s; and s2 begin the collaboration with the same document and policy
objects. Let ¢ be a cooperative operation originated by so. Suppose that Administrator(c) = s1
and that c is granted at version v, — 1. After he reaches the version v, site s; generates the request
GARBAGE_ADM_REQUEST(s1, vy) in order to garbage the administrative log L. We also assume that
the garbage request is immediately executed at the originating site s;. Consequently, the local copy of the
access control policy becomes empty. Obviously, checking the remote cooperative operation c already
executed at site so presents a big issue.

The same issue is encountered for illegal cooperative operations as illustrated in Figure 3.13](b). In
this case, we suppose that s grants r, at version v, — 2 but revokes later ¢ from sp. Then s generates
again an administrative operation that grants c. Finally, s; performs GARBAGE_ADM_LOG(s1, vg4) in
order to garbage the administrative log and broadcast the garbage request so to be executed at site so.

The cooperative operation c is invalid because of the revocation performed at version v, — 1. In fact,
once the revocation is received at site so, ¢ is undone since it is a tentative operation concurrent to the

BThis order reflects the policy version.
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Figure 3.13: Interleaving Between a Garbage Request and Cooperative Operation

revocation performed by the administrator s;. However, when c arrives at site s, the log is empty so
we can not correctly check this remote cooperative operation. Unfortunately, such a situation inevitably
leads to divergence of the shared document as well as policy violation (if ¢ is executed at site s1).

To overcome this problem, we have to correctly address the following two issues:

1. What should be version of the policy after processing a GARBAGE_ADM_LOG?

2. How to check remote cooperative operations that are concurrent to a GARBAGE_ADM_LOG re-
quest?

In an attempt to answer these questions, we focus on policy version and show how to avoid the
divergence caused by the interleaving between garbage request and cooperative operations.

Policy Version. Restarting the version 0 after cleaning logs is to be discarded since it does not allow
to remember previous garbage requests. Consequently, a delayed remote cooperative operation concur-
rent to a GARBAGE_ADM_LOG request may be executed at given site s that has processed a garbage
collection as if it was not the case. For instance, consider a cooperative operation ¢ with version v. Sup-
pose that ¢ is delayed by a malicious user while Administrator(c) performs a GARBAGE_ADM_LOG
request and restarts the version of its owner policy to 0. Then Administrator(c) performs many ad-
ministrative requests until he reaches the version v. Clearly, when Administrator(c) receives ¢, he will
integrate it locally as if it was generated after the garbage. Consequently, the remote check may produce
an erroneous result that violates the policy and leads to divergence.

To overcome this problem, we define the policy version v as a couple (vg, v4), Where v, represents the
counter of garbage requests i.e v, is incremented each time a GARBAGE_ADM_LOG request is generated
while v, represents the counter of administrative requests i.e it is incremented when an administrative
operation is generated and reset to 0 each time v, is incremented. For example, the version v = (5, 2)
refers to an administrative log containing two administrative operations after the fifth garbage of the
administrative log. We use the dot notation to denote each parameter of the version (v = (vg, vg)).

Accordingly, a cooperative operation administrated by the site s having the version v, = (vg,v,) is
ready with respect to the policy if its version number v verifies (i) v.vy = v,.vq i.e it is generated after the
same number of garbage requests. (ii) v.v, > vs.v, i.e s has reached the policy context on which ¢ was
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generated. Thus, we are able to correctly check a remote cooperative operation against the administrative
log even if it was removed by a GARBAGE_ADM_LOG request.

Checking Remote Cooperative Requests Concurrent to a Garbage Request. We have already shown
in Figure that it is impossible to correctly integrate remote cooperative requests concurrent to a
garbage request. To overcome this issue, our solution consists in undoing cooperative operations that
are concurrent to a GARBAGE_ADM_LOG request even if they are legal operations. This highlights the
optimistic aspect of our model in the sense that a user may introduce temporary divergence situations
while the system ensures permanently the convergence of the shared document.

The causal relation between garbage and cooperative requests is defined as follows:

e Every cooperative operation ¢ with version v received at a site s with version v such that v.v, <
vs.V4 is considered as invalid since it was generated concurrently to a garbage request. Note that
c is a tentative cooperative operation otherwise it would be validated before the execution of the
garbage request thanks to the administrative operation Validate(c).

e When a GARBAGE_ADM_LOG request is received at a remote site, it is executed after undoing all
tentative operations from the cooperative log.

For instance, in Figure [3.13] ¢ must be undone before the execution of GARBAGE_ADM_LOG(s1,v4)
which leads to convergence. Thus, a garbage request behaves in the same manner as a restrictive admin-
istrative operation.

Garbage Collection Protocol. To remove administrative logs, we follow these steps:

1. The site s generates the administrative operation GARBAGE_ADM_LOG(s,v) and broadcasts it to
all users. This request contains the identity of the issuer as well as its version.

2. When a remote site s’ receives GARBAGE_ADM_LOG(s,v), it stores it until it is causally ready.
Once it is causally ready, s’ undoes all tentative operations then removes the administrative log
and updates the policy version. Thus the counter of administrative operations is reset to zero and
that of garbage administrative logs is incremented.

3. Each cooperative operation received at site s or at any other collaborating site after the garbage
request is ignored.

3.5 Conclusion

In this chapter, we have proposed a generic and decentralized framework for controlling access in dis-
tributed collaborative editors. We designed our solution in a replicated and optimistic fashion so that
users are able to collaborate in editing the shared access control policy. Our model relies on the op-
timistic aspect of the collaboration in the sense that users may violate temporarily the policy. Illegal
operations are undone in order to restore the correct state.
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This chapter presents a protocol for optimistic access control model proposed for RCE that enables

us to address issues such as security holes and data divergence presented in Chapter [3]

The outline of this chapter is as follows: In Section .1] we present our algorithms as well as an

illustrative example. Section[d.2] gives the correctness proof of our protocol.

4.1 Concurrency Control Algorithms

In our collaboration protocol, we consider that a user maintains two copies: the shared document and its
access policy object. Even though our access control model seems simple, we have shown in Section[3.2]

that the policy enforcement is very tricky.

In the following, we formally present the different components of our algorithm as well as its asymp-

totic time complexity.
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4.1.1 Cooperative Requests

A cooperative operation c is associated to a cooperative request r. = (s, ¢, v, f,ad) where:
1. s is the identity of the generator site.
2. cis the cooperative operation of r. referred to with r..c.
3. v is the number version of the policy copy referred to with r..v.

4. f is the kind of cooperative operation denoted by r..f and takes values ‘“Tentative”, “Valid” and
“Invalid”.

5. ad is the administrative dependency of c and is referred to with r..ad .

The object altered by a given request 7. is referred to as r..0. Furthermore, r..t reflects the request
type e.g considering the set of operations insert, delete and update r..t = ¢ if ¢ is an insert, r..t = d if it
is a delete and r..t = w if it is an update. Let C, be the set of all cooperative requests.

We consider coordination models allowing for concurrent execution of cooperative operations. Such
systems systematically rely on logging cooperative operations. Subsequently, every site keeps a local log
for cooperative operations also called cooperative log and referred to with letter H.

[Deﬁnition 4.1.1 (Cooperative log).J

Each site s maintains a buffer A that stores all cooperative requests. A cooperative log is
represented by the sequence of cooperative requests r¢1 - 7c2 - . . . - e, €Xecuted at site s.

4.1.2 Administrative Requests

Every administrative operation a is associated with an administrative request r, where 7, is the triple
re = (8,a,v) such that:

1. s is the identity of the site referred to with r,.s;
2. a is the administrative operation denoted by 74.a;

3. v is the version number of the owner policy P, denoted by r,.v and is the couple (vg, v,) where
vy is the number of garbage collections while v, is the number of administrative requests.

Moreover, the notation r,.t refers to the type of a administrative operation r,.a associated with r,
e.g. rq.t = AddAuth if ry.a = AddAuth(p,l) and so on. Finally, r,.l refers to the authorization
inserted or deleted by the administrative request 7, if r4.t = AddAuth V ro.t = DelAuth and r4.c
refers to the identifier of the cooperative request validated by r,, if r,.t = Validate.

Let A, be the set of all administrative requests. Note that administrative requests are stored in a log
called administrative log (see Section[3.2] Chapter [3).

[Deﬁnition 4.1.2 (Administrative Log).}

An administrative log L is a buffer that stores all administrative requests.
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In order to enforce access control, we need to define both Grant and Revoke predicates that allow
to deduce whether an administrative request grants or revokes a given cooperative request.

Both predicates requires a matching rule, to see if the administrative request really concerns the
cooperative request or not. This matching rule is given in Definition4.1.3

[Deﬁnition 4.1.3 (Matching rule).}

Given an authorization I; = (S;,0;, R;,w;) and a cooperative request r.. The predicate
Matches(l,r.) returns true iff:

(TC.S eES;, VS = All) VAN (T’C.O eO;VO; = DOC) N (Tc.t €ER,VR; = All)

Next, we define the boolean predicate Grant(rg,r.) and its dual boolean predicate Revoke(rq,rc)
as follows:

[Deﬁnition 4.1.4 (Grant predicate).}

Given an administrative request r, and a cooperative request r., the boolean function
Grant(rq,re) : Ay X Cp — {true, false} returns true iff

4.0 is not restrictive and Matches(rq.l,r.) = true.

For instance, consider the positive authorization | = (All, Doc, {3, d}, +) and its associated admin-
istrative operation a = AddAuth(p,l) where p is the top of the authorization list P (p = | P|). Let r, be
the administrative request corresponding to a. In this case, for every cooperative insert or delete request
re (leret =1V re.c = d), we have Grant(rg,r.) = true.

In the following, we present the revoke predicate, that takes true value if an administrative request
revokes a cooperative request.

[Deﬁnition 4.1.5 (Revoke predicate).}

Given an administrative request r, and a cooperative request r., the boolean function
Revoke(rq,re) : Ay X Cp — {true, false} returns true iff

rq.a is restrictive and M atches(rq.l,r0) = true.

For better understanding, let Iy = ({s}, Doc, {i,d}, +) deleted by the administrative operation a =
DelAuth(p,l;) where p is the position of I in the corresponding authorization list P. Consider a
cooperative request r. verifying r..t = d V r..t = i and administrative request r, such that r,.a = a,
thus Revoke(rq,r.) = true. Similarly, consider la = ({s}, Doc,{i,d},—) and the administrative
request 41 that adds /5 on the top of P. Consequently, we have Revoke(ry,r.) = true.

4.1.3 Causality Between Cooperative and Administrative Requests

A cooperative request is causally ready if it has the same garbage as the receiver site and a policy version
greater than the policy version of the receiver site. We define the causality of a cooperative operation in
the following:
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[Deﬁnition 4.1.6 (Causality between cooperative and administrative operations).]

Let r. and r, be two cooperative and administrative requests respectively such that r,.s =
Administrator(r.). The cooperative request 7. depends causally on 7 iff re.vg = 74.v4 A
Te.Q > To.Ug, Le. T has already seen the effect of r,. If r. is tentative then it is concurrent to
T4, I.e. the administrator has not yet seen the effect of . when it generates r,.

A remote cooperative request is executed at the receiver site only when it is causally ready. We define
the boolean function Ready(r.) as follows:

(Definition 4.1.7. )

Given a cooperative request 7. received by a site s, the boolean function Ready(r.) : C, —
{true, false} returns true iff r. is causally ready according to the Definition (all admin-
istrative requests on which r. depends causally are executed on s).

Similarly, remote administrative requests are buffered and executed only when they are causally
ready. By abuse of notation, we use the same function used for cooperative requests.

( Definition 4.1.8. )

Given an administrative request 7, with version v = (vg, v,) received by a site s such that
the owner policy of r,.s has the local version v, = (vgy, var). Then 7 is causally ready iff
() rq.t # Validate N\ rq.vg = Vgr A Tq.Vq = Vgr + 1 o1 (ii) 7.t = Validate N\ rq.vy =
Ugr A\ Tq.Uq = Vgr + 1 A rq.c € H. Consequently, boolean function Ready(r,) : A, +—
{true, false} returns true.

4.1.4 Control Procedures

In a secure collaborative editor, a group consists of N user sites (where N is variable in time) starting a
collaboration session from the same initial shared data state. Each site stores all cooperative requests in
a cooperative log and all administrative requests in an administrative log.

Our concurrency control procedure is given in Algorithm [2] In the following, we detail the main
steps of this algorithm.

Joining the group. Each user must join an existing group. Even the group creator, creates the group
then joins it. In Algorithm [2] the first step is the JOIN procedure. We define two different states for each
user: passive and active state. A user is active when he is able to begin the collaboration with other
users. Otherwise he is passive. First, the user waits until receiving both data and security objects. He
has the initial state passive until he receives both data and security objects from the nearest peer on the
collaborating group (of course if there is already at least a member in the group).

In the following, we illustrate the generation and reception of administrative requests.

Generation of local cooperative request. In Algorithm 3] when a cooperative operation c is locally
generated at a site s, we begin by forming r. = (s, ¢, f, vs, [|) associated with it where vy is the version
of the policy administrating .. Once the request 7. is formed, it is considered either as valid when the
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1: Main:
2: JOIN
3: INITIALIZATION OF THE COORDINATION LAYER
4: INITIALIZATION OF THE SECURITY LAYER {see Algorithm 8]}
5: while not aborted do
6:  if there is a generated cooperative operation ¢ then
7: GENERATE_COOP_REQUEST(c)
8: else
9: if there is a generated administrative operation a then
10: GENERATE_ADMIN_REQUEST(a)
11: else
12: RECEIVE_REMOTE_REQUEST
13: INTEGRATE_REMOTE_REQUEST
14: end if
15  endif
16: end while
17: RECEIVE_REMOTE_REQUEST:
18: if there is a request r from a network then
190 F« F+r
20: end if
21: INTEGRATE_REMOTE_REQUEST:
22: if 3r € F | Ready(r) = true then
23:  {see Definition d.1.6]and [d.1.8]}
2. F+ F—r
25:  ifr € C, then
26: RECEIVE_COOP_REQUEST(r) {see Algorithm {]}
27:  else
28: if r € A, then
29: RECEIVE_ADMIN_REQUEST(r) {see Algorithm[9]and [I0}
30: else
31: r is a garbage message
32: RECEIVE_GC_MESSAGE(r) {see Algorithm [IT]}
33: end if
34:  endif
35: end if
36: JOIN:
37 if N > 1 then
38: state <— passive
39:  wait until all requests traverse the network
40:  request shared data and security object
41:  wait until receiving shared data object
42:  for all cooperative requests . in H do
43: RECEIVE_COOP_REQUEST(7,)
44:  end for
45: end if
46: state < active

Algorithm 2: Concurrency Control Algorithm

issuer s is Administrator(r.) (note that Administrator(r.) is simply the group’s administrator in the
case of a single-administrator approach) or otherwise as tentative. The request r. is immediately executed
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on its generation state (i.e. Apply(r.) computes the resulting state when executing operation ¢ on the
document state) then checked to verify whether it is authorized or not in which case it is undone. The
operation is checked against the local copy of the policy (i.e. using boolean function CHECK_LOCAL
detailed in Algorithm [5)). We choose to execute the operation immediately before checking it against
the local copy of the policy for generality reasons. Indeed, all existing coordination algorithms execute
a locally generated operation immediately. This allows our model to be generic and to be deployed on
the top of any coordination algorithm without any modification of the coordination layer. However, we
suppose that users are aware of their rights and consequently generating illegal operations is not frequent.

Reception of remote cooperative request. Each site has the use of queue F' to store the remote requests
coming from other sites (line 19 of Algorithm[2)). Request . generated on site s; is added to ' when it ar-
rives at site s; (with s; # s;). In Algorithm to preserve the causality dependency with respect to prece-
dent administrative requests and precedent cooperative requests, . is extracted from the queue when it
is causally-ready (see Definition i.1.6). If there is no concurrent garbage collection for the administra-
tive log we check the cooperative request. Using function CHECK_REMOTE(7c, L Administrator(re))s Te 18
checked against the administrative 10g L Agiministrator(r.) (nOte that this log is the log of the administrator
of the group in the case of a single-administrator approach) to verify whether or not r.. is granted. If 7. is
executed by Administrator(r.) then it is validated and a validation V'alidate(r.) request is generated
in order to broadcast it to other sites. Note that if a cooperative request has the same version as the
receiver site, it is valid since it is has the same context of the receiver site. In this case there is no need to
check the operation.

GENERATE_COOP_REQUEST(c):
Te < (si7 &) fa Vs, [])
s;j < Administrator(r.)
if S; = 8 then
re.f < Valid
VV+r.
else
re.f « Tentative
end if
Apply(re)
: if CHECK_LOCAL(7., P;) then
{see Algorithm 5}
broadcast r.
. else
Undo(r,.)
: end if

P RDINERD

e e e e
A AN S v s

Algorithm 3: Generation of Cooperative Request at the Site s;

4.1.5 Check Procedures

In this Section, we illustrate how to check local and remote cooperative requests.

In order to avoid useless undo cases (see Chapter [3 section [3.2.3), we define the transformation
function IT%( r.,rg) presented in Algorithm [/| that updates the administrative dependency of a cooper-
ative request when checked against the local copy of the policy (see algorithm (7)) or at the reception of
concurrent administrative operations.
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1: RECEIVE_COOP_REQUEST(r.):

2: s; < Administrator(r.)

3: if (vj.vy = re.vy and CHECK_REMOTE(r, L, ))(see Algorithm@ then
4 Apply(re)

5. if s; = s; then

6 V—V+r,

7 a < Validate(r.)

8 GENERATE_ADMIN_REQUEST(a)
9: else
10: T+ T+re
11:  endif
12: else
13: I+ T+,
14: end if

Algorithm 4: Reception of a Remote Cooperative request at the Site s;

The Algorithms [5|and[6] show how to check the legacy of local and remote cooperative requests with
respect to the access control layer.

Check of locally generated cooperative request. Algorithms [5] shows that a cooperative request 7.
generated locally is checked against the authorization list (the owner authorization list in the case of
multi-administrator approach). The authorization list is parsed from the top to the end in order to check
7. against each authorization [ verifying Matches(l,r.) = true. If | grants r. then the check returns
true, the cooperative request is authorized and rc.ad takes the position of [. If a revocation is found the
cooperative request 7. is rejected since the result of the check returns false. Similarly, the local check
function returns false if the end of the policy is reached.

Check of remote cooperative request. Algorithm[6]shows how we can deduce if a received operation is
still authorized or not according to the administrative log owned by Administrator(r.). When receiving
a cooperative request r. with the version r..v and administrative dependency c.ad at a site s;, we check
r. against the appropriate administrative log L from the index r..v, to guess whether it was invalidated
concurrently or not.

According to Section [3.2] there are some cases where the cooperative request 7. is legal even though
a revocation is performed concurrently. The remote check proceeds as follows:

1. The administrative log is parsed from r..v, in order to find concurrent revocations.

2. If an administrative request verifying Revoke(r,,r.) = true is encountered such that r,.p >
Maz(r..ad), then r. is considered as an invalid operation and is not executed. This is achieved
thanks to the Inwvalidate() predicate which will be used to determine if a cooperative re-
quest conflicts with an administrative request in order to correctly check remote cooperative
requests against the administrative log. Formally, the boolean function Invalidate(ry,r.)
A, X C, — {true, false} takes value true iff Administrator(r.) = rq.s Are.f = Tentative A
Max(re.ad) < p A Revoke(rq,re) A rq.t = AddAuth. The Invalidate() predicate allows to
decide whether a cooperative operation is invalid during a remote check algorithm or not. It is also
used to decide whether a tentative cooperative request must be undone or not when receiving a
concurrent remote administrative operation.

3. If an administrative request 7, verifying Grant(rq,r.) = true is encountered such that r,.p >
Maz(r..ad), we store the new administrative dependency and continue the check (line 5 of algo-
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rithm 7). Otherwise, if a Del Auth request is found such that the request belongs to the admin-
istrative dependencies set, r..ad is updated by deleting this dependency (line 8 Algorithm[7). In
both cases, if r,.p < Mazr..ad, we update the administrative dependencies set in order to get
correct positions (line 15 Algorithm 7).

4. Finally, if c.ad # (), we deduce that the cooperative operation 7. is still legal with respect to the
policy and is executed at the receiver site.

1: CHECK_LOCAL(r,, Ps,): Boolean
21 TV Vs

3: for (k = |Py,); k >=0;k — —)do
4: 1<+ Py k]

5. if Grant(l,7.) then

6: re.ad < [k]

7: return true

8. else

9: if Revoke(l,r.) then

10: return false

11: end if
12: end if

13: end for

14: return false

Algorithm 5: Local Check Against the Authorization List

: CHECK_REMOTE(r.,L): Boolean
: decision < true
: for (intk =revg + 15k <|L|; k++)do
re < IT%(rc, L[k]){see Algorithm 7]}
if r..ad = () or rc.ad # (0 and Invalidate(L[k], r.) then
decision + false
return decision
end if
end for
10: return decision

PRI DIN RN

Algorithm 6: Remote Check Algorithm Against Administrative Log L

4.1.6 Administrative Procedures

In this section , we give the algorithms for generating and receiving administrative requests as well as
the garbage procedure allowing for cleaning the administrative log.

4.1.6.1 Single-Administrator

In case of single-administrator approach, each group consists of one administrator and several users.
Only the administrator can specify authorizations in the policy object. It can also modify directly the
shared documents. As for users, they only modify the shared document with respect to the local policy
object.
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1 IT (re, rg) 7o,

2.1l 1

3: a4 140

4: if a.p > Max(r,.ad) A Grant(rq,r.) then
5:  read + re.adU{a.p}

6: else

7 ifa.p € re.ad Ary.t = Del Auth then
8 re.ad < re.ad\ {a.p}

9 end if

10:  offset « (rq.t = AddAuth)?1: —1
11:  for(d € rc.ad|d > ry.p) do

12: if (d = a.p) then
13: d<—d+1

14: else

15: d + d+ offset
16: end if

17: end for

18: end if

19: return 7/,

Algorithm 7: Transformation algorithm of a remote cooperative operation against administrative opera-
tion at the i-th site

In the following we detail the initialization, generation and reception of administrative requests pro-
cedures.

Initialization. At the initialization step (see Algorithm [§)), 7 is set to the identifier of the site. The
policy as well as administrative log are empty. The policy counter is set to 0. Finally, the coordination
component is initialized.

1: INITIALIZATION OF THE SECURITY LAYER:

2: s < Identification of local site

3: if single-administrator approach then

4: v < 0 {Initial Version of the policy copy of the site}

5: (P <[, L« [] { initial policy and administrative log }
6: else

7:  {multi-administrator approach}

8:  ws + 0 {Initial Version of the owner policy of the site}
9:  (Ps+ ], Ls < []) {Owner policy}
10: P, <+ (Ps, L) {Global policy }

: end if
: F «+ [] {Queue buffer}

—_—
N —

Algorithm 8: Initialization

Generation and Reception of administrative request. In Algorithm [9] the policy copy maintains a
version counter v that is incremented by the administrative request generated by the administrator and
performed on the policy copy. This request is next broadcast to other users in order to enforce the new
policy.

When a remote administrative request r, is causally ready at site s (i.e. r,.v = vs+ 1l andif rg is a
validation of a cooperative request r. then r. must have been already executed on this site), it is extracted
from F. Otherwise, 7.t is either AddAuth or Del Auth in which case: (i) it is performed on the policy
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copy; and, (ii) it undoes the tentative cooperative requests that are no longer granted by the new policy.
However, if 7, is a validation of cooperative request . then it sets 7.. f to valid.

1: GENERATE_ADMIN_REQUEST(a):

2: if s is the administrator then

3. if a is a garbage administrative log request then
4 GARBAGE_ADM_LOG()
5 else

6: Apply ato P
7 rq < (8,a,v)
8 L+ L+r,
9 broadcast r,
10:  endif

11: VU — V.U, + 1
12: end if

13: RECEIVE_ADMIN_REQUEST(7,):

14: if (rq.t = AddAuth V ro.t = Del Atuh) then
15 Applyato P

16: for Allr. € T do

17: re + IT(re,74)

18: if Invalidate(ry,r.) or re.ad = () then
19: Undo(r.)

20: T+—T—r.

21: I+ T+r,

22: end if

23:  end for

24: else

25:  ifry.a = Validate(r.) then
26: re.f < "Valid”

27: Ve V+r,

28: end if

29: end if

30: v.vg — V.U, + 1

Algorithm 9: Generation and Reception of Administrative Requests: single-administrator approach

4.1.6.2 Multi-Administrator

In this approach, we consider that each user administrates his own objects. Hence, he can specify au-
thorizations in the policy object by modifying his owner policy. All users modify the shared document
with respect to the local policy object associated with the modified element. Our collaboration protocol
proceeds as follows:

1. When a user manipulates the local copy of the shared document by generating a cooperative request
¢, this operation will be granted or denied by only checking the local copy of the owner policy
owned by the Administrator(re).

2. Once granted and executed, the local operations are then broadcast to other users.

3. A user has to check whether or not the remote operations are authorized by the copy of his local
policy object before executing them by checking each operation against the appropriate owner log.
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4. When a user modifies his owner policy by adding or removing authorizations, he sends these
modifications to other users in order to update their local copies.

Initialization. At the initialization step (see Algorithm 8}, s is set to the identifier of the site. The owner
policy as well as owner administrative log are empty. The owner policy counter is set to 0. Then the
global policy is initialized with the local owner policy. Finally, the coordination component is initialized.

Generation and reception of administrative request. In Algorithm [I0] we discuss the update of the
policy object. The policy copy is formed by the set of owner policies F;. Each owner policy P; maintains
a version counter v; that is incremented by the request generated by the administrator ¢ and performed
on his copy. This request is next broadcast to other users to enforce the new policy. However, if r, is a
validation of cooperative request r. then it sets 7. to valid request.

When the received request r, is causally ready it is extracted from F'. If there is no entry of the user
J = rq.s in the global policy then a new entry (P}, L;) is added. If rq.a is AddAuth or Del Auth: (i) it
is performed on P;; and, (ii) it launches the Undo() module to undo all tentative cooperative requests
performed to alter objects owned by r,.s that are no longer granted by the new owner policy. If the
received administrative operation is a validation, it simply validates the concerned cooperative operation.
Finally, r, is buffered in the owner administrative log L; and the version v; is incremented.

Garbage Administrative Log. The garbage administrative log procedures are described in Algo-
rithm [T1] The owner administrative log is removed immediately then the garbage request is broadcast
to other sites so they remove the owner administrative log of site s. The final step is the update of the
policy version vs. Once RECEIVE_GARGABE_ADM_LOG(s",vy) (see Algorithm [11|line 7) is received
at a remote site, all cooperative requests administrated by s and that are tentative are undone. Then the
owner log L is removed and the version is updated. All requests that are concurrent or generated before
RECEIVE_GARGABE_ADM_LOG(s',v¢) are ignored (see Algorithm since they do not have the same
garbage version.

4.1.7 Asymptotic Time Complexities

We focus on security mechanism in order to study the asymptotic time complexities introduced by the
access control layer. We study the complexities of CHECK_LOCAL(), CHECK_REMOTE(), IT%() as well
as GENERATE_ADMIN_REQUEST() and RECEIVE_ADMIN_REQUEST().

The check of a local cooperative request is done against the local copy of the authorization list (see
Algorithm [5)). In the worst case, the authorization list or the policy P is parsed till the end (either the
cooperative request is matched with the last authorization or there is no rule matching it in the policy).
The time taken by the matching rule (Grant() and Revoke()) is constant C' if we use hash sets for both
the subset of users and objects in each authorization. Consequently, the complexity of CHECK_LOCAL
is linear with the size of P and is equal to C' x O(|P|)

On the other hand, the check of a remote cooperative request is done against the administrative
log. In the single-administrator approach, the worst case consists of parsing all the administrative
log which means that the received cooperative operation has the initial version and was delayed for a
long time. Since the complexity of I7%() (line 4 of Algorithm @) is constant, the final complexity of
CHECK_REMOTE is O(|L|).

Concerning the multi-administrator approach, the policy object is formed by the couples (Fs,, Ls,)
where P, is the policy (authorization list) and L, is the administrative log of the site s;. We resort to hash
maps in order to implement the global policy object. Hence, accessing a given policy or administrative
log takes a constant time. The complexity of both functions CHECK_LOCAL(), CHECK_REMOTE() are
linear with the size of the biggest owner policy and owner administrative log respectively.
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1: GENERATE_ADMIN_REQUEST(a):

2: if s is the administrator then

3 if a is a garbage administrative log request then
4 GARBAGE_ADM_LOG()

5. else

6 Apply a to P;

7 rq < (i,a,v;)

8
9

Lz' — L7 =+ 7
broadcast 7,
10:  end if
11: Vi Vg 4 V;.0q + 1
12: end if

13: RECEIVE_ADMIN_REQUEST(7,):

14: j < 14.8

15: if (P;, L;) does not exist then

16:  create owner policy (P, L;)

17: P, + P, + (P}, L)

18: end if

19: if (ry.t = AddAuth V r,.t = Del Atuh) then
20:  Apply 7, to P;

21:  for All r. € T | Administrator(r.) = j do

22: IT(re,7q)

23: if Invalidate(rq,re) V re.ad = () then
24: Undo(r.)

25: T+ T-—r¢

26: LT+ T+r.

27: end if

28:  end for

29: else

30:  ifr, = Validate(r.) then
31: re.f < Valid

32: V& V+r,

33:  endif

34: end if

35: Lj < Lj —+ 7rq
36: 0;.0q < Vj.Vq + 1

Algorithm 10: Generation and Reception of Administrative Request at the i-th Site: multi-administrator
approach

The generation of a cooperative request has a constant complexity. However, the reception of a
remote administrative request depends on the size of the set of tentative requests and on the complexity
of the Undo() function. The worst case is reached when 7 = H. We suppose that the Undo() function
has a linear complexity (see Chapter [f)). However if each request of the cooperative log H is undone,
the final complexity of the RECEIVE_ADMIN_REQUEST() would be quadratic O| H2|. Indeed, undoing
a given request requires to parse all requests that follow in H which lead to a complexity equal to
n(n —1)/2 with n = |H|. We stress the fact that such a case is not faced since the communications are
in a real time. We assume that the transmission time of requests is very short. Consequently, the size
of the cooperative log can not change rapidly between two different versions of the policy. This means
that, 7 = H is not realistic in practise and that fewer requests are to be undone between two different
versions of the policy object.
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GARGABE_ADM_LOG( )

L,+ 0
SEND_GARGABE_ADM_LOG(s,vy)
Vs.Vgq < 0

Vs.Vg ¢ Vs.Vg + 1

RECEIVE_GARGABE_ADM_LOG(s",v4)
for allr. € T do
if Administrator(c) = s’ then
9: Undo(r.)
10: end if
11: end for
12: Ly <0
13: V4.0 < 0
14: Vy.0g <= Vgrvg + 1

PR AR

Algorithm 11: Garbage Collection Administrative Logs Procedures at site s

4.1.8 Illustrative Example

To highlight the feature of our concurrency control algorithm, we present a slightly complicated scenario
in Figure where the solid arrows describe the integration order. We have three users s;, s3 and s3
starting the collaboration with the initial state Dy =‘‘abc” where characters “a”, “b” and “c” are inserted
by s1, s2 and s3 respectively. The initial global policy Py = {(P1, L1), (P>, L2), (Ps, L3)} with P; = ()
and L; = () for i = 1,2, 3. Initially, the cooperative log of each site is empty (H = () for i = 1,2, 3).

Site s; generates a cooperative requests where 7.,.c = Ins(2,y). Concurrently, site s3 generates an
administrative request r,, with 74, .a = AddAuth(0, ({s2}, Doc, {u,d},+)). After receiving r,, at site
sg it generates 7., with 7. .c = Del(3, ¢). Concurrently, site s3 generates another administrative request
Tay With 7g,.a = AddAuth(0, ({s2}, Doc,{d},—)). Also site s; generates an administrative request
Tas With 74, = AddAuth(0, (All, Doc, {u,d}, +)).

Once 1, is received by s, it generates a cooperative request ., with r.,.c = Del(1, a). As soon as
T¢, arrives at site sp it generates an administrative request 7, with 74,.a = Validate(r,,).

The following relations are verified by our set of requests:

® 1, 1S concurrent r,;

e 7., is causally dependent on 7 ;

e 7., and ry, and ry, are concurrent;

e 1., causally depends on rg,;

e 14, that also causally depends on 7.

We describe the integration of our requests in the following steps:

Step 1. At s3, the execution of 7., produces the state “aybc” and the cooperative log H; = 7.
When r,, is received at both sites s; and s, the owner policy copy of s3 is updated to P3 =
{{s2}, Doc,{u,d},+))} as for the owner log L3 that becomes L3 = r,,. When r., arrives at site
sg, it results in the state “ybc” and the cooperative log Ha = r.,. Site s3 generates an administrative re-
quest 74, with 7o, = AddAuth(0, ({s2}, Doc, {u,d},+)). This leads to the update of the global policy
by inserting the authorization ({s2}, Doc, {u,d},+) into P, also the administrative log is updated to
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S1 52 53
“abC” “abC” “abC”

Teo-c = Ins(2,y Tq,.a = AddAuth(0, ({s2}, Doc, {u,d}, +
0 1

113

aybc

Tay-a = AddAuth(0, ({s2}, Doc, {d}, —))

Te,-ad = [0]

Undo(re,)

Tey.Cc = Del(1
/ Tc2.ad - [O

wait for 7,

Tas-a = AddAuth(1, {{s1}, Doc, {d¥, +—))

re,.f = Invale

a)

.

Ta,-a = Validate(re,)

Figure 4.1: Collaboration scenario between an administrator and two sites.

become L3 = rg,. Similarly, when 74, is received at site s; and s2, they update their copies of the owner
policy and log of site s3.

Step 2. At s, the execution of 7., gives the state “ayb” and the log Hy = r¢, - r.,. This operation is
authorized since 74, granted the deletion right to sy and Administrator(re,) = s3. The administrative
dependency of r, is set to 7, .ad = [0] and it is broadcast to other sites.

Concurrently, site s3 generates a restrictive administrative request r,, to revoke the deletion right
from so with 7., = AddAuth(0, ({s2}, Doc,{d},—)). It is obvious that the policy Ps is violated
by s3. When r., arrives at site s3 the function CHECK_REMOTE() returns a negative result since
Invalidate(rg,,re,) = true. However 1., was executed at site sy which lead to divergence. Simi-
larly, at site s; when 7, is is checked against L3 it is rejected due to the reception of r,, but is stored in
invalid form r7, (rc,.f = Invalid) which has no effect on the local document state. The resulting log is
Hy=re -1}

c1*
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Enforcing the new policy requires to undo 7., at site so. Indeed, the reception of 7, introduces the
undo of 7., since it is a tentative request (not validated yet) and Invalidate(rq,,r.,) = true. This
allows to converge to the same document as site s3 and s;. The state is restored to “aybc” and the log is
updated by excluding the effect of r,.

Step 3. Site s; generates an administrative request 74, to add a positive permission to L;. Let
Tas-a = AddAuth(1, ({s1}, Doc,{d},+—)), this leads to a new version of the policy vs;, = 1 with
Py = {{{s1}, Doc,{d},+—))} and L1 = rg,. Then r,, is broadcast to ss and s3 so that they update
their local copies of the owner policy of s1. After receiving 74, site s3 generates the cooperative re-
quest 7, with r.,.c = Del(1,a). Once executed locally, the state becomes “yc”. Then this operation is
broadcast with 7¢,.v = 1 and r.,.ad = [0].

When site so receives r,, it stores it in a buffer until it is causally ready. In fact, the version of P;
at site so is 0. As well as 4, is received from site s;, the version of P; changes to 1 and r, is executed
since it is granted.

Once 1, is received at site s; and granted, its execution leads to the state “yc”. Then a validation
request 7, is broadcast in order to set ., to Valid at all remote sites.

It is clear that all sites converge to the same final state “yc” and policy object.

4.2 Correctness Proof

We will first give some general principles for providing access control in a collaborative editing system.
Then we will formalize our correctness criteria.

4.2.1 General Principles

Ensuring security, more precisely access control to shared objects, is more challenging in a collaborative
application than in a single-user one due to concurrency. We use the following principle as guidelines in
our work:

(a) The security object is replicated: Like the shared document, the policy is also replicated in order to
benefit of the full potential of the replication and not introduce additional overhead due to controlling
access at a server site.

(b) The security object is updated concurrently with the data object. The modification of the policy
object is done independently of the document update. There is no use of locks in order to respect the
real time aspect of the collaboration.

(c) Once all requests are received by all sites, users must have the same document state and policy state.
Users must converge in terms of data and policy objects.

(d) To enforce access control, we resort to selective Undo(). In fact, enforcing the policy requires
to undo concurrent cooperative requests that are not legal with respect to the new policy enforced
concurrently by the administrator.

(e) Undo() is an operation executed locally and not exchanged between users. Indeed undoing an
operation is an administrative action launched and executed at receiver sites.

(f) A cooperative operation can be undone exactly once at each site since this undo is due to policy
violation.
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4.2.2 The Correctness Criteria

In the following we formalize two correctness criteria, namely causality and access policy preservation.
This allows us to provide formal proof of our algorithms correctness.

Following the notations of [32]], we define the causality relation between two requests as follows:
for any two requests r; and r9, the dependency relation is denoted as r; — 79 if r2 depends on 7
(this dependency could be temporal i.e happens before relation or based on the semantic of requests e.g

semantic dependency [48,/50] or on effect relation [88]]). If the two requests are concurrent we denote
then as r1]|r2.

[Deﬁnition 4.2.9 (Causality Preservation).]

Given any two requests 71 and 79 in C, U A, if 1 — 79, then ry is invoked before 7o at any
site in the system.

The causality condition is compatible with our principles and it is possible to verify it thanks to the
dependency relations we already defined for both cooperative and administrative requests. If r; and 7
are both cooperative requests, the causality condition depends not only on the ACL but also on the CL on
the top of which we will implement our model. Some CLs are based on the Lamport clocks [56]] which
does not scale well and does not allow for open groups. The approach of [48] relies on the semantic
dependency notion to define the causality and concurrency relations. In addition to the causality relation
imposed by the underlying CL, the ACL adds a new condition of causality which is the policy context
(or its version). A cooperative request must wait till the version of the receiver site is greater or equal
to its generation’s version. Consequently 71 — 7o iff r9.vy = r1.v4 and r2.v, > r1.v, Where ry is an
administrative request and 73 is a cooperative one. As for administrative requests, we have r; — ro iff
ro.vg = r1.vg and 12.v4 > r1.Vq + 1.

The second correctness criteria is given below:

[Deﬁnition 4.2.10 (Policy Enforcement).]

The execution of any cooperative or administrative request at a site s; does not violate its local
access control policy of the administrator. After the reception of all administrative requests,
all sites must have the same document state. More formally, the following statements must be

true:
1. T, = 0;
2. Vs, = Vs,
3. I, = Is;.

for all sites s; and s;.

Using the two correctness criteria cited before, our objective is to satisfy the convergence property
defined as follows:
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[Deﬁnition 4.2.11 (Convergence).j

When all sites have performed the same set of cooperative and administrative requests, the
copies of both shared document and policy object are identical.

In order to ensure convergence of both policy and document state, the condition of policy enforce-
ment must be fulfilled. The statement (1) of Definition .2.10]ensures that all tentative requests are seen
by the appropriate administrator, this ensures that all requests at the network are received by all sites.
Statements (2) and (3) of the same definition ensure that all legal/illegal requests are the same at all sites
and that all illegal request are undone. This enforces the policy and allows for document convergence.

In the following, we will present formal proofs with regard to the previous conditions.

[Theorem 4.2.1.]

Our coordination algorithm satisfies the causality preservation condition.

Proof. In our algorithm each cooperative request 7. is invoked only when it is causally ready (see Defini-
tion .1.6). That is, all cooperative requests and administrative requests on which depends 7. have been
invoked. Similarly, since administrative requests are generated by the same user, thanks to the policy
version (administrative requests counter), all these requests are executed in the same order in all sites
which respects the causality condition. O

In the following lemma, we prove that the set of tentative requests is empty after the reception of all
requests by the collaborating sites.

Lemma 4.2.1.

Given n sites s1, S2, - . . , S, With the set of tentative operations 71, 75 ... T, and p cooperative
requests 7cy, T'ey, - - -, T'e,- When the p requests are received by all sites, then
Vie[l.n], ;=0

Proof. Each set of tentative requests is updated at tree steps of our algorithm:
1. line 9 in Algorithm
2. line 10 in Algorithm [4}
3. line 20 in Algorithm [9]as well as line 25 in Algorithm [I0));

We refer to the multi-administrator approach since the single-administrator approach is a special case
of the multi-administrator one. The proof is similar in both cases. At the generation step, a coop-
erative request is either valid, if it is generated by its administrator or tentative. Suppose that none
of the requests r¢,, 7y, ..., 7, is generated by its administrator. In this case. After the reception of
all cooperative requests 71 = T2 = ... = T, = {re;,7¢cys---,7¢,}. Each time r., is received by
sj = Administrator(r,), two situations are faced:
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1. 7, is granted by Ls;: in this cases r¢, is set to valid, 7; is updated by removing 7., and a validation
request is sent to every site sx, k € [1..n] in order to set r., to valid and remove it from 7.

2. re, is invalidated by sz: in this case r.; is set to invalid, 7; is updated by removing r.,. This
means that a concurrent administrative request r,, conflicting with r, is generated at site s;. When
T4 1s received by a site s, it will undo r., (line 24 in Algorithm [I0) and update 7} by removing
Te,-

1

Accordingly, since the same process is done for all requests, we have Vi € [1..n], 7; = 0. O

In the following, we show that after receiving all operations, the set of valid operations is equal at all
sites.

Lemma 4.2.2.

Given n sites s1, S92, - . . , S, With the set of tentative operation 71,75 ... 7T, and p cooperative
requests rey, T'ey, - - - 5 Te,,- When the p requests are received by all sites, then

Vi,j e [1.n],V; =V;

Proof. Suppose that initially, all sites begin with an empty set of valid operations. Consider a cooperative
request 7. and a site s where s = Administrator(r.). Let vs be the policy version of s at the moment of
reception of the request 7. and L be its administrative log (note that v; = |Ls|). Two cases are possible:

1. s does not generate administrative requests concurrently to .
2. s has generated k administrative requests Lg[r..v; 7c.v + k| concurrently to 7.

In case (1) the function CHECK_REMOTE(r, L) returns true since the context is the same. Conse-
quently Vs = {r.} and a validation request is sent to every site s; in order to validate 7. and add it to
Vj = {rc}. If itis the case for every cooperative request r. € {r¢,,7c,, ..., 7, }, then after receiving all
cooperative and administrative requests we have Vi, j € [1..n],V; = V; = {r¢;, ey, -, 7¢, }-

In the second case (2), a request is valid at site s when CHECK_REMOTE(r,, Lg¢)=true. If
Vro € Lglrev;rev + k|, Grant(rq,r.) = true, then r..ad # ( after the remote check and
Vra € Ls[rewv;re.v + k|, Invalidate(re,m,) = false. Each time an administrative request r, €
Lglrevirev + k| is received at a site s; # s, the procedure RECEIVE_ADMIN_REQUEST(r) is
called and tentative requests are updated with the transformation function I7%. Similarly, since
Vry € Lg[rev;rev + k], Invalidate(rq,re) = false, r..ad # (), the request 7. in not undone (line
21-24 in Algorithm[I0). As soon as the validation is received from s at site s, the request 7 is added to
V; (line 31 in Algorithm . Otherwise, either r..ad = () or it is invalidated (3r, € Ls[rc.v;r..v + k|
verifying Invalidate(rq,r.) = true). In both cases r. is set to invalid, thus neither added to V; since
it is undone (lines 18 in Algorithm , nor to V; (set of valid requests at the receiver site) due to the
remote check. If the same case is faced for every cooperative request 7. € {r¢,,7c,,...,7c,}, then after
receiving all cooperative and administrative requests we have Vi, j € [1..n],V; = V; = 0.

If some requests are in case (1) and some others are in case (2), then Vi,j € [1..n],V; = V; and
contains the set of requests in case (1). O]

Finally, we show that the sets of invalid operations are equal at all sites.
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Lemma 4.2.3.

Given n sites s1, S92, - . . , S, With the set of tentative operation 71, 75 ... T, and p cooperative
requests 7cy, T'ey, - - -, e, When the p requests are received by all sites, then

Vi, j € [171],11 :Ij

Proof. Since at every site s;, H; \ V) = Ty|JZ), where Hj is the cooperative log, it comes from Lem-
mas [4.2.T]and [#.2.2] that after receiving all requests Z; = 7 O

Using the precedent lemmas, we deduce that the policy enforcement condition is satisfied.

[Theorem 4.2.2.]

Our algorithm ensures the policy enforcement condition.

Proof. According to the three precedent Lemmas[.2.1|[4.2.2]and[4.2.3] the policy enforcement condition
is fulfilled. m

Additionally, the convergence condition is ensured according to the following theorem.

[Theorem 4.2.3.]

Our algorithm ensures the convergence of both data and policy objects.

Proof. We assume that the CL ensures the convergence of the shared document. The ACL may in-
troduce divergence cases as shown in Section Our algorithm resolves some of these convergence
problems with the use of undo algorithm. Assuming that our undo solution is correct (see Chapter [6]), we
must prove that the convergence is ensured. For this, all cooperative logs must produce the same doc-
ument state after the reception of all cooperative and administrative requests by all sites. According to
Lemma[d.2.2]and Lemma[4.2.3] we ensure that the same set of requests are executed at all sites, otherwise
invalid requests are either not applied to the document copy or undone by the reception of the concurrent
administrative request. Consequently, since logs are equivalent according to the CL, convergence of the
document state is ensured.

Concerning the policy and the administrative log, since administrative requests are executed at the
enumeration order of the administrator site, every administrative request r, that is causally ready is
executed after the execution of all administrative requests that happen before it. O

4.3 Conclusion

In this chapter, we have presented the algorithms of our access control model and calculated their asymp-
totic time complexities. Finally, we have demonstrated that our approach is correct and ensures conver-
gence.

In the next Chapter, we concentrate on the undo command as a main feature of our access control
model. Indeed, since we design an optimistic access control model, we allow users to temporarily violate
security policy. Convergence is maintained thanks to the selective undo approach.
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The ability to undo operations performed by a user is a standard and very useful feature allowing
to reverse erroneous operations and restoring a correct state without being obliged to redo all the work
performed on a document. It represents an indispensable feature for many collaborative applications
mainly real time collaborative editors. Furthermore, maintaining convergence in access control-based
collaborative editors requires a selective undo mechanism [21]] as shown in Chapter [3| wherein we have
considered an optimistic access-control-based RCE in the sense that we tolerate temporary access right
violations. To maintain convergence, we must undo illegal updates to alter the document state.

We focus on selective undo which is based on rearranging operations in the history using the OT
approach. Three inverse properties that we will detail later, namely IP1, IP2 and IP3 [36,74,(97.{101]
were proposed to achieve undo. Combining OT and undo approaches while ensuring data convergence
remains an open and challenging issue. Indeed, undoing operations may itself lead to divergence cases
called undo puzzles [97]]. Moreover, providing an undo solution for collaborative applications has to take
into account three main issues: (i) formalizing the correctness criteria of an undo solution, (ii) designing
the algorithm and prove its correctness, (iii) ensure performance by providing a low complexity of the
algorithm.

Even though many solutions were proposed over the recent years, designing undo schemes in collab-
orative applications is a hard task since each proposed solution has either a limitation or a counterexample
showing it is not correct [88}/101].
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This chapter is organised as follows: Section [5.1] presents the notations used to illustrate the un-
doability problem. Section illustrates the principle of undoing operations in collaborative editors.
Finally, Section[5.3] gives an overview on related work.

5.1 Notations

An undo framework assumes a collaborative application model in which all updates or operations per-
formed on the shared object are achieved in a history list also called log in order to provide the basis
for undoing operations. The operations are reversible and capable of being reordered unless there are
dependencies between them.

All applications maintain a current state of the shared object that is being updated concurrently by
collaborators. This state depends on the nature of the shared object. We use the notation st to denote the
state of the shared object. Let St be the set of all possible states for a given shared object.

When we apply an operation to a given state st € St, we obtain a new state st’ # st where also
st € St. Any given state represents simply the application of a sequence of operations to the initial state
referred to as stg. We use the letter op to denote operations performed to update a given state. Letters
and numbers will be used to distinguish between different operations. Let Op be the set of all possible
operations. For a given state st € St and an operation op € Op, the notation st - op refers to the new
state resulting from the application of op on st. The idle operation I is the operation that has no effect
on a given state. It verifies the following statement:

Vst € St, st - I = st.

The sequence of operation {op1, opa, ..., op,} is denoted by op1 - op2 - . .. - op,,. Two sequences of
operations are equivalent if they provide the same resulting state when they are performed on the same
initial state :

[Deﬁnition 5.1.1 (Log equivalence).]

Two sequences of operations seq; = op1 - op2 - . .. - 0p,, and seqa = op) - oph - . . . - op)., n and
k being two integers, are said to be equivalent denoted as seq; = seqo iff

Vst € St, st - seq) = st - seqo

To support undo, we suppose that every operation op € Op is reversible, i.e. it has an inverse noted

ap € o]

5.2 Undo Approach

This Section presents the principle of undoing an operation in a collaborative context as well as properties
to be satisfied in order to achieve a correct undoability.

“The inverse of the idle operation I is T = I.
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L L (after undo)
op1 op1
op2 op2
op;i—1 op;i—1
opi = op}
Op; Opi+1 op 11
IT :
0P op},
opi’

Figure 5.1: Undo Scheme.

5.2.1 Principle

Logging all executed operations is necessary to accomplish an undo scheme. Furthermore, all operations
should be undoable (i.e., each operation op has its inverse operation op). As proposed in [[74}97]], to
selectively undo operation op; from the log L = opy-0op2-...-0op;-...-opy, we proceed by the following
steps:

1. Find op; in L;
2. Mark op; as an undone operation: op;;
3. Generate 0p;;

4. Calculate op’ = IT*(0p;, 0pit1 - - - - - 0py,) that integrates the effect of operations following op; in
L;

5. Exclude the effect of op; from the log by including the effect of op; inside the sublog op;+1-. . .-0py;
We can exclude the effect of op; from the sublog op;+1 - . .. - op, using this small algorithm:
op < 0Op;
for j from i+ 1 ton do
op;» < IT(opj,op)
op < IT(op, op;)
end for The sequence of operations following opj is then op]_; - ... - opy,;

6. Execute op'.

5.2.2 Undo Effect

Undoing an operation op at a given state st must restore the previous state of the object as if op had never
occur. This can be formalized as follows:
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[Deﬁnition 5.2.2 (Undo Effect).]

Given an object state
Sty =Sty -0Op1 ... OPi—1 - OP; - OPit1 " ... OPp,
then the effect of undoing op; must produce the state
St%_l :5750'0]?1'----Opz;1'Op;H-...-op;l,

where op}, 7 €1+ 1,1+ 2,... n is the operation that would be executed if op; has never
been executed before.

Practically, op; is the operation that excludes the effect of op;. This allows to eliminate the effect of
op; but retains the effect of the operations that follow op; in the log [97].

Example 5.2.1. Consider the initial state sty = abede and two operations opy = Del(2,b) and ops =
Del(2, c) (since sty - op1 = acde). Then the resulting state is st' = ade and the log is H = [op; opa].
Undoing op, should produces the state st” = abde. Moreover, the log has to be updated by eliminating
the effect of the undone operation opy from the log. Thus H' = [op; oph] with opl, = Del(3, ¢) instead
of Del(2, c).

5.2.3 Undo Properties

Three inverse properties IP1, IP2 and IP3, have been proposed in the literature (see [|36}/74,(97,/101])
to formalize the correctness of a transformation-based undo scheme.

[Deﬁnition 5.2.3 (Inverse Property 1 (IP 1)).}

Given any operation op and its inverse op, then

op - op = 0.

Property IP1 means the operation sequence op - op should have no effect on the object state.

[Deﬁnition 5.2.4 (Inverse Property 2 (Ipz)).]

Given a correct transformation function /7" and any two operations op; and ops then:

IT(IT(Op17 Op2)7@) = 0op1.

As the sequence ops - 0p2 should have no effect, property IP2 means transforming op; against ops
and its inverse opy must result in the same operation. This property is generally avoided by placing an
inverse just after the undone operation in the log then to consider the sequence ops - 0p2 as an empty
sequence.
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[Deﬁnition 5.2.5 (Inverse Property 3 (IP3)).J

Given a transformation function I7 and any two operations op; and ops with op] =
IT (op1,0p2) and opl, = IT (opa, op1). If sequences op; - opl, = ops - op) then

IT (op1, opy) = IT (op1, 0p2).

Property IP3 means that the operation executed to undo op; in op; - op}, is the same as the operation
executed to undo the corresponding operation op] in ops - op].

The violation of one of properties IP1, IP2 and IP3, leads to divergence situations referred to as
puzzles [97)] as we illustrate in the following.

5.2.4 TIllustrative Examples
To further illustrate the undo properties, we present the following examples:

Example 5.2.2. Consider a shared integer register altered by two operations Inc() and Dec() which
increment and decrement respectively the register state such as the one is the inverse of the other. A
correct transformation function is defined as follows:

IT(op1,0p2) = opy for all operations opy,op2 € {Inc(), Dec()}.

It is trivial that TP1 is satisfied as Inc() - Dec() = Dec() - Inc() = 0. Furthermore it is easy
to verify that IP2 and TIP3 are satisfied since IT(IT (op1,0p2),0p2) = IT(op1,0p1) = op1 and
IT (op1, IT (op2,0p1)) = op1 = IT(op1, op2) for all operations opy, ops € {Inc(), Dec()}.

Example 5.2.3. Consider an application of collaborative editing of the same shared document altered
by the set of the following three operations:

1. Ins(p, e) to insert element e at position p
2. Del(p,e) to delete element e at position p
3. Upd(e, €', p) to replace element e at position p with element ¢’

The IT function is given in Appendix|B|

Violating IP2 leads to an IP2 undo puzzle [97]. This puzzle results when transforming an op-
eration against another operation and its inverse during the couple do-undo pair procedure. The
problem occurs when transforming two insertions at the same position since the position is changed
arbitrarily according to site identifiers. To illustrate this puzzle, consider a document with the ini-
tial state sty = ege1...ep_1€peptri€pr2 ...y and two operations opy = Del(p,e,) and opy =
Del(p, ept1). Suppose that opy depends causally on opy then undoing opy then opy may lead to a
divergence case as discussed in [74]\77,\97)]. Indeed, after executing opy and opa at the state sq,
we obtain the state st = ege1...ep_1€pt2...ey. Now, undoing opa produces the state sty =
€0€1 - - - €p—_1€p4+1€p42 - . - € and the history log H = op1 . ..op2 .. .0pa. Then, if we undo op1, we have
to determine 1T (IT (op1, op2),0p2). Since op1 = Ins(p, e,) then transforming it against ops produces
opi’ = Ins(p, ep). Finally, we have to transform Ins(p, ep) against Ins(p, ep—1) which may result in the
operation Ins(p + 1, ep,) instead of Ins(p, e,). Consequently, the effect of undo is not correct since the
initial state was equal to epeq ...ep_1€pepi1€pi2. .. €y and not epeq . ..ep_1€p11€p€ept2 . ..y This
divergence case is referred to as the coupled do-undo pair trap [97)].
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(a) Undoing op; produces a divergence. (b) Avoiding divergence thanks to canonization.

Figure 5.2: Avoiding divergence thanks to canonization.

As for TIP3, it is not satisfied by our example since the insert-insert puzzle presented in Figure
may be encountered. This puzzle occurs when transforming two insertions during the undo procedure
where the first is an inverse (see Figure [5.2(a)). This puzzle may be eliminated in the coordination
framework OPTIC [48]] since it is based on canonical logs where all insertions precede all deletions as

shown in Figure[5.2](b).

Example 5.2.4. Consider a shared binary register where two primitive operations modify the state of a
bit from O to 1 and vice versa: (i) Up to turn on the register; (ii) Down to turn off the register. Intuitively,
we can write the transformation I'T" as given in Algorithm

1: IT(op1,0p2):0p}

2: Choice of op; and op»

3:  Case: opy = Upand ops = Up

4 opy + Up

5. Case: op; = Up and opy = Down
6 opj + Up

7. Case: op; = down and ops = Up
8 opy < Up

9: Case:op; = Down and ops = Down
10:  op) < Down

11: end choice

Algorithm 12: Transformation Cases for the Set of Binary Operations {Up, Down}

First, we show that the transformation Algorithm [I2] is correct i.e respects both transformation
properties TP1 and TP2.

Theorem 5.2.1.

Algorithm[I2] verifies T P1.

Proof. Consider a state st € St and a couple of two concurrent operations (op1,0p2) € {Up, Down}?.
Four cases are possible:
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1. (op1,0p2) = (Up, Down): We have Vst € {0,1}, st - Up = 1. Integrating op’s effect into ops
leads to IT(op2, op1) = IT(Down,Up) = Up. Consequently, the final state is st - Up - Up = 1.
On the other hand, applying the operation Down to st leads to st’ = st - Down = 0. The
final state is the result of performing I7(op1,0p2) = IT(Up, Down) = Up. Since Vst €
{0,1}, st.Up = 1, the final state is st - Down - Up = 1. Hence, if (op1, 0p2) = (Up, Down) then
Vst € {0,1}, st-opy - IT(op1,0p2) = st - opa - IT(op2,0p1).

2. (op1,0p2) = (Down,Up): this case is symmetric to case (1).

3. (op1,0p2) = (Up,Up): Since IT(Up,Up) = Up and Vst € {0,1}, st - Up = 1, we have:
Vst € {0,1}, st-opy - IT(op1,0p2) = st - opa - IT(op2,0p1) when (op1,0p2) = (Up,Up).

4. (op1,0p2) = (Down, Down): this case is symmetric to case (3).

Consequently, for all concurrent couple of operations (op1, 0p2) € {Up, Down}?, we have
Vst € {0,1}, st-opy - IT(op1,0p2) = st-opa - IT(op2,0p1)

That is, IT verifies T P1. O

Theorem 5.2.2.

Algorithm[I2]verifies T P2.

Proof. Consider st € &St and a pairwise concurrent operations opi, ops and ops belonging to
{Up, Down}. Suppose that op; # opa (otherwise the proof is trivial) and let op = IT(ops,op1)
and op = IT (op3,0p2). If (op1,0p2) = (Up, Down), then two cases are possible:

1. ops = Up: In this case oply = oply = Up and IT (op2,0p1) = IT(op1, op2) = Up. Consequently,
IT (opf, IT (0p2,0p1)) = IT(Up,Up) = Up and IT (opf, IT(op1,0p2)) = IT(Up,Up) = Up.
T P2 is then verified.

2. ops = Down: In this case opy = Up and op5 = Down. Moreover, IT(op2,0p1) =
IT(op1,0p2) = Up. Consequently, IT(ops, IT(op2,0p1)) = IT(Up,Up) = Up and
IT (op, IT(op1,0p2)) = IT(Down,Up) = Up. That is, T P2 is also verified.

Consequently, for all concurrent pairwise concurrent operations op; ,op2 and ops belonging to
{Up, Down}, we have

Vst € {0,1}, st-opy - IT(op1,0p2) = st -opa - IT(op2,0p1)
Consequently, I'T" verifies T'P2. O

Property IP1 is violated since O - Down - Up = 1 # 0. As for property IP2 is violated since
IT(IT(Down, Down),Up) = Up # Down.

To illustrate the violation of IP3, we consider the Figure where we illustrate how to undo op;
of the scenario depicted in Figure[2.2(b). Initially both sites converge to state 1. Suppose now that the
operation opy is undone at both sites. At site 1, undo(opy) generates its inverse op; = Down, then trans-
forms op1 against oply which results in I'T (op1, opy) = Up. Thus, the final state after undoing op; is 1 at
site 1. However, at site 2, the execution of 07)’1 = Down at state 1 gives the state 0. Consequently, both
copies diverge. This divergence is due to IP3 violation since IT (op1, IT (op2,0p1)) # 1T (op1, op2).
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Undo(opy) sng 1 31‘[8 2

op1 = Down op1 =Up opz = Down

| B

Figure 5.3: IP3 violation by I'T" function presented in Algorithm

Accordingly, given a correct transformation function (i.e., they satisfy the transformation properties
TP1 and TP2), it is not guaranteed to achieve a correct undo since transformation properties are not
sufficient to preserve the data convergence when undoing operations.

Practically, IP2 violation is discarded by placing inverse operation just after the undone one in the
log. The sequence op - op is then marked in order to be ignored when transforming another operation
against it [97]]. Thus the transformation of any operation against an undone operation remains the same.
However, the violation of IP3 cannot be avoided by such a mechanism and must be fulfilled by trans-
formation functions in order to always ensure the data convergence.

5.3 Related Work

Several works proposed undo capability mainly for single user editors. The majority of these solutions
are based on log usage. In general, operations are stored in the log according to their execution order.
Consequently, many familiar single-user applications such as text editors and design tools allow for
undoing operations in chronological order.

In distributed collaborative applications, shared data is usually replicated in order to achieve high
local responsiveness as well as high availability. Each user has the ability to perform operations concur-
rently to other users; which makes undo more and more challenging [22,(74,97]. In fact, undoing the
last operation leads to undoing different operations since the last operation is not the same at all sites
(logs are not equal in a collaborative application). Furthermore, undo may be needed to enforce secu-
rity (see Chapter [3)). This obviously motivates the importance of providing a selective undo solution for
collaborative applications.

Significant works have been made to address OT-base selective undo [[74}/77,97.|]101]]. However, the
proposed solutions either do not allow to undo any operation e.g [77] or is not efficient for real time since
it takes time e.g [[101]].

In the following, we summarize the different solutions proposed to undo an operation in single-user
editors as well as collaborative editors.

5.3.1 Proposed Undo Solutions for Single-user Editors

Single-step undo. Single-step undo is a feature available in many systems (Macintosh and Windows) as
well as editors such vi [74]. It allows to undo only the last operation. To further illustrate this approach,
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consider the following log:
Op1 - Op2 - OP3 - OP4

In single-step undo approach, it is possible to undo op4 but a subsequent undo of ops is not allowed. To
redo the last, the user has simply to undo the last undo it has originated.

Linear undo model and US & R model. The linear undo model [[7,[104] allows to undo a sequence of
operations by the use of a pointer indicating the following operation to be undone [74]. After undoing a
sequence of operations, it is possible to perform new operations then to redo the undone ones.

The US & R (Undo Skip Redo) model [110] is similar to the linear model except the fact that it
allows to skip some operations during the redo. This approach is based on the use of a tree structure of
the log in order to be able to restore state at any point in the history.

Both approaches are limited by the necessity of undoing the sequence of operations following the
operation to be undone then redoing them.

History undo. Like the linear and US & R model, the history model undoes a sequence of operations.
However, it appends the inverse operations at the end of the log. For instance, given the following log

Op1 * Op2 * OP3 * OP4

Undoing op4 results in
Op1 - Op2 - Op3 - Op4 - OP4
with ops as the following operation to be undone. If a normal operation is performed let ops, the log will
be:
Op1 - Op2 - OP3 - Op4 - OP4 * OP5
where ops is the following operation to be undone. Then if two undo operations are performed, the log
is as follows:
Op1 * Op2 * Op3 * OP4 * OP4 * OP5 * OP5 * 0P4

The history undo scheme is used in the Emacs editor [92].

5.3.2 Undo Solutions for Collaborative Editors

Various group undo solutions have been proposed. We focus on the following main solutions:

Swap then undo. The first selective undo was proposed in [74]]. It consists on placing the selected
operation in the end of the history by swapping and then executing its inverse. Consider the state resulting
from the following sequence of operations applied on the initial state stg.

st1 = sto - op1 - 0p2 + Op3

Undoing op; would require to transpose op; against ops then against ops in order to place it at the end
of the log then to generate the inverse of the resulting operation. The log will be represented by the
following sequence:
op} - opy - opy - oph

where op, is the result of transposing op; and ops and opf is the result of transposing op] and
ops, op being the result of transposing op; with ops. However in some cases, it may be impossible to
swap two operations. For example inserting an element could never be executed after its deletion since
the latter operation depends on the former one. To avoid this issue, authors defined a boolean function
con flict(op,, opy) (where op, and op, are successive operations in the log) in order to abort the undo
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procedure in conflicting situation like that presented above. Hence, the proposed solution does not allow
to undo any operation.

Undo/Redo. Another solution is to undo all the operations in the reverse chronological order, ¢.e from
the last to the wanted operation as it is proposed in [77]. So, considering the same example presented
above:

st1 = stg.op1.0p2.0p3

Undoing op; would require to undo ops, ops then op;. The following step imposes to redo op2 and ops
in order to restore the last state that excludes op;’s effect. The resulting log will look like:

0p1.0pa.0p3.0P3.0p2-0P1 0P .0

with opl, and opf the new forms of ops and ops that exclude the effect of op;.

It is clear that this approach avoids the conflict faced in the first solution. However, it is expensive
since it requires to perform many steps to achieve undo. Moreover, it does not allow undo in all cases.
In fact, an operation may not be undoable if another later operation performed by the same user has not
been undone.

Ferrié’s Approach. The undo approach presented in [36]] is the same as the work given in [77]]. It uses
the transformation functions of the algorithm SOCT?2 presented in [[88},94]. This algorithm assumes that
TP2 is verified, however a counter example showing TP2 violation was presented in [47]]. Furthermore,
another limitation of the solution is its quadratic complexity.

UNO. The approach of UNO [114] resembles that of Ferrie [36] but is based on TTF [70]. Even though it
has a linear complexity with the size of the shared document, the proposed solution only suites a special
kind of RCE based on TTF and having the set of operations fixed by the authors (ins, del and undel
operations). Moreover, the convergence of UNO assumes the intention preservation which is not proved
formally [88]].

ANYUNDO-X and COT. The ANYUNDO-X proposed in [97] was the first solution allowing the undo of
any operation and solving the known undo problematic. However it has an exponential linear complexity
which degrades the performance of a real time application.

Both AnyUndo and COT [[101]] supports integrated Do and selective Undo. In this approach undo
is interpreted as concurrent inverse as in [[77]] except that an operation op is coupled with its inverse op
such that they behave as an identity operation. In COT, a contextual relation is introduced to illustrate the
relation between an operation, its inverse and the transformed intermediates forms of the inverse. The
time complexity is also exponential in the log size.

The difference between ANYUNDO [97]] and COT [101]] is that the latter discusses the undo in the
case of causally dependent operations and not only concurrent ones. However, the solution may violate
the effect undo property [97]. This property ensures that the state after undoing a given operation op
is the state as if op does not occur. However, if we consider a sequence of characters “abc” and two
operations op; = Del(2,b) and ops = Ins(2,x). The COT-Undo algorithm proceeds as follows: We
first generate the inverse of opy let op1 = Ins(2,b), then we must transform opy against ops. However,
this transformation may lead to inserting character “y” after “b” which is not the same state if op; were
not performed at the state. This violates the undo effect defined in [97].

ABTU. The ABTU algorithm is presented in [88]] where authors propose an undo solution for collabo-
rative editors. The proposed solution is based on the transformation algorithm ABT [|60]. Even though
the proposed algorithm has a linear complexity, it does not allow to undo any operation since undo is
aborted in some cases defined by authors. The transformation algorithm ABT is based on a novel notion
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named effect relation allowing to order document updates in the log. Consequently, all updates are or-
dered according to their effect relation on the shared document state. Authors assume that this relation
ensures convergence. However, in Figure[5.4] we show that there is a divergence case.

site 1 site 2 site 3
66abc7’ 6‘abc’7 ‘6abC77

op1 = Ins(2,x) ops = Ins(2, 2)

op} = Ins(2,x)

op} = Ins(2,2) opa = Ins(2,y)

opy = Ins(2,y)

oph = Ins(2,z)

Figure 5.4: Divergence case of the ABTU algorithm.

“ayxzbc”

“aZyXb”

In this Figure, three sites 1, 2 and 3 begin the collaboration with the same initial sequence of char-
acters “abc” as well as empty logs say Hy, Hy and Hjs respectively. To simplify, we suppose that the
number of the site reflects its identity. Site 1 generates the operation op; = Ins(2,x) to derive the state
“axbc” and site 2 generates ops = Ins(2, z) and gets the state “azbc”. Then site 2 receives op; as a
remote operation from site 1. Note that op; < ops according to the effect relation defined by authors (the
two operation insert characters at the same position and the identity of site 1 is less than the identity of site
2), the transformed form of op; is then op} = Ins(2, z) and the log Hy is reorganized and updated to be
H, = op) (Ins(2,x))-ops(Ins(3, z)) in order to respect the effect relation. When op; arrives at site 3, it
is executed as is since the log is empty, op| = Ins(2, z) and gives the state “axbc”. Then site 3 generates
opz which is less than op; according to the effect relation, i.e op; > opa. Consequently, the log is updated
to Hy = op2(Ins(2,y)) - op) (Ins(3,x)). Now, when ops is received it verifies ops < op (inserting at
the same position and site identity of site 2 less than the site identity of site 3), then it is executed as is, the
log is updated to Hf = op3(Ins(2,z)) - opy(Ins(3,y)) - op](Ins(4,x)) and the final state is “azyxbc”.
On the other side, when opy is received at site 2, the log is H) = op/ (Ins(2,x)) - ops(Ins(3,z)). The
remote integration of ops gives opy = ins(2,y). In fact, since opa < op1, it is executed as is and inserted
at position 0 in H). The state is then “ayxzbc” at site 2 which is obviously a divergence since the last
state at site 3 is “azyxbc”.

Note that the divergence is due to the difference between the two logs at site 2 and 3. Indeed, final
logs are HY) = ops - opy - ops whereas at site 3, we have HY = ops - ops - op1. However, authors assumed
that the effect relation ensure the same order at all sites.

Table resumes the main solutions in the context of collaborative editors and compare them ac-
cording to the following criteria:

1. Simplicity: the simplicity of the algorithm is of relevance and allows its comprehension, verifica-
tion and integration in any collaborative editing framework.

2. Undo any operation: it is important to allow the undo of any operation, since we need to use the
undo procedure in order to enforce the policy (see Chapter [3). If the undo of an illegal operation
is abort, we inevitably encounter a security issue and may diverge.
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3. Undo causally dependent operations: Undo must allow not only the undo of concurrent operations
but also causally dependent ones which is challenging since the undo is based on OT functions that
are only defined for concurrent operations.

4. Complexity: the complexity of the undo solution is very important and has to be good since we
need to apply it for real time collaborative editors.

5. Correctness: any undo solution must be correct and respect the undo properties defined in Sec-
tion[5.2.3] A given solution is also considered incorrect if it is based on an incorrect OT-framework
even though it respects undo properties.

’ Criteria H Swap then undo \ Undo/Redo | Ferrié \ UNo \ ANYUNDO/X | COT ABTU
Simple Yes Yes Yes Yes No No No
Undo any operation || No No No Yes Yes Yes No
Undo causally
dependent No No No No No Yes No
operations
Complexity O(n) O(2n) O(n?) | O(n) | O(e™) O(e™) | O(n)
Correct Yes Yes No Yes Yes No No

Table 5.1: Comparison Between Undo Algorithms

5.4 Conclusion

In this chapter, we presented the most important aspects of the undo principle and most importantly,
inverse properties in order to be able to well study this command with the aim of providing a generic
solution in the following chapters. Moreover, we focused on the main solutions proposed for undo-
ing operation in collaborative applications mainly collaborative editors and stressed the limits of these
solutions.

In Chapter [6] we provide a theoretical study for undo problem and show what are the necessary and
sufficient conditions allowing to achieve a correct undo in distributed collaborative applications.
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A Necessary and Sufficient Condition for
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Maintaining convergence in access control-based collaborative editors requires a selective undo
mechanism [21]]. However, two obstacles may arise when we selectively undo an operation in a col-
laborative context. On the one hand, convergence of the shared document may be violated since the
operations are out-of-order executed at two different sites. On the other hand, there are many properties
to be satisfied, which complicates the verification of the undoability correctness.

In this chapter, we present a theoretical study of the undoability problem in collaborative applications
by giving a formal proof of necessary and sufficient conditions for achieving correct undo. Yet OT was
proposed to go beyond the commutativity, we prove that under some assumptions, it is impossible to
design an undoable object without enforcing the natural commutativity. Proving this result was a difficult
task. To overcome this difficulty, we formalized the undoability problem as a Constraint Satisfaction
Problem (CSP) where CSPs are mathematical problems defined as a set of objects whose state must
satisfy a number of constraints or limitations.

However, practically it is not possible to always define a set of commutative operations. For instance,
in the context of collaborative editors, inserting characters does not commute with deleting characters.
Thus, we propose to extend the set of operations with a new form of the idle operation where semantic
information about the transformed operations is encapsulated in the idle operation’s signature. The
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enhanced set of operations has to satisfy both inverse and transformation properties. Thus, we investigate
transformation rules for idle and inverse operations to prove these rules preserve all the properties.

In the first section of this chapter, we present the formal statement of the undoability problem. In
Section [6.2] we investigate a formal analysis of the undoablity problem based on the CSP theory. We
provide a necessary and sufficient condition for achieving correct undoability in the context of OT-based
collaborative applications. Finally, in Section [6.3] we sketch a preliminary solution that consists in
adding an idle operation in order to keep the OT advantages, namely going beyond the commutativity.

6.1 Formal Problem Statement

Collaborative Object. We suppose that there are N sites collaborating on the same shared object repli-
cated at each site. Every site updates its local copy, executes the update immediately then broadcast the
generated operation to other sites. Remote sites compute the new form of remote operations by applying
the I'T" function in order to integrate the effect of the local log into the received remote operation. Then
the result of the I'T" function is executed on the local copy of the receiver site. We define formally the
collaborative object as follows:

[Deﬁnition 6.1.1 (Consistent Collaborative Object).}

A Consistent Collaborative Object (CCO) is a triplet C' = (St, Op, IT) such that:
e St is the set of object states (or the space state);

e Op is the set of primitive operations executed by the user to modify the object state.
This set is characterized by the following properties:

1. for every operation op € Op there is unique inverse op € Op such that op # op
and st - op - op = st for all states st € St;

2. for every operation op € Op there exists a state st € St such that st - op = st
where st’ # st.

e [T : Op x Op — Opis a correct transformation function (i.e., I'l" satisfies properties
TP1 and TP2).

A CCO is of order n, denoted n-CCO, if the size of Op is equal to n.

According to Definition[6.1.1] property (1) means that all operations have to satisfy the undo property
IP1. This property should be preserved even though the operation is generated outside an undo process.
As for property (2), it discards the use of idle operations (i.e., there is no op € Op such that st - op = st
for any state st). Indeed, when designing a shared object, a developer provides intuitively only operations
that alter the object state. For him, it does not make sense to handle practically idle operations. As seen
in Chapter[5] we can devise consistent objects (i.e. TP1 and TP2 are satisfied) without idle operations
(see Examples[5.2.2]and[5.2.4). Also we exclude operations h