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Abstract

In his 1966’s paper "K-theory and Reality", Atiyah introduced a variant of K-theory of
complex vector bundles called KR-theory, which, in some sense, is a mixture of com-
plex K-theory KU, real K-theory (also called orthogonal K-theory) KO, and Anderson’s
self-conjugate K-theory KSc. The main purpose of this thesis is to generalize that the-
ory to the non-commutative framework of twisted groupoid K -theory. We then introduce
twisted groupoid K R-theory by using the powerful machineries of Kasparov’s "real" KK-
theory. Specifically, we deal with the K-theory of Z,-graded C*-algebras associated with
groupoid dynamical systems endowed with involutions. Such dynamical systems are clas-
sified by the Real graded Brauer group to be defined and computed in terms of Cech co-
homology classes. In this new K-theory, we give the analogues of the fundamental results
in K-theory such as the Mayer-Vietoris exact sequences, the Bott periodicity and the Thom
isomorphism theorem.

Résumé

Dans son article de 1966 intitulé "K-theory and Reality", Atiyah introduit une variante de
la K-théorie des fibrés vectoriels complexes, notée KR, qui, d'une certaine manieére, en-
globe ala fois la K-théorie complexe KU, la K-théorie réelle KO (dite aussi orthogonale), et
la K-théorie auto-conjuguée KSc d’Anderson. Dans cette theése, nous généralisons cette
théorie au cadre non-commutatif de la K-théorie tordue des groupoides topologiques.
Nous développons ainsi la KR-théorie tordue des groupoides en nous servant principale-
ment des outils de la KK-théorie "réelle" de Kasparov. Il s’agit notamment de I’étude de la
K-théorie des C*-algebres graduées associées a des systemes dynamiques de groupoides
munis de certaines involutions. Les classes d’équivalence de tels systemes génerent le
groupe de Brauer Réel gradué que nous définissons et calculons en termes de classes de
cohomologie de Cech. Nous donnons dans cette nouvelle théorie les analogues des résul-
tats classiques en K-théorie tels que les suites exactes de Mayer-Vietoris, la périodicité de
Bott et le théoréme d’isomorphisme de Thom.
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Introduction

2

1.1 Overview of twisted K-theory

Twisted K-theory was introduced in the early 1970s by P. Donovan and M. Karoubi
in [28] as K-theory with local coefficients, by analogy with cohomology with local coeffi-
cients. Given a compact space X, they defined twisted orthogonal K-theory KO, (X) for

a € BrO(X) := H(X, Zg) x H'(X,Z,) x H*(X,Z>),
and twisted complex K-theory KU, (X) for
@ € Br(X) 70,5 := H (X, Z5) x H (X, Z5) x Tors H>(X, Z),

where Br(X) rors is the torsion subgroup of Br(X) := H(X,Z) x H'(X,Z,) x H3(X, 7).

The main motivation of their work was that twisted K-theory has appeared to be the
most natural way to display Thom isomorphism in K-theory. Indeed, if V is a real vector
bundle over X, the KO-theory of its Thom space is isomorphic to KO, (X), where

a=—-(dimV modS8,w;(V), w»(V)) e BrO(X),

and where w;(V),i = 1,2 are the first Stiefel-Whitney classes. More precisely, KO} (X) is
defined to be the K-theory of the Banach algebra C(X; CI(V)) of continuous sections of the
real Clifford bundle CI(V), which is a bundle of Z,-graded real Matrix algebras [42]. Thom
isomorphism for complex bundles expresses analogously (one needs then to consider the
complexified Clifford bundle CI(V) := CI(V) ®g C). Given that not all a arise from Clif-
ford bundles, it had proved interesting to generalize that definition for the whole BrO(X)
and Br(X) Tors- Fortunately, these groups classify bundles of simple central Z,-graded al-
gebras over R and C, respectively; such bundles are known as Azumaya bundles [33]. More
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2 1. INTRODUCTION

concretely, a bundle A — X is Azumaya if its typical fibre is a graded Matrix algebra. The
graded orthogonal Brauer group BrO(X) (resp. the complex graded Brauer group Br(X) 7ors)
is isomorphic to the set of Morita equivalence classes of real (resp. complex) Azumaya
bundles on X [28, 92], equipped with the operation of graded tensor products. Then if A is
any representative of the class corresponding to @, KO ;" (X) = KO, " (X) := KOn(C(X; A)),
and KU;I”(X) = KU, "(X) := K,(C(X;A)) in the complex case [28, 43]. For non compact
spaces, one takes the algebra Cy(X;.A) of continuous sections vanishing at infinity. There
is a pairing
KZ"(K) & Kg™"(X) — K" (X),

a+p

where K is either KO or KU, and if « is trivial, one recovers the ordinary K-theory. More-
over, twisted K-theory provides a generalization of Thom isomorphism.

Theorem 1.1.1. ( [28, Theorem 6.15], [43, Theorem 4.2]). Letn : V — X be a Euclidean
vector bundle on X, and A be an Azumaya bundle on X. Then

KacionX) = KL, (V).

In investigating continuous-trace C*-algebras ! in the late 1980s, J. Rosenberg was led
to introduce twisted K-theory when the twisting is an ungraded non-torsion element of
/B}(X ) ([78]). The idea came from the pioneering work of ]J. Dixmier and A. Douady linking
separable continuous-traces C*-algebras and Cech cohomology ( [27]). Indeed, from [27,
Lemme 22, Théorémes 11, 12, 13, & 14], we have the following correspondences:

Theorem 1.1.2. Let X be a locally compact second-countable Hausdorff space. Then

Stable separable o
. Elementary PU(H) — principal
continuous —trace | _ N - 1
. =4 C*-bundles ;=< bundles = H(X,S).
C* —algebras
over X over X

with spectrum X

Recall that an elementary C*-bundle is a bundle A — X of elementary C*-algebras
(i.e. Ax = K(H), where H is a separable Hilbert space) satisfying Fell’s condition (see [78,
75, 29]), and with structure group Aut(K(H)) = PU(H).

Given a € H?(X,S") = H3(X, ), K-theory of X twisted by a is defined ( [78, §2]) by

K3 (X):= Ki(A) = K;(Co(X;.A)),

1A C*-algebra A is continuous-trace if its spectrum A is Hausdorff and if the continuous-trace elements
{ae AL | Trn(a) <oo,Vme A, and 7 — Trz(a) is continuous on A}

are dense in A, (see [78, 75] for instance).



1.1. Overview of twisted K-theory 3

where A (resp. A) is any stable separable continuous-trace C*-algebra with spectrum
X (resp. any elementary C*-bundle over X) realizing « in the sense of the above bijec-
tions. A topological interpretation of these groups have been given as follows. Denote
by Fred© the space of Fredholm operators on the infinite-dimensional separable Hilbert
space 3, and let Fred'”) denote the subspace of self-adjoint operators in Fred’. Rosenberg
has proved the following ( [78, Proposition 2.1]))

Proposition 1.1.3. Ifa corresponds to a PU(H)-principal bundle P — X, then

1

PU(H)
Ky (X) :

Ky (X)

[P Fred(o)]
[P Fred”]

11

PUF)

where the right hand sides are the sets of homotopy classes of PU(H) -equivariant continu-
ous functions, with homotopy being in Fred?”,i =0, 1.

The classification of Theorem 1.1.2 was extended by E. Parker [70] to the graded case,
offering then a C*-algebraic picture of Br(X):

Theorem 1.1.4 (E. Parker 1988). The set Br(X) of isomorphism classes of stable separa-
ble continuous-trace Z,-graded C* -algebras with spectrum X, subject to the operation of
graded tensor products, is isomorphic to H(X,Z,) x H' (X, Z,) x H*(X, Z).

Since the late 1990s, twisted K-theory has played a prominent part in mathematical
physics, especially in string theory. Indeed, it has proved a good candidate for a mathe-
matical attempt to classify, for instance D-brane charges and Ramond-Ramond fields [95,
37, 60, 13, 16, 15]. Further generalizations and various versions of twisted K-theory have
then been elaborated during the last decade, such as K-theory twisted by graded infinite-
dimensional twist (Atiyah-Segal [8]), K-theory of bundle gerbes (see Bouwknegt et al. [14]),
twisted KO-theory and K-theory of real bundle gerbes (Mathai, Murray, and Stevenson [58]),
equivariant K-theory twisted by discrete torsions and twisted orbifold K-theory (Adem-
Ruan [1, 2]), and twisted K-theory of differentiable stacks using the theory of groupoids
(Tu-Xu-Laurent [90], see also Freed-Hopkins-Teleman [30] and J.-L. Tu [87]). The latter is
more general in the complex case, in that it contains all of the other versions of twisted
complex K-theory. Indeed, the concept of groupoid is, in a sense, the natural generaliza-
tion of space, group, and the data of a space acted upon by a group.

Abstractly, a groupoid ( [63, 76]) is a small category ? in which all morphisms are in-
vertible. More concretely, a groupoid consists of a unit space G consisting of objects,
a space of arrows g two maps §,7 : g —, g0 called source and range (or target)

2A small category is a category for which the collection €° of objects and the collection €' of morphisms
are sets.
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maps, respectively, an inversion i : GV 3 g — g1 € G, and a partial multiplication
m:G? 3 (g, h) — ghe GW, where @ is the set of composable arrows

59 :={(g,megV x5V s(g) =rm)}.

Such a data is often symbolized by G i’? X , where X = GO or just by G. Also, for the

sake of simplicity, one writes G instead of GV, A topological groupoid is a groupoid § for
which the unit space and space of morphisms are topological spaces, and all of the above
maps (the structural maps) are continuous. From now on, by a groupoid we will mean a
topological one.

Twistings of groupoid complex K-theory are defined in terms of elementary complex
C*-bundles A over the unit space endowed with an action of the space of morphisms §
by *-automorphisms; i.e., there is a family a = (a)geg of *-isomorphisms ag : Ag g =
Ar(g) with the property that ag o a, = ag, whenever the product makes sense, and ag-1 =
(a g)‘l. Such bundles are called a Dixmier-Douady bundles over G i? X and generate
an Abelian group Br (9) called the Brauer group, which was introduced by Kumjian-Muhly-
Renault-Williams in [49]. This group has been shown to classify S!-central extensions of
groupoids up to Morita equivalence and to be isomorphic to the second groupoid Cech
cohomology with coefficients in S!. We shall note that the notion of groupoid S$'-central
extension "up to Morita equivalence", generalizes Murray’s bundle gerbes [67] and offers a
geometric interpretation of the groupoid cohomology H?(G.,S").

The graded analogue /BT(S) of Br(9) has been given for instance in [30] and [87], where
similar isomorphism as that of E. Parker (cf. Theorem 1.1.4) was established. Elements
of Br(G) are then represented by Z,-graded Dixmier-Douady bundles over G i>s”—> X ; the
automorphisms a; are then required to by isomorphisms of Z,-graded C*-algebras.

Given A € Br(9), one defines the reduced C* -algebra A x; G as the reduced C*-algebra
of the Fell bundle A’ ( [48]) defined as the pull-back s*A — §G. This is naturally a Z,-
graded C*-algebra where the grading is induced from the fibers of A. The groups K}, (%)
([87]) are henceforth defined by means of Kasparov’s KK-theory ( [46, 45, 47, 9, 39]):

K,'(§") := KKi(C,A %, 9).

This 2-periodic theory admits a topological interpretation in the case where G is a
proper groupoid (see [30, 90]); i.e., for all compact subspace K < G, the space GX of
arrows whose targets are in K is compact in G. In the particular case of twists that are tor-
sions, there is the notion twisted vector bundle over a proper groupoid, which may provide
a geometric picture of groupoid twisted K-theory ( [90]). For instance, if G reduces to a
locally compact Hausdorff space X, then an extension up to Morita equivalence over X is
nothing but a bundle gerbe over X, and a twisted vector bundle is nothing but a bundle
gerbe module in the sense of [14]. In that case, groupoid twisted K-theory coincides with
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K-theory of bundle gerbes. All of these points will be clarified in this thesis.

It is worth noting that in the torsion case, twisted K-theory of locally compact spaces
behaves almost as K-theory of complex vector bundles. Roughly speaking, it has been
proved by Mathai, Melrose, and Singer in [55] that for @ a (ungraded) torsion in the sheaf
cohomology group H2(X,$Y) = B3(X,2), Kg (X) is isomorphic to the Grothendieck group
of isomorphism classes of a-twisted vector bundles over X. By definition, if an n-torsion
a is represented on an open cover (U;);er of X, an a-twisted vector bundle is the data of
a family (E;) ;e of complex vector bundles E; — U; of the same fixed rank, and transition
functions h;; : U;j — U(n) satisfying h;j(x) o hji(x) = a;jp(x) hix(x), VX € Ui jx = UinU; N
Uk. In particular, when X is a (compact) manifold, it makes sense to talk about index
theory in twisted K-theory (see Mathai-Melrose-Singer [55, 56, 57], or Nistor-Troitsky [68]
for the equivariant case)

Twisted vector bundles are of particular interest when it comes to the K-theory of sep-
arable continuous-trace C*-algebras all representations of which are of finite dimension.

Example 1.1.5. Let G be a compact Lie group, and G its dual space. A basic fact in the theory
of group representations is that all irreducible representations of G are of finite rank, and the
spectrum of the group C* -algebra C*(G) is homeomorphic to G (see for instance [26]). For
d €N, let G, be the open subset of G generated by all irreducible representations of dimen-
sion m. Then there are Azumaya bundles Ay — Gg,d €N, such that C*(G) = @, Co(Gy;Ag)
(see [68, Corollary 5.5]). Therefore,

Ki(C*(G) =@ K, (Ga),
d

and since the A, are Azumaya, they are torsion elements in the Brauer group, and hence the
right hand side of that isomorphism furnishes a geometric interpretation of the K -theory of
C*(G) in terms of twisted vector bundles.

1.2 Why twisted groupoid K R-theory ?

The theory to be developed here is a first attempt to study groupoid KO-theory twisted
by Dixmier-Douady real C* -bundles. Our strategy is to construct a variant of twisted K-
theory in which we will not lose the informations of twisted complex K-theory. For this
end, a twisted version of Atiyah’s KR-theory [6] appears to be the ideal candidate, for in
the untwisted case, it is a theory combining all the known K-theories of vector bundles;
i.e. K-theory of complex vector bundles, K-theory of real vector bundles, and K-theory of
self-conjugate vector bundles, denoted by KSC (Anderson [5], Smith-Stong [86]).
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KR-theory is defined in the category of Real spaces. A Real ® space is a space X en-
dowed with an involution 7 : X — X; i.e. T is an isomorphism such that 72 = Id. Of course
here the word "isomorphism" depends on the category we are working in: it is a homeo-
morphism in the category of topological spaces, a diffeomorphism in the category of real
manifolds, a holomorphic or anti-holomorphic diffeomorphism in the category of com-
plex manifolds (Landweber [51]). The fixed point set of X is called the Real part of X. Let
us give some simple examples:

1. Forn=p+qeN, give R” = R” @ RY the involution

(xlr---)xp) J/b---»J/q) —_ (xl)---)xp) —J/b 33} _J/q)

Then with respect to this involution R” is a topological Real space, denoted by R”%;
the Real part of R”7 is R”. In particular, R”” is the same as C” endowed with the
involution consisting of complex conjugation. Note that the Real part of R* is {0}.

2. With respect to the involution given by coordinatewise complex conjugation
[Zl) (133} Zl’l] —_ [Zl’ (X33} Zn]»

the complex projective space PC” is a Real space whose Real part identifies with the
real projective space RP”.

3. Let M be a complex analytic manifold, and let M denote its conjugate complex an-
alytic manifold. Then M U M*® is given the structure of Real complex analytic man-
ifold with an empty Real part, by considering the involution consisting of switching
M and M ([51]).

Let X be a locally compact Hausdorff Real space. A Real vector bundle over X is a
complex vector bundle E — X which is itself a Real space, with the property that the the
projection intertwines the involutions, and that for all x € X, the induced isomorphism
Tx: Ex — E;(x is conjugate-linear; i.e. T,(1e) = At(e), VAeC, e€ Ey. An isomorphism of
Real vector bundles is an isomorphism of complex vector bundles compatible with the in-
volutions in the obvious sense. The group KR(X) is defined to be the Grothendieck group
of the isomorphism classes of Real vector bundles over X. The higher KR-groups are de-
fined by KRY7P(X) := KR(X x RP9), where the involution on X x R”4 is the product of the
ones of X and RP9. In particular, if 7 = Id, then each fibre of a Real vector bundle E is
in fact the complexification of a real vector, so that E = Er ® C is the complexification of
a real vector bundle Egr — X defined as the fixed points of E. It follows that there is an
equivalence between the category of Real vector bundles over X and the category of real
vector bundles, and therefore KR(X) = KO(X).

3Note the capitalization, used here to avoid any confusions with real manifolds or vector spaces over R.
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However, as we are dealing with non-commutative spaces, Kasparov’s generalization
of KR-theory is more relevant to the study of twisted groupoid KR-theory. Indeed, in his
1980’s founding article # of KK-theory, Kasparov focused on Real graded C*-algebras;
i.e., Zy-graded complex C*-algebras A which are the complexifications of real graded C*-
algebras ( [53, 81]) Ag (the Real part of A), or equivalently, Z,-graded complex C*-algebras
endowed with conjugate linear involutions respecting the gradings. Given two such C*-
algebras A and B, the group KKR(A, B) is defined to be the subgroup of KK (A, B) gen-
erated by all Kasparov A, B-modules (E, ¢, F) that are complexifications of real Kasparov
Ag, Bg-modules in a sense to be determined later. For instance, for p, g € N, the complex
Clifford algebra Cl,, ; (7, 42, 81]), endowed with the involution induced from the involu-
tion on R”9 @ C (where C is given the complex conjugation), is a Real graded C*-algebra
whose Real part identifies with the real Clifford algebra Cl, 4. The higher KK R-groups are
given by

KKRy_4(A,B):= KKR(A&Cl, 4, B) = KKR(A, B&Cly, p).

In view of the 8-periodic property of complex Clifford algebras ( [7]), Bott periodicity
in KK R-theory expresses the following way

KKR;+g(A,B)= KKR(A,B),i€Z.

Example 1.2.1. Let X be a Real space, and let the C* -algebra Cy(X) of complex valued con-
tinuous functions on X be endowed with the involution Cy(X) 3 f — f € Co(X), with
f(x) := f(r(x),x € X. Then Cy(X) is a Real (trivially) graded C* -algebra. Moreover, it is
not hard to check that KKR(C,Cy(X)) = KR(X). In particular, if T is trivial, then Cy(X)r =
Co(X;R), and in that case KKR(C, Cy(X)) = KKO(R, Cy(X;R)) = KO(X).

It then would make sense to think of Kasparov’s KK R-theory as the non-commutative
analog of Atiyah’s KR. For a Real graded C*-algebra B, we define its KR-theory to be
KR;(B) := KKR(C, B), where C is equipped with the involution consisting of complex con-
jugation.

Note that although KR, (B) is a subgroup of K. (B), one captures, to a certain extent,
all the informations of the latter from the study of the former. Indeed, we have shown the
following decomposition °

Proposition 1.2.2. Let B be a Real graded C* -algebras. Then

K;(B)® Z[1/2] = (KR;(B)® KR;_2(B)) ® Z[1/2].

4 [46] is the English translation of the original paper written in Russian: Kasparov, G., The operator K-

functor and extensions of C* -algebras. 1zv. Akad. Nauk. SSSR Ser. Mat. 44 (1980).
5See Proposition 6.4.5 and Proposition 6.4.7.
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Let us now set about introducing twisted K R-theory of locally compact second count-
able Hausdorff groupoids. By a Real groupoid we mean a topological groupoid together
with a groupoid isomorphism 7 : § — G such that 72 = Id. For instance, a Real space
X may be thought of as a Real groupoid with unit space and space of arrows identified
with X. Also, a group with involution is a Real groupoid with unit space reduced to one
point; e.g. the unit sphere S$! endowed with the complex conjugation is a Real groupoid

S! —=. which plays an important role in the study of twists of K R-theory. Morphisms
of Real groupoids are defined as functors intertwining the involutions. Besides such mor-
phisms, there is the notion of generalized morphisms of Real groupoids which is defined
almost as in the usual case ( [90, 63]). Such generalized morphisms may also be connected
by some notion of Real morphisms. Real groupoids are then the objects of a 2-category
in which 1-morphisms are generalized morphisms and 2-morphisms are morphisms be-
tween generalized morphisms. Moreover, we will be working in a category 2R® in which
objects are Real groupoids and morphisms are 2-isomorphism classes of 1-morphisms.

Definition 1.2.3 (Definition 4.1.1). By aReal graded D-D bundle over a Real groupoid G we
mean a Dixmier-Douady bundlen : A — X over § endowed with an involutiono : A — A
such that n(o(a)) = t1(n(a)),Va € A, the induced maps o, : Ay — Ar ) are anti-linear
graded * -isomorphisms, and a.(g)(0(a)) = 0,g)(a), Vg€ G, a€ Ayg.

The Real graded Brauer group ﬁrT{(S) of G is defined as the set of Morita equivalence
classes of Real graded D-D bundles, subject to the operation of Real graded tensor prod-
uct over the unit space X. We denote by ﬁrT%o(S) the subgroup of ﬁﬁ{(S) generated by Real
graded D-D bundles A satisfying the property: for every x € X, there exists a neighbor-
hood U of x which is invariant under 7 such that the Real space 7~ (U) is homeomorphic
to te Real space U x Ko, where K is the Real graded C*-algebra K(H) of compact oper-
ators over the graded Hilbert space F := I2(N) @ I2(N) endowed with the involution given
by the coordinatewise complex conjugation with respect to its canonical orthonormal ba-
sis, and the grading (1, k) — (k, k). In fact, elements of BrRy(S) expresses as generalized
morphisms as follows. Let U (ﬂtf) be the group of homogeneous unitaries on JCC, endowed
with the involution induced from H. Then H is a Real groupoid with an obvious action by
$! which is compatible with the involutions. Let PU () := O(H)/S'. Then

Theorem 1.2.4 (Theorem 4.7.4). Let G be a locally compact second countable Hausdorff
Real groupoid with Haar system ( [76]). Then

BrR(S) = Homgs (S, PU(H)) s,
where Homgy g (G, PU(F0) st 1S the subset of stable elements of Homgpg (G, PU(F)).

In order to establish a cohomological formula of ﬁrT%(S), we need to define a coho-
mology theory HR* relevant to Real groupoids. This is a variant of J.-L. Tu’s groupoid co-
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homology ( [88]) which takes values on sheaves endowed with involutions. Although this
theory behaves like a Z,-equivariant Cech cohomology, it is not.

We define a peculiar Real group Invi generated by triples of the form (K,K~,t), where
K and K~ are graded elementary C*-algebras and t: K — K~ is a graded conjugate linear
*-isomorphism. One of the main result of this thesis is the following

Theorem 1.2.5. Let G be a locally compact Hausdorf{f second countable Real groupoid with
Haar system. There is a natural isomorphism

BrR(9) = HR"(S., InvR) x HR'(S.,Z5) x HR?*(S.,SY),
where the group Z, is given the trivial involution and S' is given the complex conjugation.

In the particular case of a fixed point free involution 7 on G, the complex graded Brauer
goup Br(G) and BrR(G) are related through the nice decomposition

Br(9) ® Z[1/2] = (BrR(S) @ Br(G/1)) ® Z[1/2],

where G/; is the groupoid obtained by identifying every g € G with its image 7(g). The
other extreme case is when 7 is the trivial involution. In that case, we show that I?rT{(S)
offers a generalization of Donovan-Karoubi’s graded orthogonal Brauer group BrO (see
Theorem 4.3.6).

Now for A € BrR(S), the reduced C*-algebra A x § is actually a Real graded C*-algebra
(see Chapter 5). Then, the twisted Real K -theory of G is defined as

KR, (S") := KRi(A %, 9).
From Proposition 1.2.2 we deduce

Theorem 1.2.6 (Theorem 6.4.1). Twisted complex K -theory and twisted Real K -theory are
related by the following decomposition

K (G ®Z[12] = (KR;(S") @ KR} 2(S") ® Z[1/2.

Of course by taking 7 to be the trivial involution, twisted KR-theory is nothing but a
generalization of twisted KO-theory for topological groupoids.

We give various interpretations of this theory: topological in terms of Real Fredholm
operators, as well as geometric in terms of Real graded twisted vector bundles. For the
topological one, we show the following result

Theorem 1.2.7 (Theorem 7.4.2). Suppose the Real groupoid G is proper. Let A € BrRy(S).
Then associated to A, there is a Real proper groupoid T i? Y together 1-isomorphism

G — T, and for p, q € N, a generalized morphismPP~9:T — lgl\lp_q(fﬁC), such that

R PU,_;(F0
q4=P(c*y ~ |pP—9 p—q p=a
KRY V(S = [pr-asr,gv-a]
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where the right hand side is the set of homotopy classes of Real PU p—q (F0) -equivariant con-
tinuous functions. Here F is endowed with some Real graded Cl, 4-action; PU p—q (H) is the
Real subgroup of PU(H) consisting of equivalence classes of unitaries commuting with the
Clp,q-action, P-4 is the Real space of degree 1 Fredholm operators on F.

This identification allows us to define the multiplicative structure

KR;' (") ® KRy (G) — KR, ] (G

for Real proper groupoids (Proposition 7.5.1).

Finally, we introduce Real groupoid-equivariant K K-theory via correspondences, which
provides an elegant proof of Thom isomorphism in twisted groupoid K-theory (cf. Theo-
rem 9.8.1), and allows us to prove that twisted KR-theory is a covariant functor in the
category of Real proper groupoids.

1.3 General plan

We have tried, to the extent possible, to write this thesis in a self-contained way. It is
organized as follows:

* Chapter 2 is devoted to elementary notions and results about Real groupoids and
Real graded extensions.

e In Chapter 3 we define Real Cech cohomology theory for Real groupoids, and then
connect it to Real graded central extensions.

 In chapter 4 we introduce the Real graded Brauer group of a Real groupoid, and then
give it a Real cohomological formula. We shall however point out that this chap-
ter requires familiarity with Real graded elementary C*-algebras and Real fields of
graded C*-algebras discussed in Appendices A, B and C. Mainly, the classification of
Real graded elementary C*-algebras established in Appendix A is a prerequisite.

» Chapter 5 is an expository about Real graded Fell bundles and their associated Real
graded C*-algebras. Especially, we prove the analog of the well-known Renault’
equivalence theorem, for the reduced Real graded C*-algebras of Morita equivalent
Real graded Fell systems. This result is important in the study of twisted K R-theory,
especially when it comes to geometric interpretation.

* Chapter 6 is an introduction to twisted K R-theory of locally compact second count-
able Hausdorff Real groupoids. Tha analogues of the fundamental results of K-
theory are established: Bott periodicity, Mayer-Vietoris exact sequence, and exten-
sion maps.
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* In Chapter 7 we give a topological formulation of twisted KR-theory in the proper
case.

 In Chapter 8 we focus on the case where the twists are torsions elements of the Real
graded Brauer goup. We then introduce K-theory of Real graded twisted vector bun-
dles, which we compare to twisted KR-theory. The last section of this chapter is
devoted to the case of transformation Real groupoids.

e Chapter 9 is aimed at investigating groupoid equivariant Real KK-theory using C*-
correspondences, which we use to prove Thom isomorphism in twisted K R-theory.
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Real groupoids

:

2.1 Definitions and Examples

Recall that a strict homomorphism between two groupoids G i>s’—> X and T i? Y isa

functor ¢ : I' — G given by a map I'”? — G© on objects and a map T — G on ar-
rows, both denoted again by ¢, which together preserve the groupoid structure maps, i.e.
P(s(y) = sle(y), @(r(y) = r(@y), e1y) = 1yy) and @(y1y2) = (y1)@(y2) (this means
that also @(y™1) = @(y)™}), for any (y1,72) € T® and any y € I'?). Unless otherwise speci-
fied, all our groupoids are topological groupoids which are supposed to be Hausdorff and
locally compact. We can now give the following definition.

Definition 2.1.1. A Real groupoid is a groupoid G i>s—> X together with a strict 2-periodic

homeomorphism p: G — G. The homeomorphism p is called a Real structure on G.
Such a groupoid will be denoted by a pair (G, p).

Example 2.1.2. Any topological Real space (X, p) in the sense of Atiyah ( [6]) can be viwed

as a Real groupoid whose the unit space and the space of morphisms are identified with X;

i.e, the operations in this Real groupoid is defined by s(x) = r(x) = x, x.x=x, x ! = x.

Example 2.1.3. Any group with involution can be viewed as a Real groupoid with unit space
identified with the unit element. Such a group will be called Real.

Real abelian groups will play an important role in the study of twisted K-theory of Real
groupoids.

Lemma 2.1.4. Let G be an abelian group equipped with an involutiont : G — G (i.e. a
Real structure). Set

R(1):={geGlT(® =g ="G, S :={geG|t(g)=-g}

13
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Then,

1 1
G®Z[E] = (%(T)EB%(T))@Z[E]. (2.1)
If T is understood, we will write’G for S(t). We call R(t) and (1) the Real part and the
imaginary part of G, respectively.

Proof. Forall g € G, one has g +7(g) € ®G, and g — 7(g) € ’G. Therefore, after tensoring G
with Z[1/2], every g € G admits a unique decomposition

_ g+T(g) g_T(g) R 9J
g="g o ezu/z]@( Go G).
O

Example 2.1.5 (The Real spaces R”9 and S”7). Let n € N*. Suppose p is a Real structure
on the additive group R". Then, every u € R" decomposes into a unique sum v+ w such that
u+p(w) | u—p(u) n_ 1-p 1-p

—5— +—5—, sothatR" = ker(=-) ® Im(—~), and
with respect to this decomposition, p is given by p(v, w) = (v,—w). It then follows that there

p(v) =vandp(w) =—-w. Indeed, u =

exists a unique decomposition R = RP & RY such that p is determined by the forumula

px,y)=1p & (1)) (x,y) :=(x,—-y),

forall (x,y) = (x1,-++, Xp, Y1, Vq) ERP @RI,
For each pair (p, q) € N, we will write R”9 for the additive group RP*9 equipped with the
Real structure (1, @ (—=14)).

Now, we define the Real space SP'9 as the invariant subset (i.e. invariant under the Real
structure) of RP9 consisting of those u € RP*9 such that |u| = 1, where as usual, || ul|? =
X] A+ X+ Y7+ -+ Y. For g = p, SPP is clearly identified with the Real space SP whose
Real structure is given by the coordinatewise complex conjugation. Notice that "SP4 = P9,

Example 2.1.6. Let (X, p) be a topological Real space. Let us consider the fundamental
groupoid my(X) over X whose arrows from x € X to y € X are homotopy classes of paths (rel-
ative to end-points) from x to y and the partial multiplication given by the concatenation of
paths. The involution p induces a Real structure on the groupoid as follows: if [y] € m1(X),
we set p([y]) the homotopy classes of the path p(y) defined by p(y)(t) := p(y(t)) for t € [0,1].

Let us fix some notations and conventions.

Notations 2.1.7. From now on, by a Real structure on a groupoid, we will mean a represen-
tative of a conjugation class of Real structures. Moreover, for the sake of simplicity, we will
put g := p(g), and we will just write G instead of (G, p) when p is understood.

Definition 2.1.8. Two Real structures p and p' on G are said to be conjugate if there exists a
strict homeomorphism ¢ : G — G such that p' = popod™'. In this case we say that the Real
groupoids (G, p) and (G, p') are equivalent.
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Lemma 2.1.9. Let G andT be Real groupoids, and let ¢ : T — G be a Real groupoid homo-
morphism, then ¢('T) is a full subgroupoid of "G —="X . If in addition ¢ is an isomor-
phism, then' T= "G —x "X .

In particular, if p) and p, are two conjugate Real structures on G, then P1G = P2G,
Proof. This is obvious since ¢(y) = ¢(y) forall yeT. O

Remark 2.1.10. Note that the converse of the second statement of the above lemma is false
in general. For instance, consider the Real group S' whose Real structure is given by the
complex conjugation, and the Real group Z, (with the trivial Real structure). We have®S' =
(1} =7, =R7,.

The following is an example of groupoids with equivalent Real structures.

Example 2.1.11 (Symmetric Riemannian manifold). Recall ( [34, IV.3]) that a Rieman-
nian manifold X is called globally symmetric if each point x € X is an isolated fixed
point of an involutive isometry s, : X — X; i.e. sy is a diffeomorphism verifying s> = 1dx
and sx(x) = x. Moreover, for every two points x,y € X, sy and s, are related through the
Jformula sy o5y 085 = S5,(y)-

Given such a space, each point x € X defines a Real structure on X which leaves x fixed.
However, let x and y be two different points in X and let z € X be such that y = s;(x). Then,
we get s; 0 Sy 0 S, = S, which means that the diffeomorphism s, : X — X implements an
equivalence sy ~ s,. But since x and y are arbitrary, it turns out that all of the Real struc-
tures sy are equivalent. Thus, all of the Real spaces (X, sy) are equivalent to each others.

Now, recall ( [34, IV. Theorem 3.3]) that if G denotes the identity component of 1(X),
where the latter is the group of isometries on X, then the map 0 x, : § — Sx,8 Sx, IS an invo-
lutive automorphism in G, for any arbitrary xo € X. It follows that all of the points of X give
rise to equivalent Real groups (G,0 ).

Definition 2.1.12. Real covers Let (X, p) be a Real space. We say that an open cover U =
{U;}ier of X isReal if U is invariant with respect to the Real structure p; i.e. p(U;) e U,Vi € I.
Alternatively, U is Real if I is equipped with an involution i — i such that U; = p(U;) for
alliel.

Remark 2.1.13. Observe that Real open covers always exist for all locally compact Real space
X. Indeed, let'V = {V;1}yicp be an open cover of the space X. Let I := I' x {+1} be endowed
with the involution (i',+1) — (i’,¥1). Next, put U 11y := p*V(Vir), where pt*V(g) := g,
and p™V(g):=p(g) forgeg.

From now on, by a Real structure we will mean (a representative of) an equivalence
class of Real structures.
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Definition 2.1.14 (Real action). Let (Z,7) be a locally compact Hausdorff Real space. A
(continuous) right Real action of (G, p) on (Z, 1) is given by a continuous open maps: Z —
GO ¢ called the generalized source map) and a continous map Z X go , G — Z, de-
noted by (z,g) — zg, such that

(a) T(z8) =1(2)p(g) forall(z,8) € Z x4 g0 , G;

(b) p(s(z)) =s(1(2) forallze Z;

(©) s(z8) =s(8);

(@) z(gh) = (z8)h for (z,8) € Z x4 g0 , G and (g, h) € §@;

(e) zs(z) = z for any z € Z where we identify s(z) with its image in G by the inclusion

9(0) — G,

If such a Real action is given, we say that (Z, 1) is a (right) Real G-space.

Likewise a (continuous) left Real action of (G, p) on (Z, 1) is determined by a continu-
ous Real open surjectiont: Z — GO (the generalized range map of the action) and a
continuous Real map G x; g0 , Z — Z satisfying the appropriate analogues of conditions
(a), (b), (c), (d) and (e) above.

Given a right Real action of (G, p) on (Z, 1) withrespectto s, let ¥ : Z X560 §—ZxZ
be defined by the formula ¥(z, g) = (2, zg). Then we say that the action is free if this map
is one-to-one (or in other words if the equation zg = z implies g = s(z). The action is called
proper if V¥ is proper.

Notations 2.1.15. If we are given such a right (resp. left ) Real action of (G, p) on (Z,1), and
if there is no risk of confusion, we will write Z % G (resp. G Z) for Z XG0 G (resp. for
G x50 2).

2.2 Real G-bundles

Definition 2.2.1. Let (G, p) be a Real groupoid. A Real (right) G-bundle over a Real space
(Y, ) is a Real (right) G-space (Z,T) with respect toamap s : Z — G, together with a Real
map nt : Z — Y satisfying the relation n(zg) = n(z) for any (z,8) € Z XG0 G, and such
that for any y € Y, the induced map

on the fibres is G-antilinear in the sense that for (z,g) € Z), X5 G0 G we have

7y(28) =1y (2)p(g)
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as an element in Zy(y).

Such a bundle (Z,7) is said to be principal if

(i) m: Z— Y is locally split (means that it is surjective and admits local sections),
and

(i) themap Z X5 G0 G— ZxyZ, (z,8) — (z,28) is a Real homeomorphism.

Remarks 2.2.2.

(1). The unit bundle. Given a Real groupoid (G, p), its space of arrows GW js a G-
principal Real bundle over . Indeed, the projection is the range map r : ¥ — GO,
the generalized source map is given by s and the action is just the partial multiplication on
G. This bundle is denoted by U(G) and is called the untt bundle of G (cf. [63]).

(2). Pull-back. Let
A1)

|

Y
be a G-principal Real bundle and f : Y' — Y be a Real continuous map. Then the pull-
back f* Z := Y' xy Z equipped with the involution (¢',T) has the structure of a G-principal
Real bundle over Y'. Indeed, the right Real G-action is given by the G-action on Z and the

generalized source map iss'(y', z) := s(z).

(3). Trivial bundles. From the previous two remarks, we see that if (Z,t) is any Real
space together with a Real map ¢ : Z — G, then we get a G-principal Real bundle ¢* U(S)
over Z; its total space being the space Z x , g , G. A Bundle of this form is called trivial
while a G-principal Real bundle which is locally of this form is called locally trivial.

2.3 Generalized morphisms of Real groupoids

Definition 2.3.1. A generalized morphism from a Real groupoid (T, p) to a Real groupoid
(G, p) consists of a Real space (Z,T), two maps

ot »_ s 9(0) ,
a left (Real) action of T with respect tox, a right (Real) action of G with respect to s, such that

(i) the actions commute, i.e. if (z,8) € Z x; g0 , G and (y,z) €T x o , Z we must have
5(yz) =s(2), v(zg) =t(2) so thaty(zg) = (y2)g;
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(ii) the maps s and v are Real in the sense that s(1(z)) = p(s(2)) and t(1(z)) = p(x(z)) for
anyze€ ZzZ;

@iii) v: Z — T'© is a locally trivial G-principal Real bundle.

Example 2.3.2. Let f:T — G be a Real strict morphism. Let us consider the fibre product
Zp:=TO x g0 , G and the maps«: Zy — I (y,@9)— yands: Zp — 59, (y,8) —

s(g). For(y,(y,8) €I'xsro Zf), wesety.(y,g) := (r(y), f(y)g) and for ((y, g),8) e ZfXg g0,
G weset(y,g).8' :=(y,88"). Using the definition of a strict morphism, it is easy to check that
these maps are well defined and make Zy into a generalized morphism fromT to G. Fur-

thermore, the map T on Zy defined by t(y, g) := (0(y), p(g)) is a Real involution and then Z¢

is a Real generalized morphism.

Definition 2.3.3. A morphism between two such morphisms (Z,t) and (Z',1') is a I'-G-
equivariant Real map ¢ : Z — Z' such that s = s' o and v = t' o . We say that the Real
generalized homomorphism (Z,t) and (Z',1') are isomorphic if there exists such a ¢ which
is at the same time a homeomorphism.

Compositions of Real generalized morphisms are defined by the following proposition.

Proposition 2.3.4. Let (Z',1") and (Z",t") be Real generalized homomorphisms from (T, o)
to (§',0") and from (9', p') to (G, p) respectively. Then

Z = Z, XSV Z" = (Z, XS’,Q’[O),‘C" Z")/(Z’,Z")~(Z’g’,g”lz")

with the obvious Real involution, defines a Real generalized morphism from T i? Y fo

§—=X.

Proof. Let us describe at first the structure maps
rOf 7 5. goO

and the actions.

For (Z/,z") € Z we set t(z',z") :=t/(z') and s(z’,z") := s"(z"). These are well defined and
since s5(z'g',g""1z") = s"(g" 'z") = §"(z") and t(2'g’,g""'z") = ¥/(d'g") = §'(2)) from the
point (i) of Definition 2.3.1. The actions are defined by y.(z’,z") := (yZ/,z") and (z/, 2").g :=
(z',2"g) for (y,(2',2") €T x 1o . Z and ((Z',2"), 8) € Z %, g0, § while the Real involution
is the obvious one: 7(Z/,z") := (t/(2'), 7" (z")).

Now to show the local triviality of Z, notice that from (3) of Remarks 2.2.2, Z' and Z"
are locally of the form U x ;s gio) v G and V x ¢",g0,r 9 respectively, where ¢ U— GO
and ¢" : V — G© are Real continuous maps, U and V subspaces of I'” and §'© re-
spectively. It turns out that by construction, Z is locally of the form W x, g0 , G where
W=Uxygo0V. H
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Definition 2.3.5. Given two Real generalized morphisms(Z,t) : (I',0) — (9, p") and (Z',7') :
(G',0") — (S, p), we define their composition (Z'o Z,7) : (T',0) — (G, p) to be (Z xg Z', T x
7).

Remark 2.3.6. It is easy to check that the composition of Real generalized morphisms is

associative. For instance, if
I (Z1,01) , (Z2,p2) | (Z3,p3)

S1 92 S

are given Real generalized morphisms, we get two Real generalized morphisms Z = Zy xg,
(Zy xg, Z3) and Z' = (Zy x g, Z) x g, Z3 between (', ) and (G, p); notice that here Z and Z'
carry the obvious Real involutions. Moreover, the map Z — 7', (z1, (22, z3)) — ((21, 22), Z3)

isal'-G-equivariant Real homeomorphism. Hence, there exists a category R® whose objects
are Real locally compact groupoids and morphisms are isomorphism classes of Real gener-
alized homomorphisms.

Lemma 2.3.7. Let f1, fo : T — G be two Real strict homomorphisms. Then fi and f, define
isomorphic Real generalized homomorphisms if and only if there exists a Real continuous
map @ : ' — G such that f>(y) = p(r(y) fi (y)(p(s(y))_l.

Proof. Le®: Zj — Zj, be aReal I'-G-equivariant homeomorphism, where Zs, =T x . o) ,
G. Then from the commutative diagrams

ro P Z P o
pn lq) Sopra

Zf2

we have @ (x, g) = (x, h) with s(g) = s(h); and then there exists a unique element ¢(x) € §
such that 1 = ¢(x)g. To see that this defines a continuous map ¢ : T'® — G, notice that
for any x € r'Q the pair (x, f1(x)) is an element in Z,, then ¢(x) is the unique element in
G such that ®(x, fi(x)) = (x,¢(x) fi(x)). Furthermore, since ® is Real, ®(p(x), p(f1(x))) =
(0(x), p(e(x)) p(fi(x))) which shows that ¢(p(x)) = p(@(x)) for any x e T@; i.e. ¢ is Real.
Now for y €T, take x = s(y), then from the I'-equivariance of ®, we have

O(y.(s(y), ASYN)) =D2(r(y), fi(y) =y.D(s(y), fils());

so that
rm,ery) i) =), L e(s(y)))

and fo(y).r(@(s(y) = @(r(y)) fi(Y)@(s(y)); but r(@(s(y))) = s(f2(y)) by definition of ¢ and
this gives the desired relation.
The converse is easy to check by working backwards. O
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2.4 Morita equivalences

Let (I',p) and (G, p) be two Real groupoids. Suppose that f : (I',p) — (G, p) is an iso-
morphism in the category 9i®;. In this case, we say that (I',p) and (G, p) are strictly
equivalent and we write (T, 0) ~sricr (9, p). Now, consider the induced Real generalized
morphisms (Z¢,7¢) : (I', 0) — (G, p) and (Zp-1,Tp-1): (G,p) — T, ). Define the inverse
of Zpby Z;':=Gx, g0 (T” with the obvious Real structure also denoted by 7 ;. The map

Zp1 — Z]Zfl defined by (x,y) — (f(y), f~'(x)) is clearly a G-T'-equivariant Real homeo-
morphism; hence, (Z 1T f—l) and (Z]ZI,T ) are isomorphic Real generalized morphisms
from (G, p) to (T',p). Notice that Zf‘1 is Zy as space; thus, (Zf,7y) is at the same time a
Real generalized morphism from (T', p) to (G, p) and from (G, p) to (T, p). Furthermore, it
is simple to check that Zf o Z;l and Zjq, define isomorphic Real generalized morphisms
from (G, p) into itself, and likewise, Z;l o Zr and Z4, are isomorphic Real generalized mor-

phisms from (T, p) into itself.

Definition 2.4.1. Two Real groupoids (T, p) and (G, p) are said to be Morita equivalent
if there exists a Real space (Z,7) that is at the same time a Real generalized morphism from
T to G and from §G to T; that is to say that T'©) <—— Z is a G-principal Real bundle and
7 —2> GO s aT-principal Real bundle.

Remark 2.4.2. Given a Morita equivalence (Z,7) : (I',0) — (G, p), its inverse, denoted by
(Z7Y,1), is (Z,7) as Real space, and ifb : (Z,7) — (Z~1,1) is the identity map, the left Real
S-action on (Z71,1) is given by g.b(z) := b(z.g_l), and the right Real I'-action is given by
b(z).y := by l.2); (Z71,1) is the corresponding Real generalized morphism from (G, p) to
(T, 0).

The discussion before Definition 2.4.1 shows that the Real generalized morphism in-
duced by a Real strict morphism is actually a Morita equivalence. However, the converse
is not true. Moreover, there is a functor

RGE; — ROG, (2.2)

where PR®; is the category whose objects are Real locally compact groupoids and whose
morphisms are Real strict morphisms, given by

f— Zf.
Definition 2.4.3. (Real cover groupoid). Let G i>s"—> X bea Real groupoid. Let U = {U;} be
a Real open cover of X. Consider the disjoint union[]jc;U; ={(j,x) € ] x X : x € Uj} with

the Real structure p© given by p©'(j, x) := (j, p(x)) and define a Real local homeomorphism
given by the projectionn :11; U;j — X, (j, x) — x. Then the set

SU]:=1{(jo,& j) €JxGxJ : r(g) €Uy, s(g) € Uj,},
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endowed with the involution p™V (jo, g, j1) := (jo, p(8), j1) has a structure of a Real locally
compact groupoid whose unit space is [1;Uj. The range and source maps are defined by

7(jo, & j1) := (Jo,r(g)) and 5(jo, 8, j1) := (j1,5(8)); two triples are composable if they are of

the form (jo, g, j1) and (ji, h, jo2), where (g, h) € 3@, and their product is given by (jo, g, j1).(j1, h, jo) 1=
(jo,gh, j2). The inverse of (jo, g, j1) is (j1, 8, jo).

It is a matter of simple verifications to check the following

Lemma 2.4.4. Let G i>s—> X be a Real groupoid, and U a Real open cover of X. Then the

Real generalized morphism Z,: S[U] — G induced from the canonical Real morphism

:5U — S, (o, & 1) — &
is a Morita equivalence between (G[U], p) and (G, p).

Definition 2.4.5. Let
AN ()
:
Y
be a locally trivial G-principal Real bundle. A sections:Y — Z is said to be Real ifsop =

T os. Moreover, given a Real open cover {U|}je; of Y, we say that a family of local sections
sj:Uj — Z isglobally Real if for any j € ], we have

SjoQ=T10s;. (2.3)

Lemma 2.4.6. Any locally trivial G-principal Real bundlen : Z — Y admits a globally Real
family of local sections {s} je; over some Real open cover {U}.

Proof. Choose a local trivialization (Uj,¢;)ics of Z;ie. ¢;:U; — G© are contin-
uous maps such that 77 1(U;) =: Zy; 2 Ui %, g0, G with Tzy, = (o,p). It turns out that
ZUe = Ulie) X e, 50, 9, where ¢ := p€o ;00 : Uje) — G© is a well defined continuous
map and U ) := p°(U;) for (i,e) € I x Z,. However, for (i,€) € I x Z,, there is a homeo-

. (0,0 .
morphism Uj; ¢ X gt GO,y S—Uszs X e+l GOy G . Now, putting s(j¢) : U e) — Z, x—

(x, ¢ (x)), we obtain the desired sections. O

For the remainder of this subsection we will need the following construction.
Let (Z,1) be a Real space and (I, p) a Real groupoid together with a continuous Real map
¢ : Z — T'?, Then we define an induced groupoid ¢*T over Z in which the arrows from
z1 to zy are the arrows in I' from ¢(z;) to @(zy); i.e.

p'r:=27 Xpro  I'xro o2,

4
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and the product is given by (21,71, 22).(22,Y2,23) = (21,Y1Y2,23) whenever y; and Y, are
composable, while the inverse is given by (z,y,z")"! = (z,y7!,2z). Moreover, the triple
(p,0,p) defines a Real structure ¢*p on ¢*I' making it into a Real groupoid (¢*T',¢*p)
that we will call the pull-back of I' over Z via ¢.

Lemma 2.4.7. Given a continuous locally split Real open map ¢ : Z — T'Q), then the Real
groupoidsT and ¢*T are Morita equivalent.

Proof. Consider the Real strict homomorphism ¢ : ¢*I' — T defined by (21,7, z2) — 7.
Then by Example 2.3.2 we obtain a Real generalized homomorphism Z <—— Zp i U
with Zg := Z x5 ro . I', 1 and 7, the obvious projections, and where Z — ¢*I' by z —
(z,¢(2),z). Now using the constructions of Example 2.3.2, it is very easy to check that Z3
is in fact a Morita equivalence.

O

Proposition 2.4.8. Two Real groupoids (T', p) and (G, p) are Morita equivalent if and only if
there exist a Real space (Z,t) and two continuous Real maps ¢ : Z — T'© and ¢’ : Z — G©
such that ¢*T = (¢")* G under a Real (strict) homeomorphism.

Proof. Let T <*— 7 —2- G0 be a Morita equivalence. Let us define
IX Z*xZxG:={(y,21,22,8) € [ xgr0 Z) x (ZXz60 ,9) | 218§ =22} .

This defines a Real groupoid over Z whose range and source maps are defined by the sec-
ond and the third projection respectively, the product is given by

7, 21,22, 8).(v, 22,23, 8") = (yY', 21, 23, 88",

provided that y,y’ € '@ and g g€ G®@ and the inverse of (Y, 21,22, 8) is (y‘l,zz,zl,g_l).
Now, for a given triple (21,7, z2) € t*T, the relations t(z;) = r(y) and t(z,) = s(y) give t(yzp) =
t(z1); then since t: Z — T'© is a Real G-principal bundle, there exists a unique g € G
such that yz, = z1g. This gives an injective homomorphism ¥ : ¢*I' — I' X Z * Z X
9,(z1,7,22) — (y,21, 22, g) which respects the Real structures. In the other hand, the map
O:TXZxZxG— T ,(y,21,22,8) — (21,7, 22) is a well defined Real homomorphism
that is injective and Real. Moreover, these two maps are, by construction, inverse to each
other so that we have a Real homeomorphism t*I' =T x Z %« Z x G. Furthermore, since
s: Z — G is a Real I'-principal bundle, we can use the same arguments to show that
s*G=T X Z % Z x Gunder a Real homeomorphism.

Conversely, if ¢ : Z — I'® and ¢’ : Z — G© are given continuous Real maps and f :
¢*T — (¢")*G© is a Real homeomorphism of groupoids, then the induced Real gener-

z
alized homomorphism ¢*I’ = (¢")*§ is a Morita equivalence and Lemma 2.4.7 ends
the proof. O
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Proposition 2.4.9 (cf. Proposition 2.3 [90]). Any Real generalized morphism
rO 7 5. go

is obtained by composition of the canonical Morita equivalence between (T, p) and (I'[U], o),
whereU is an open cover of TV, with a Real strict morphism f :T[U] — G (i.e. its induced
morphism in the category ‘R ®).

Proof. From Lemma 2.4.7, there is a Real Morita equivalence Z; : t*I' — I" and the Real
homeomorphism t*I' 2T x Z % Z x G induces a Real strict homomorphism f :¢*I' — G
given by the fourth projection, and hence a Real generalized homomorphism Z¢ : t*I' —
G. Furthermore, by using the construction of these generalized homomorphisms, it is easy
to check that the composition Z; xt Z is t*I'-G-equivariently homeomorphic to Z (under
a Real homeomorphism); i.e, the diagram

is commutative in the category ‘R®.

Now, consider a Real open cover U = {U;} of I'® together with a globally Real family of
local sections s : Uj — Z of v: Z — I'©. Then, setting (jo, v, j1) — (j, (r(1)), 7,5, (s(Y)))
for (jo,v, j1) € T'[U], we get a Real strict homomorphism §: I'[U] — ¢*T" such that the com-
position I'[U] — t*I" — T is the canonical map ¢ described in Example 2.4.3. Then,
fo8:T[U] — G is the desired Real strict homomorphism. O

This proposition leads us to think of a Real generalized morphism from a Real groupoid
(T', o) to a Real groupoid (G, p) as a Real strict morphism fi; : (I'[U], o) — (G, p), where U is
a Real open cover of T'©,

To refine this point of view, given two Real groupoids (I, p) and (G, p), let Q denote the
collection of such pairs (U, fi). We say that two pairs (U, fi) and (U, f) are isomorphic
provided that Zp o Zlal = Zpo o LZLI” where 1 : (T[U],0) — ([T,p) and ¢y : (C[U'],0) —
(', o) are the canonical morphisms; this clearly defines an equivalence relation. We denote
by Q((T,p), (G, p)) the set of isomorphism classes of elements of Q.

Suppose that (U, fi) : (T,0) — (§'.p") is an equivalence class in Q ((T,p),(§,p")) and
W, fv) : (§,p)) — (G,p) is an element in Q((F',p",(G,p)). Letig : §'[V] — G be the
canonical morphism, and let ZL‘S} (9, 0) — (9'[V],p") be the inverse of Z,,. Next, we
apply Proposition 2.4.9 to the Real generalized morphism ZL;,I o Zg, :T[U] — G'[V] to get
a Real open cover U’ of I'” containing U and a Real strict morphism ¢y : (T[U'],p) —
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(G'[V], p"). Then, we pose
(/\7’ fV) o (u) fu) = (ulr fu’)) (24)

with fiy = fy o gyp; thus we get an element of Q((T, 0), (G, p)). It follows that there exists a
category & whose objects are Real groupoids, and in which a morphism from (T', p) to
(G, p) is a class (U, fiy) in Q((T, ), (S, p)).

Example 2.4.10. Any Real strict morphism f : (I, p) — (G, p) can be identified with the pair
(D, ), by considering the trivial Real open cover T'V consisting of one set, and by viewing
the groupoidT as the cover groupoid T[T In particular, R® is a subcategory of R®q,.

Example 2.4.11. Suppose that(Z,7): (I',0) — (G, p) is a Real generalized morphism. Then,
Proposition 2.4.9 provides a unique class (U, fy) € Q((T, p), (G, p)).-

Remark 2.4.12. Note that a class (U, fy) € Q((T,0),(S,p)) is an isomorphism in R&q if
there exists (V, fy) € Q((§, p), (T, 0)) such that

Zp o Zyl o Z, = Zuyy and Zp, 0 Z, 0 Z = 7, (2.5)
wherey : (C[U],p) — (T, p) and iy : (G[U], p) — (G, p) are the canonical morphisms.
Proposition 2.4.13. DefineF : R® — RGq by

F(Z,7):= U, fw, (2.6)

where, if (Z,7) : (T',0) — (G, p) is a class of Real generalized morphisms, (U, f) is the class
of pairs corresponding to (Z, 7).
Then F is a functor; furthermore, F is an isomorphism of categories.

Proof. Suppose that (Z,7) : (T,0) — (9,0, (Z',7") : (', p") — (G, p) are morphisms in
RS. Let F(Z' o Z,7x7) = (U, i) € Q((T,0),(5,0), F(Z,7) = W, fr) € Q((T,0),(G,0"),
and F(Z',7") = (V, fy) € Q((§', 0", (G, p)). Consider a Real open cover U of T'® containing
U’ and a Real morphism ¢y : (T (U], 0) — (§'[V], p") such that Z(pﬂoZi‘1 = Zl;ltou, as Real
generalized morphisms from (C[U'],p) to (§'[V], p"), where i : (T[U],p) — (T[U'],p) and
w:(§'[V],p") — (G, p) are the canonical morphisms. Note that if 1, : (T[U], 0) — (T, ) is
the canonical morphism, then i = iy o i; hence, Z ' = Z7' 0 Z | by functoriality.

On the other hand, F(Z',7) o F(Z,7) = (V, fv) o (U, i) = (I, f), where fi; = fyogq.
Henceforth,

1~ 1 1~ -1 -1 ~
ZfﬂoZLﬂ :ZfVOZ(pﬂOZ' oZtu/:ZfVOZLv tou,oZu =707,

1 Ly
which shows that F(Z' o Z, T xt") =2 F(Z', 7)o F(Z, 1), and thus F is a functor. Now, it is not

hard to see that we get an inverse functor for F by defining

Z:RGq — RG, (U, fi) — (Zp, 0 Z !

U )

1), 2.7)

where 7 is defined in an obvious way.
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2.5 Real Graded twists

This section is devoted to the study of Real graded twists. We should point out that these
elements have been already treated in many references in the usual case and are usually
called central extensions of groupoids ( [49], [30], and [90]).

Definition 2.5.1. Let T i? Y be a Real groupoid and let S be a Real Abelian group. A
Real graded S-groupoid (T',8) overT is the data of

1. a Real groupoid T whose unit space is Y, together with a Real strict homomorphism
n:T — T which restricts to the identity in Y,

2. a (left) Real action of S onT which is compatible with the partial product inT making
I —">T a (left) Real S-principal bundle, and

3. a strict homomorphism 6 :I' — Z, called the grading, such that 6(y) = 6(y) for any
vel.

In this case we refer to the triple (T, T, 5) as a Real graded S-twist, and it is sometimes sym-
bolized by the "extension"
S—>T——=T
I

2

Example 2.5.2 (The trivial twist). Given any Real groupoidl, we form the product groupoid
I x S and we endow it with the Real structure (y,A) = (,A) for. LetS act onT x S by mul-
tiplication with the second factor. Then Ty := (I x S,0) is a Real graded twist of T', where
0:Z, — Z5 is the zero map. This element is called the trivial Real graded S-groupoid over
I.

Example 2.5.3. Let Y be a locally compact Real space and {U;}icxi+1; be a good Real open.
Let us consider the Real groupoid Y[U] —=[]; U; , and the space Y x S together with the
Real structure (y,A) — (7, 1) and the Real S-action given by the multiplication on the sec-
ond factor. There is a cononical Real morphism 6 : Y [U;] — Z, given by 6(x;,;,) 1= €0 + €1
forip= (i(’),eo), = (i{,sl) € I. Then, a Real graded S-twist T, Y[U;],8) consists of a family
of principal Real S-bundlesT ; j = Uij xS subject to the multiplication

(xi()ilyﬂ'l) : (xiligy AZ) = (xl'ol'z)/ll/lzcioiliz (X)),

where ¢ = {c;y;,i,} s a family of continuous maps ci,i, ;, : Uj,i,i, — S satisfying the cocycle
condition (see the next chapter), and such that c; ; ;,(X) = Ciyi i, (X) for all x € Ujy;i, = Ujp N

U;, NU,,. The pair (6, c) will be called the Dixmier-Douady class of T, Y[U;l,0).



26 2. REAL GROUPOIDS

Example 2.5.4. Let T i? Y be a Real groupoid, and let ] : A — Y be a Real S-principal

bundle. Then the tensor product r* A ® s* A, which is a Real S-principal bundle over T,
naturally admits the structure of Real groupoid over Y, so that (r* A® s* A, 0) is a Real graded
S-groupoid overT.

There is an obvious notion of strict morphism of Real graded S-twists. For instance,
two Real graded S-twists (fl,F,6 1) and (fg,r,6g) are isomorphic if there exists a Real S-
equivariant isomorphism of groupoids f :T'; — I'» such that the diagram

~ bi3]
I —

i\ e

I

commutes in the category 8®;. In particular, we say that (T, §) is strictly trivial if it isomor-
phic to the trivial Real graded groupoid (I" x S,0). By m(F, S) we denote the set of strict
isomorphism classes of Real graded S-groupoids over I'. The class of T,6) in m(l“, S) is
denoted by [T, 5].

Definition 2.5.5. Given two Real graded S-groupoids T, = (T1,61) and T, = (T2, 85) over§,
we define their tensor product T1&T, = (T1815,8,+82) by the Baer sum of'J, and 7, defined
as follows. Define the groupoidT'1 8T, as the quotient

fl erz/s = {(}71,)72) € f1 Xm1,L,mo fz}/(fl,fz)~(/1)71,/1‘1fz)’ (2.8)

where A € S, together with the obvious Real structure. The projection m1 ® 7o is just w; and
0=01+0, isgivenby6(y) =61(y) +62(y).
The product in the Real groupoidT'1 8T, is

1L, 72, 7h) = (=1)02020 00 (7 47 7yl 2.9)
whenever this does make sense and wherey; = m2(y;), i =1,2.
Lemma 2.5.6. Given [[;,8;] € m(F,S), i=1,2, set
[T1,611+ [[2,6,] := [[1&8T 5,61 + 621

Then, under this sum, TWwR(T,S) is an Abelian group whose zero element is given by the class
of the trivial element Ty = (G x §,0).

Proof. The tensor product defined above is commutative in WVT{(F, S). Indeed, the groupoid
[,&T; =T xp [1/S is endowed with the multiplication

V2, 71 (rh, 7)) = (= 1)01000202) (7,97 7y 1y
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Then the map

[18T, — D280, (71, V2) — (=1)01000202 (7, 7))

is a Real S-equivariant isomorphism of groupoids.

Now define the inverse of (T, §) is ([P, §) where T°” is T as a set but, together with the same
Real structure, but the S-principal bundle structure is replaced by the conjugate one, i.e.
A7°P = (A7)°P, and the product *,, in T°P is

Fropy = (=1)°P gy
Now it is easy to see that the map
I'xS—TxrT?/S,(y,\) — A7, 7),
where 7 € T is any lift of y € T, is an isomorphism. O

We have the following criteria of strict triviality; the proof is the same as in [90, Propo-
sition 2.8].

Proposition 2.5.7. Let (I',0) be a Real graded S-groupoid over the Real groupoid T i? Y.

The following are equivalent:
G) (T,5) is strictly trivial.
(ii) There exists a Real strict homomorphism o :T — T such thatmoo =1d.
(iii) There exists a Real S-equivariant groupoid homomorphism ¢ :T — .

Example 2.5.8. LetJ: A — Y be a Real S-principal bundle with a Real (left) I -action that
is compatible with the S-action; in other words Y -~ A —— % is a Real generalized ho-

momorphism fromT toS. Then, the Real I -action induces an S-equivariant isomorphism
Asiy) @ V=7 V€ Ay for everyy € I'. Hence, there is a Real S-equivariant groupoid iso-
morphism @ :r*A® s*A — I x S defined as follows. If (v,b(w)) € Ar(y) ® Ay(y), there exists a
unique A €S such thaty-w = v-A. We then set

e(v,b(w)]) = (y, ).

The inverse of ¢ is ¢'(y,A) := [vy, Y"1 - v,], where fory €T, v, is any lift of r (y) through the
projection J.

Observe that the set of Real graded S-groupoids of the from (r* A ® s*A,0) over I (cf.
Example 2.5.4) is a subgroup of m(l“, S). By &E{(F, S) we denote the quotient of m(l", S)
by this subgroup.

Let us show that extR(-,S) is functorial in the category 9i®%;. Let I, I be two Real
groupoids, and let f : I’ — I’ be a morphism in 93®;. Suppose that T = (T, 5) is a Real
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graded S-groupoid over I'. Then, the pull-back f*T :=T x| 7T of the Real S-principal
bundle 7 : T — T, on which the Real groupoid structure is the one induced from the prod-
uct Real groupoid T x I, defines a Real graded twist

Frr=s——prl 2.10)

where f*n(y,7) := v, f*6(y") := 6(f(y") € Z,, and the Real left S-action on f*T being
given by A - (7,7) = (A,7). Suppose now that T; = (I';,8;), i = 1,2 are representatives in
extR(T,S). Then, f*(T,8&T2) = f*T1& f*T>; indeed,

fr@T18T9) = (T xp To/8) xp T = (T xp T') xp Ta xr 1) 1S = f*T1 8 f*Ts.

Moreover, it is easily seen that if J; and T, are equivalent in &E{(F, S), then so are f*7;
and f*T,. Thus, f induces a morphism of Abelian groups f*: extR(T,S) — extR(I",S). We
then have proved this

Lemma 2.5.9. The correspondence
extR(-,S) : RB; — Ab, T — extR(,S), f — f*, 2.11)

where?Ub is the category of Abelian groups, is a contravariant functor. In particular, extR(S,S)
is invariant under Real strict isomorphisms.

2.6 Real Graded central extensions

In this section we introduce Real graded central extensions of Real groupoids, by adapt-
ing the exposition presented in [87] to our context.

Definition 2.6.1. Let (fi,Fi,6 i),1 =1,2, be Real graded S-twists. Then a Real generalized
homomorphism Z : T — T', is said to be S-equivariant if there is a Real action of S on Z
such that

Ay -z2-Y2=71-(A2)- Y2 =712 (Ay2),

for any (A,71,2,72) € S x 'y x Z x T'y such that these products make sense. We refer to Z
(T1,T1,61) — (@05,T5,82) asa generalized morphism of Real graded S-twists. In particular,
if Z is an isomorphism, the two Real graded S-twists are said to be Morita equivalent; in
this case we write (T1,T1,81) ~ (T2, T2, 52).
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Lemma 2.6.2. Let Z : (['1,T1,61) — (T»,12,82) be a generalized morphism. Then the S-
action on Z is free and the Real space Z | S (with the obvious involution) is a Real generalized
homomorphism fromT'; toT'».

Proof. Same as [90, Lemma 2.10]. O

Definition 2.6.3. Let G be a Real groupoid and S an abelian Real group. A Real graded S-
central extension of G consists of a triple (T,T,8,P), where (I,T,6) is a Real graded S-twist,
and P is a (Real) Morita equivalencel’ — G.

Definition 2.6.4. We say that (T1,T1,81,Py) and (T5,T5,85, P>) are Morita equivalent if
there exists a Morita equivalence Z : (T1,T1,61) — ([2,T5,82) such that the diagrams

I —1I (2.12)

and

r, 25, 2.13)

DN

Zs

commute in the category R®. Such a Z is also called an equivalence bimodule of Real
graded S-central extensions. The set of Morita equivalence classes of Real graded S-central
extensions of G is denoted by ExtR(S,S).

The set m(S, S) admits a natural structure of abelian group described in the follow-
ing way. Assume that E; = (1~“,-,1“,-,6 i»Pi), i =1,2, are two given Real graded S-central ex-
tensions of G, then Y; <— Z —> Y, is a Morita equivalence between I'; and I'», where
Z = Py xg P,. But from Proposition 2.4.8 there exists a Real homeomorphism f:s*I'y —
t*T';. Now one can see that the maps 7 : v*T; — 'y, (z,71,2) — (z,m1(y1),2") and
n':5*Ty — t*T1(2,72,2) — 7o f(z,72,2") define two Real S-principal bundles and then
(t*T';,8) and (s*T5,8), where § := §; o pr2, define elements of extR(t*T;,S). Therefore,
we can form the tensor product (t*T185*T,,0 ® §) are Real graded S-groupoid over t*T';.
Moreover, t*I'y ~poritq I'1; then, if P:t*I'y — G is a Real Morita equivalence, we obtain a
Real graded S-central extension of G by setting

E1®F; := (" T1®5*T2,t*T1,6, P), (2.14)
that we will call the tensor product of E; and E,. Thus, we define the sum

[Eq]+ [Eo] := [E; ®E2],
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which is easily seen to be well defined in E{EX(S,S). The inverse E* of E is (IT**,T, 8, P).
Notice that extR(G, S) is naturally a subgroup of ExtR(S,S) by identifying a Real graded S-
twist (T, G, 8) with the Real graded S-central extension (T, S,8,5). We summarize this in the
next lemma.

Lemma 2.6.5. Under the sum defined above, ExtR(S,S) is an abelian group whose zero ele-
ment is the class of the trivial Real graded S-central extension (G xS, 5,0, 9).

When the Real structure is trivial, then we recover the usual definition of graded central
extensions (see [30] for instance) of G by the group Z,. More precisely, we get a generaliza-
tion of what Mathai, Murray, and Stevenson have called real bundle gerbes in [58].

Proposition 2.6.6. Suppose that G i? X is equipped with a trivial Real structure. Then

ExiR(5,8"") = Exi(§, Z2).
2.7 Functoriality of ExtR(-,S)

The aim of this section is to show that ExtR(-,S) is functorial in the category %4®, and
hence that the group m(S,S) invariant under Morita equivalence. To do this, we will
need the following

Proposition 2.7.1. Let G i? X be a Real groupoid. Then, there is an isomorphism of

abelian groups
ExiR(S,S) = limexfR(S(UJ,S). (2.15)
u

Before giving the proof of this proposition, we have to describe the sum in the in-

ductive limit li_n}e/xtT:{(S[U],S). Let U; and U, be two Real open covers of X, and let T; =
u
(Qi,S[u,-],éi) be Real graded S-groupoids over G[U;],i = 1,2. Let (V, fy) € Q(G[U,], G[Us])

be the unique class corresponding to the Real Morita equivalence Zl;lll © Zy, from G[U,]
to G[U,]. V is a Real open cover of X containing U,, and fy : §[V] — G[U,] is a Real strict
morphism. Denote by 1y, the canonical Real morphism §[V] — G[U,]. Then, the tensor
product of J7 and T is

Tlé){fg = l;uljlé)f\;(]‘g, (2.16)

which defines a Real graded S-groupoids over the Real groupoid G[V].
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Proof of Proposition 2.7.1. For a Real graded S-central extension E = (T,T,5,P) of G, let
(V, fv) € Q(G,T) be the isomorphism in YR corresponding to the Morita equivalence
P71:G—T. Setting

Tei= s— fiT 2 gv) (2.17)

bo fy

2y

we get a Real graded S-groupoid over G[V]. It is not hard to check that this provides us the
desired isomorphism of abelian groups; the inverse is given by the formula

Ey:= (G, 51U, 6, Z,), (2.18)
for a Real graded S-twist T = (G, G[U], 5). 0

From this proposition, it is now possible to define the pull-back of a Real graded S-
central extension via a Real generalized morphism. More precisely, we have

Definition and Proposition 2.7.2. Let G and G’ be Real groupoids, and let Z : §' — G be
a Real generalized morphism. Suppose thatE = (I,T,8, P) is a representative in ExtR(S,S),
and that Jg = (f,, T, GV, S[V],80 fy) is its image in L{'[me/xtT{(S [U],S) (see the proof of Propo-

sition 2.7.1). Let (W, fw) € Q(9',S[V1) be the morphism in R®q corresponding to the Real
generalized morphism Zl;l 0Z:G — G[V]. Then

Z*[E:: [Ef;\]g'{. (2.19)

is a Real graded S-central extension of the Real groupoid G'; it is called the pull-back of E
along Z

Now the following is straightforward.
Corollary 2.7.3. There is a contravariant functor
ExfR(,,S) : RS — 2Ab, (2.20)

which sends a Real groupoid G to the abelian group ExR(S,S). In particular, ExR(S,S) is
invariant under Morita equivalences.

2.8 Rgbundle gerbes

We now restrict ourselves to Real spaces. Mainly, we study the relationship between
elements of m(X ,S1) with bundle gerbes ( [67]).
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Definition 2.8.1. Let X be a locally compact Hausdorff Real space. A Rg bundle gerbe over

X is the data of a locally compact Hausdorff Real space Y, a continuous locally split Real
open map ¢ : Y — X and a Rg S'-twist (S! ——T —> Y §) over the Real groupoid
Y@ —=Y defined as the fiber-product Y := Y X X,p Y together with the Real structure

(1, ¥2) := (1, J2), with the source and range maps s(y1,y2) := yo,7(y1,¥2) := y1, and the
inversion given by (y1, y2) ! := (y2, y1).

We shall denote such a Rg bundle gerbe by (T, Y?,5).

More concretely, given such a (T, Y? §), the bundle 7 : T — Y@ admits a product,
that is, there is an ismorphism of S!-spaces

Ly ® Ly — Ly
over all composable pairs (11, J»), (2, y3) € Y2/, These isomorphisms are compatible with

the Real structures in the sense that we have commutative diagram

L1,y ®Ly,p9) = Ly,y5)
barxbarl ibar

L2 Lo, — T, gm)

Moreover, since the projection x is a strict morphism of Real groupoid, the product is as-
sociative whenever triple products are defined; i.e. there is a commutative diagram

F(yl,yz) ® F(J/2.y3) ® F(ys,y4) F(y1,y3) ® F(ys.y4)

| |

F(J/Lyz) ® F(yz,ﬂ) 1—‘(J/1,y4)

over all composable pairs (y1, y2), (V2, ¥3), (13, ya) € Y2\,

Definition 2.8.2. A morphism of graded Rg bundle gerbes from (T, Y'?,8) to (T', Y%, §")
consists of a pair (f, h) where f :T — (I is a Real morphism, and h:Y — Y’ is a contin-
uous Real map, such that we have commutative diagrams

= T

T Y (2]

Y
\ Y
f Bl Zyand X

AV

We are now going to compare graded Real bundle gerbes over X with elements of
Eﬁ(x ,'S1). For this end, we need the following result.

f/ Yl[2]

n.!
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Proposition 2.8.3. Let T i? Y be a locally compact Hausdorff Real groupoid and let X

be a locally compact Hausdorff Real space. Then the following are equivalent:
(a) T is Morita equivalent to X.

(b) There exists a locally compact Hausdorff Real space (Z,1), and a continuous locally
split Real open map ¢ : Z,— X such that T is isomorphic to Z¥' —= 7 in the
category‘R®;.

Proof. (a) => (b). Suppose Y <—— Z —= X is a Real Morita equivalence. Then the
orbit space Z/X, is identified with the Real space Z. But then the map v induces a Real
homeomorphism Z — Y. On the other hand, applying Proposition 2.4.8, one has

ZP = (s* X =o' T =T,

where 712 := Z x x s Z. It follows that with Z and the Real map s, the assertion (b) is held.
(b) = (a). If ¢ : Z — X is locally split, then Lemma 2.4.7 implies that the pullback
Z'2l = p* X is Morita equivalent to the Real groupoid X. O

An immediate consequence of Proposition 2.8.3 is that any Rg bundle gerbe T, Y2 &
over X defines a Rg S!-central extension of X; and conversely, any Rg S!-central extension
of X comes from a Rg bundle gerbe over X. We can summarize this situation as follows:

Corollary2.8.4. Let X be a locally compact Hausdorff Real space. Then the group ExtR(X,S")
is isomorphic to the group R/ng(X ) of stable isomorphism classes of Rg bundle gerbes over X
equipped with the operation of tensor product.

Remark 2.8.5. It is worth noting that in the case of a trivial involution on X, then our
definition coincides with the notion of real bundle gerbes discussed in [58].
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Cech cohomology of Real groupoids

@&

J.L. Tugives in [88] a concise exposition of a Cech cohomology theory H* for groupoids
as the Cech cohomology of simplicial topological spaces, and he shows, for instance, that
the well-known isomorphism between $!-central extensions of a groupoid § and the sec-
ond cohomology group (see [76]) of G with coefficient in the sheaf 8§ of germs of S!-valued
functions holds; i.e., Ext(G,S!) = H%(G.,S!). Our purpose here is to study an analogous
theory HR* for Real groupoids and then to find a link to the Abelian group ExtR(G,SY).

3.1 Realsimplicial spaces

We start by recalling some preliminary notions. For each zero integer n € N, we set
[n] =10, ..., n}. Recall ( [88]) that the simplicial (resp. pre-simplicial) category A (resp. A') is
the category whose objects are the sets [n], and whose morphisms are the nondecreasing
(resp. increasing) maps f : [m] — [n]. For n € N, we denote by A™) the N-truncated full
subcategory of A whose objects are those [k] with k < .

Definition 3.1.1. A Real simplicial (resp. pre-simplicial, N-simplicial) topological space
consists of a contravariant functor from A (resp. ', A™N)) to the category RTop whose ob-
jects are topological Real spaces and morphisms are continuous Real maps. A morphism of
Real simplicial (resp. pre-simplicial,...) spaces is a morphism of such functors.

More concretely, a Real (pre-)simplicial space is given by a family (X., p.) = (X;;, pn) nen
of topological Real spaces, and for every map f : [m] — [n] we are given a continuous Real
map (called face or degeneracy map depending which of m and n is larger) f : (X, pp) —
(Xm, pm) , satisfying the relation m = go f whenever f and g are composable.

35
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Definition 3.1.2 (N-skeleton). Let (X.,p.) be a Real simplicial space. For any N € N, we
define the N-skeleton of (X.,p.) as the Real simplicial space (X.,p.)N "of dimension N";

that is, (Xn,pn)N = (X, pn) forn< N, and (Xn,pn)N =(Xn,pn) foralln=N+1.

Let ¢! : [n—1] — [n] be the unique increasing injective map that avoids i, and let
n’l? : [n+1] — [n] be the unique nondecreasing surjective map such that i is reached twice;
that is,

ko ifk=i-l ko ifk<i;
=1 " "andnf(k) =4 ’ 3.1
& {k+1, k=g, amit {k—l, ifhk>i+1. G0

We will omit the superscript 7 if there is no ambiguity.
If (X., p.) is a Real simplicial space, the face and degeneracy maps

5? (X, pn) — (Xp-1,0n-1), and ﬁ? (X, pn) — Xn+1,Pn+1)s i=0,..,n

clearly satisfy the following simplicial identities:

sn=lzn _ zn-1zn ;¢ i1 mhtlan _ sn+lzn e s ioan+lan _ sn-1zn e _

E; Sj—Ej_IEilflS] L, 7; 17].—1”[].+11]i1fl5],€l. nj—nj_lsllfl<] ' 32)
sh+lzn _ s=n-lzn ;¢ : sh+lzn _ zn+lzn :
EN =10 si_11f12]+2,and£j 77j—5j+1'7j—Ian-

Conversely, let (X}, pn) nen be a sequence of topological Real spaces together with maps
satisfying ( 3.2). Then, thanks to Theorem 5.2 of [54], there is a unique Real simplicial
structure on (X., p.) such that &; and 7; are the face and degeneracy maps respectively.

We now give an example of Real simplicial space, which is inspired by [91, 2.3], that
will play a central role in the sequel.

Example 3.1.3 (Real simplicial structure on a Real groupoid). Consider the pair groupoid
[n] x [(n] —= [n] ; that is, the product is (i, j)(j, k)) := (i, k) and the inverse of (i, j) is (j, 7).
If (G, p) is a topological Real groupoid, we define

Sn:=Hom([n] x[n],9)

as the space of strict morphisms from the groupoid [n] x [n] —=[n] to G i>s”—> X. We
obtain a Real structure on G,, by defining p,,(p) ;= po @, forp € G,.. Any f € Homa([m], [n])
(or f € Homp/ (Im], [n])) naturally gives rise to a strict morphism f x f:[m] x [m] — [n] x
[n], which, in turn, induces a Real mapf: (Sn,0n) — (Sm, pm) given byf((p) =@o(fxf)
for @ € G,,.. Hence, we obtain a Real simplicial space (G., p.).

Notice that the groupoid [n] x [n] —= [n] is generated by elements (i —1,i),1<i < n;
indeed, given an element (i, j) € [n] x [n], we can suppose that i < j (otherwise, we take
its inverse (j,1)), and then (i, j) = (i,i + 1)...(j — 1, j). It turns out that any strict morphism
@:[n] x[n] — G is uniquely determined by its images ¢ (i — 1,1i) € G; hence, the well defined
Real map

Sn— ™, @ — (g1, &n),
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where g; := (i —1,i), 1 <i<n, and 3" := {(hy, ..., hy) | s(h;) = r(hi_1), i = 1,...,n}, iden-
tifies (G, pr) with (G, p"), where p"” is the obvious Real structure on the fibred prod-
uct G, Therefore, using this identification, the face maps €' (Gnpn) — (Sn-1,0n-1) of
(S., p.) are given by:

ég(gl)gZ)---) gl’l) = (gz;---) gl’l))
g‘?(gl}gZy---)gn) = (gl»---»gigi+l»---;gn)> l<sisn- ]-y (33)
5Z(gl,g2,---,gn) = (gl;---»gn—l),

and for n =1, by é(l)(g) = s(g), E}(g) = r(g); while the degeneracy maps 17 : (Sp,0n) —

(Sn+1,Pn+1) are given by:

ﬁg(gl,gz, ygn) = (r(gl)rgl)---)gn))

=n _ N . (3.4)
n; (81,82 -, 8n) = (81,...,5(8i), §i+1,--, 8n), 1 =i =mn,

and ) : Go — G is the unit map of the Real groupoid.

Now for n € N, we define the space (ES9), of (n+ 1)-tuples of elements of G that map
to the same unit; i.e. (E9), :={(yo,...Yn) € gn+l | r(yo) = r(y1) = ... = r(yn)}. Suppose we
are given (gi,...,g€n) € 9. Then we can choose an (n + 1)-tuple (yy,...,yY») € (ES), such

that g; = Y,-__ll)’i foreachi=1,..,n. If (y(),...y}l) is another (n + 1)-tuples verifying these
/
i

that there exists a unique g € §, such that s(g) = r(y;) and v} = g -y;. This hence gives us a

identities, then s(y’) = s((y;_l)‘ly ) = s(yl.‘_llyl-) = s(y;), for all i = 1,...,n, and that means

well defined injective map

91’1 - (Eg)n/~) (gl;---»gﬂ) — [YO)---JYI’Z])

where (yo,....Yn) ~ (& Y0,---8 - Yn). Moreover, this map is surjective, for if (yo,...,yn) €
(ES) 5, one can consider morphisms g; from s(y;) to s(y;-1), i =1,..., i, so that we have

Y1="Y081, Y2=7182="Y08182 - Yn =Y081""" &n,

and then
(Y0, Ynl =1 (g1), 81,8182, .., 81" &nl

which gives the inverse (EG),/~ 3 [yo,....Ynl — (&1,---» &n) € Gn- It hence turns out that we
can identify G,, with the quotient (ESG),,. Note that the quotient space (EG),/~ naturally
inherits the Real structure p,+; and that the isomorphism defined above is compatible
with the Real structures.

Henceforth, an element of G,, will be represented by a vector g = (gi,..., gx), Where we
view g asamorphism [n] x [n] — G,and g; = g (i—1,i), i=1,..,n,0r g = [Yo,...,Ynl asa
classin (EG),/~. For the first picture, if f € Homa ([m], [n]), then the Real face/degeneracy
map f:(Sn, pn) — (Sm, pm) is given by:

&) = (fO,fM),.. g (fim-1), fim)). (3.5)
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For instance, if f in injective, then

(G-, f0)=¢(fG-1,fG-D+1)---g(fD) -1, f) for f(i) =1,
and thus

f(g)= (8101 8y 8rm-vyer " Epom)+ (3.6)

However, the second picture offers a more general formula for the face and degeneracy
maps; roughly speaking, for any f € Homa ([ml], [n]), we have g (i, j) = yl._lyj for every
(i, j) € [n] x [n]. In particular, g (f(k—1), f(k)) = y]‘c(lk_l)yf(k), for every k € [m]; then ( 3.5)
gives :

f(g) =Y )oY Foml- (3.7)

3.2 Realsheaves on Real simplicial spaces

In this section we will follow closely [88, §3] to study Real sheaves on Real (pre-)simplicial
spaces. We start by introducing some preliminary notions.

Let € be a topological category. We define the category Cg, that we will abusively call
the pseudo-Real category associated to C, by setting:

* Ob(Cg) consists of triples (A, 4, A"), where A, A’ € Ob(C) and 0 4 € Home(A, A);

 Homg, ((A,04,A"),(B,0o,B") consists of pairs (f, f) of morphisms f: A— B, f:
A" — B’ in C such that the diagrams

A——B
(TA\L l/UB
Al L Bl
commute.

Now, let ¢» : € — C be a functor. Then we define the subcategory Cy of Cz whose
objects are pairs (A, ¢p(A)), where A € Ob(C), and in which a morphism from (A, ¢(A)) to
(B,(B)) is a pair (f, f) of morphisms f: A— B, f:$(A) — ¢(B) such that fodp = pof. A
fundamental example of this is the category OB (X) of open subsets of a given topological
Real space (X, p). Recall that objects of this category are the collection of the open sets
U < X, and morphisms are the canonical injections V — U when V < U. Given such a
Real space (X, p), the map p induces a functor (which is an isomorphism) p : OB(X) —
OB (X) given by

(VC—‘>U)—»(p(V)&’>p(U) .
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Definition 3.2.1 (Real presheaves). Let (X, p) be a topological Real space, and let C be a
topological category. A Real presheaf (§,0) on (X, p) with values in C is a contravariant
functor from OB (X), to Cr; a morphism of Real presheaves is a morphism of such functors.

Specifically, from the fact that p : X — X is a homeomorphism and from the canon-
ical properties of the injections V — U of open sets V < U c X, a Real presheaf on (X, p)
with values in € assigns to each open subset U c X a triple (§(U),0,,5(p(U))), where
$), §(p(U)) are objects of €, and o, € Isome (§(U),§(p(U))), and for V < U we are given
two morphisms ¢, : §(U) — §(V) and ¢, ., : §(p(U)) — §(p(V)), called the restric-
tion morphisms, such that:

* Yyu = IdS(U);
* oy o(pv,u = (pp(V),p(U) 0y,

® Py =Puy Py and Powrown = PLowrp) ©Powypwn:

A morphism of Real presheaves ¢ : (§,0°) — (&,0%) is then a family of morphisms
¢, € Home(§(U), (U)) such that, for all pairs of open sets U, V with V < U, the diagrams
below commute:

5 §

o @
S <1—FWU) —=F (V) (3.8)
l‘pmw o by ® by

g (Y
G (1) <L— S(U) —= &(V)

As in the standard case, if (§,0) is a Real presheaf over X, and if U is an open subset
of X, an element s € §(U) is called a section of (§,0) on U, and for x € X. If V is an open
subset of U, and s € §(U), one often writes s;,, for ¢, (s).

Definition 3.2.2. ([44, Definition 2.2]). A Real sheaf over (X, p) with values in C is a Real
presheaf (§,0) satisfying the following conditions:

(i) For any open set U c X, any open cover U = ;¢; U;, any sections € §(U), S|y, = 0 for
all i impliess=0.

(ii) For any open set U c X, any open cover U = U;c; U;, any family of sections s; € §(U;)
satisfying siju;; = sjju;; for all nonempty intersection Ui, there exists s € §(U) such
thats\y, =s; forall i.

A morphism of Real sheaves is a morphism of the underlying presheaves. We denote by
Cr(X) (or simply by Sh,(X) if there is no risk of confusion) for the category of Real sheaves
on (X, p) with values in C.
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Notice that if (§,0) is a Real sheaf (resp. presheaf) on (X, p), then § is a sheaf (resp.
presheaf) on X in the usual sense. Recall that the stalk of § at a point x € X, denoted by
S is the direct limit of the direct system (§(U),¢,,,,) where U runs along the family of
open neighborhoods of x; i.e.

§x = lim§ ), (3.9)
xeU

The image of a section s € §(U) in §, by the canonical morphism §(U) — §, (Where
x € U) is called the germ of s at x and denoted by s.

Note thatif U is an open neighborhood of x, p(U) is an open neighborhood of p(x), and
the isomorphism oy : §(U) 3s— oy(s) € §(p(U)) extends to an isomorphism oy : §x —
Spwx), defined by g (sy) = (0,(5))p(x), whose inverse is 0 (). We thus have a well defined
2-periodic isomorphism, also denoted by o, on the topological ! space J := [[,cx §x, given
by

0:F— 7, (x,50) — (p(x),0x(sx)) (3.10)
which gives a Real space (J,0).

Example 3.2.3. Let (X,p) be a Real space. Then the space C(X) of continuous complex
values functions on X defines a Real sheaf of abelian groups on (X,p) by (U,p(U)) —
(C, p,, ClpU))), where p,, (f)(p(x)) := f(x).

Definition 3.2.4 (Pushforward, pullback). Let (X, p), (Y,p) be topological Real spaces, and
let f:(Y,p) — (X, p) be a a continuous Real map. Suppose that (§,0) and (8,¢) are Real
sheaves on (X, p) and (Y, p) respectively, with values in the same category C.

(i) The pushforward of (&,¢) by f, denoted by (f.®, f.¢), is the Real sheaf on (X, p) de-
fined by the contravariant functor:

OB(X), — Cr, (U, p(M) — (frBW), fu6y, [ B (1)), 3.11)
where [, &) := &), fig,:= S 1wy’ and

fB() =&(f L pW) =G(fL))).

(ii) Thepullback of (§,0) along f, denoted by (f*§, f* o), is the Real sheaf on (Y, p) asso-
ciated to the Real presheaf defined by:

OB(Y)p — Cr, (V,0(V)— (f*FV), fro,, [TV, (3.12)

IRecall that if § is a presheaf over X, any sections € §(U) inducesamap [s] : U — [, Fx, y— sy. We give
J :=[I,ex Sx the largest topology such that all the maps [s] are continuous. On the other hand, associated
to §, there is a sheaf§ given by @(U) :=T(U,5), and we have that §(U) = T'(U, ) if and only if § is a sheaf.
Then, given a Real presheaf (F,0), one can define its associated Real sheaf in the same fashion.
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where f*§(V):= lim FW), and f*o, : f*FV) — f*F((V)) is the morphism

f(NcUcX
U open

in C extending functorially o, : §(U) — §(p(U)) along the family of open neighbor-
hoods of f(V) in X.

It immediately follows from this definition that we have a covariant functor

RTop — NG, ( (¥,0) ——~ (X, p) ) — ( Sho(Y) L Sh,(X) ) : (3.13)

and a contravariant functor

RTop — REH, ( ¥,0) —= (X, p) ) — ( Shy(X) —L= Shy(Y) ) : (3.14)

where SRS} is the category whose objects are the categories of Real sheaves on given Real
spaces and morphisms are functors of such categories.
We will also need the following proposition.

Proposition 3.2.5. Let f: (Y,p) — (X, p) be a a continuous Real map. Suppose that (§,0)
and (®,¢) are Real sheaves on (X, p) and on (Y, p) respectively, with values in the same
category C. Then

Homsy,, x) ((§,0), (f+, fi6)) = Homsp, vy (f*F, f*0), (8,¢)). (3.15)

Proof. The proof is the same as in the general case where Real structures are not con-
cerned (see for instance [44, Proposition 2.3.3]). O

Definition 3.2.6. Given a continuous Real map f : (Y,p) — (X, p) and Real sheaves (§,0)
and (8,¢) as above, we define the set Homy(§,8)s, ¢ of Real f-morphisms from (§,0) to
(8,6) to beHomsy, (x) ((§,0), (f+®, f)) = Homsp,(v) (f*F, f*0),(8,¢))

Definition 3.2.7. Let (X., p.) be a Real simplicial (resp. pre-simplicial) space. A Real sheaf
on (X.,p.) is a family (§",0") nen Such that (§",0") is a Real sheaf on (X, pn) for all n, and
such that for each morphism f : [m] — [n] in A (resp. A') we are given Real f-morphisms
f* € Homf(gm,S”)Um,gn such that

fog =f"og", (3.16)

whenever f and g are composable.
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One can use the definition of the push-forward to give a concrete interpretation of this
definition. Roughly speaking, a sequence (§",0"),en is a Real sheaf on a Real simplicial
(resp. pre-simplicial, ...) space (X., p.), if for a given morphism f : [m] — [n] in A (resp.
A’, ...), then for any pair of open sets U c X,, and V c X, such that f(U) c V there is a
restriction map f* : ™ (V) — §F"(U) such that the diagram

$™(V) d $"(U) (3.17)
i ~ i
(V) L= 3 (o)

commute, and f* og* = ]/“?é* - Tk (W) — F"(U) whenever g(V) € W c Xi. Morphisms
of Real sheaves over (X., p.) are defined in the obvious way; we denote by Sh,_(X.) for the
category of Real sheaves over (X., p.).

3.3 Real G-sheaves and reduced Real sheaves

Definition 3.3.1. (i) A Real space (Y,p) is said to be étale over (X, p) if there exists an
étale Realmap f : (Y,p) — (X, p); that is to say, every point y € Y has an open neigh-
borhood V such that f,, : V — U is homeomorphism, where U in an open neighbor-
hood of f(y) in X.

(ii) A Real groupoid (G, p) is étale if the range (equivalently the source) map is étale.

(iii) A morphism n. : (Y.,p.) — (X., p.) of Real (pre-)simplicial spaces is étale if for all n,
TTp: (Yn’ Qn) - (Xn, pn) is étale.

Example 3.3.2. Any Real sheaf (§,0) on (X, p) can be viewed as an étale Real space over
(X, p). Indeed, considering the underlying topological Real space (3,0), it is easy to check
that the canonical projection

F— X, (x,50) — x

is an étale Real map.

Definition 3.3.3. Let (G, p) be a topological Real groupoid. A Real G-sheaf (or an étale Real
G-space) is an étale Real space (€y,vo) over (G, p) equipped with a continuous Real G-
action.

We say that (£, V) is an Abelian Real S-sheaf if in addition it is an Abelian Real sheaf
on (5, p) such that the action ag : (£¢)sq) — (€0)r(g) is a group homomorphism, for any
gegs.

A morphism of Real G-sheaves (€y,vo) and (€,vy) is a G-equivariant continuous Real
mapy : (Eg,vo) — (€, Vy) such that p' oy = p.
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The category of Real G-sheaves is denoted by *5,G, and is called the classifying topos of
(S, p).

Examples 3.3.4. 1. Considering a Real space (X, p) as a Real groupoid, a Real X -sheaf is
the same thing as a Real sheaf over (X, p); in other words we have that*B , X = Sh,(X).

2. If (G, p) is a Real group, then a Real G-sheaf is just a Real space equipped with a con-
tinuous Real G-action.

Lemma 3.3.5. Any generalized Real morphism (Z,71): (I',p) — (9, p) induces a morphism
of toposes
A 1B, (9) — B, D).

Consequently, there is a contravariant functor
B :RG — RBEG,

defined by
(T,0) 2% (G,p)) — (B,G -2 >B,I),

where R*BG is the category whose objects are classifying toposes of Real groupoids.

Proof. Asnoted in [62, 2.2] for the usual case, any Real morphism f: (I', ) — (G, p) gives
rise to a functor f* : 5,5 — B,I'. Indeed, if (€o, vo) is a Real G-sheaf through an étale
Real G-map p : (€,vo) — (G, p), then we obtain a Real I'-sheaf (f* &g, f*vo) by pulling
back (€g,Vvo) along f; i.e. f*Ey =T X g0, o, fTVvo=pxvo, fTp(y,€) =y, and the
right Real I'-action is y - (s(y),e) := (r(y), f(y) - e) when p(e) = s(f(y)). If v : (g, vo) —
(€g»Vp) is amorphism of Real G-sheaves, then the map f v : (f*Eo, f*vo) — (f*Ep, V)
defined by f*y(y,e) := (y,y¥(e)) is obviously a morphism a Real I'-sheaves. It follows that
any (U, f) € Homgpe, (T, 0), (G, p)) gives rise to a covariant functor fu* 18,5 — B,I[UL
Now if (Z, 1) corresponds to (U, fi), and if as in the previous chapter, ¢ : I'[U] — T is the
canonical Real morphism, then we can push forward ( fﬁ‘ Eo, fJ vp) through  to get a Real
I'-sheaf (Z* &g, Z*vy); i.e

Z &= Eo, (3.18)

and the Real structure Z* vy is the obvious one. O

Lemma 3.3.6. Let (9, p) be a topological Real groupoid. Then, any Real G-sheaf canonically
defines a Real sheaf over the Real simplicial space (S5, pn) nen-

To prove this Lemma, we need some more preliminary notions.
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Definition 3.3.7. ([88]). A morphism m. : (E.,v.) — (X., p.) of Real simplicial spaces is
called reduced if for all m, n and for all f € Homa ([m], [n]), the morphism f induces an
isomorphism

Envn) =Xy X F X Tm EmrPn X V).

In this case, we say that (E.,v.) is a reduced Real simplicial space over (X., p.).

Morphisms of reduced Real simplicial spaces over (X., p.) are defined in the obvious
way.

Definition 3.3.8. ( [88]). We say that a Real sheaf (§°,0°) over a Real simplicial space
(X.,p.) isreduced ifforallm, n and all f € Homa([ml, [n]), f* € Hom ((f*§™, f*a™), (F",0™)
is an isomorphism.

Lemma 3.3.9. ( [88, Lemma 3.5]). Let (X.,p.) be a Real simplicial space. Then, there is
a one-to-one correspondence between reduced Real sheaves over (X., p.) and reduced étale
Real simplicial spaces over (X., p.).

Proof. Suppose that we are given a Real sheaf (5°,0°) over the Real simplicial space (X., p.),
and let (J,, 0 ) nen be its underlying sequence of topological Real spaces. We already know
from Example 3.3.2 that each of the canonical projection maps n, : (F,,0,) — (Xn, 0n)
is étale. Now suppose that (§*,0°) is reduced; that is to say that for any morphism f €
Homa ([m], [n]), and every openset V < X, f* : §™(V) — F"(f~1(V)) is an isomorphism,
so that we have a commutative diagram

FMV) =1 (F(v)) (3.19)

A
(M (V) =L F (0" (F1(V)))

Let x € X,,, y € X,, such that f(x) = y, and let U c X,, and V c X,,, be open neighborhoods
of x and y respectively such that f(U) c V. Then, for a section s”* € F™(V), we have an
element (x, (y, s;’,@)) € X, x F X ' m to which we assign an element (x,s}) € J, as follows:
since U c f‘l(V), the section s e ™ (V) = &”(f“l(V)) has a restriction s := s’[’} e F"(0).
In this way we get a well defined map X, x F Xonm Fm — F,. Moreover, it is easy to check
that this map is an isomorphism; the inverse is the map

Fn3 (x,5) — (x, (F0), (F*") ) € X X Fm,

i Xmmm

where if x € U c X,, and f(U) € V c X,,, f*s" is any section in (V) = F*(f~1(V))
that has the same class as s” at the point x when restricted to §"(U) through the restric-
tion map 3”(f‘1(V)) — §"(U). Furthermore, for every f € Homa([m],[n]), there is a
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face/degeneracy map f : (F,,0,) — (Fm,0m) given by f(x,s,) := (f(x), (f*s)fm); hence
(&F.,0.) is areduced étale Real simplicial space over (X., p.).

Conversely, if 7, : (€.,v.) — (X.,p.) is a reduced étale morphism of Real simplicial
spaces, we let §"(U) be the space C(U, &) of continuous sections over U (where U is
an open subset of X},) of the projection 7, : (€,,v,) — (Xn, pn). Next we define UZ :
$"(U) — §*(p"(U)) by O'Z(S) (p"(x)) := v,(s(x)). Notice that since the 7,’s are étale, one
can recover the Real spaces (€, v,) by considering the underlying Real spaces of the Real
sheaves (§”,0"). Now for any f € Homp ([m], [n]) and for any open set V < X,,,, we have an
isomorphism f* : (V) — F(f~1(V)), s— f*s, where (f*s)(x) = (x,s(f(x))) € Xnx, o
EmZEE&m. O

Using the same construction as in the second part of this proof, we deduce the follow-
ing
Lemma 3.3.10. Any reduced Real simplicial space over (X., p.), étale or not, determines a
Real sheaf over (X., p.).

Proof of Lemma 3.3.6. Let (Z,1) be a Real G-sheaf, andlet7: (Z,7) — GO, p) be an étale
Realmap. Putforalln =0, &, :=(5x2),:=G, Xz g0 5 Z, where i, (g1,..., 8n) = AnlYo, - Ynl =
s(yn) = s(gn), and define v, := p, x . We thus obtain a Real simplicial space (€,,v,): the
simplicial structure is given by

81’1 3 ([YO,---,Yn],Z) —_ ((Yf(O)y)Yf(m)))Y}(lm)Yn * Z) € 8mr (320)

for f € Homp ([m], [n]). Furthermore, it is straightforward to see that the projections 7, :
€n — G, are compatible with the Real structures v, and p,, and that they define a mor-
phism of Real simplicial spaces. If f € Homa ([m], [n]), then the assignment

([YO, --nl)/n]) Z) —_ ([YO) ceey Yn]y ([Yf(O)» --n')/f(m)],Y;(Im)Yn . Z))

obviously defines a Real homeomorphism &£, = G, x F St &, which shows that (E.,v.)
is a reduced Real simplicial space over (G, p5). It follows from Lemma 3.3.10 that (€., v.)
determines an object of Sh,_(G.). O

Remark 3.3.11. Notice that in the proof above we did not use the fact that (Z,7) is étale. In
fact, the Real G-action suffices for (Z, ) to give rise to a Real sheaf over (G., p.). However, the
property of being étale will be necessary to show that the Real sheaf obtained is reduced (as
it is mentioned in the following corollary).

Corollary 3.3.12. Let (G, p) be a topological Real groupoid. Then there is a functor

where tedSh,, (S.) is the full subcategory of Sh,, (G.) consisting of all reduced Real sheaves
over (G., p.).
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Proof. Let us keep the same notations as in the proof of Lemma 3.3.6. Since 7 is étale, so
is m;, for all n. The reduced Real simplicial space (€.,v.) is then étale over (G.,v.). Now, it
suffices to apply Lemma 3.3.9. O

3.4 Real G-modules

Definition 3.4.1. (Compare with [88, Definition 3.9]). Let (G,p) be a topological Real
groupoid. A Real G-module is a topological Real groupoid (M, ), with unit space (3%, p),
and with source and range maps equal to a Real map n : M, ~) — (G, p), such that

* My (=M*=M}) is an abelian group for all x € go.

o forallxe G, the map (7) : My — M,y is a group morphism;

* asa Real space, (M, 7) is endowed with a Real G-actiona : G x s M — M;

* foreach g € G, the map a g : M) — M, (g) given by the action is a group morphism.

By Remark 3.3.11, any Real §-module (M, ™) determines an abelian Real sheaf (§°,0°)
on (G.,p.) constructed as follows: consider the reduced Real simplicial space (E.,v.) =
(G x M)y, pn x (7)), where the Real simplicial structure is given by:

F(lyo,ynl, 1) = ([Yf(o»--wf(m)w}(lmﬁn- t),

for any f € Homa([m], [n]). Next, (§°,0°) is defined as the sheaf of germs of continuous
sections of the projections 7. : (€.,v.) — (G., p.).

Example 3.4.2. Let (G,p) be a topological Real groupoid and let M = G© x S! be en-
dowed with the canonical Real structure (x, 1)) := (p(x), A), and Real G-action g - (s(g), 1) =
(r(g),A). Then (M, ") is a Real G-module. The corresponding Real sheaf is called the con-
stant sheaf of germs of S' -valued functions and denoted (abusively) S'. More generally, if
S is any Real group, G x S is a Real G-module, and the induced Real sheaf over (G., p.) is
denoted by S.

3.5 Pre-simplicial Real covers

Definition 3.5.1 (Compare with Definition 4.1 [88]). . Let (X., p.) be a Real pre-simplicial
space. A Real open cover of (X., p.) is a sequence U. = (U,) nen Such thatU,, = (U;?)jejn isa
Real open cover of (Xy,, pn)-
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We say that U. is pre-simplicial if (J., ) = (Jn, ~)nen IS a Real pre-simplicial set such
that for all f € Homu/([m], [n]) and for all j € J,, one has f(U]’?) c U’sz). In the same way,

f
one defines the notions of simplicial Real cover and N -simplicial Real cover.

We will use the same construction as in [88, §4.1] to show the following lemma.

Lemma 3.5.2. Any Real open cover U. of a Real (pre-)simplicial space (X., p.) gives rise to
a pre-simplicial Real open cover ;..

Proof. ForeachneN,let?, = Z:o Tﬁ, where Tﬁ = Homy/([k], [n]). Let P =U,, P, and let
A, (or Ay, (J.) if there is a risk of confusion) be the set of maps

AP — | JJk such that /l(fP,’;) € Ji, forall k. (3.21)
k

It is immediate to see that A, is non-empty; indeed, for each k € N, we fix a map 7k :
[n] — Ji which can be written as 7k = (jé“, .o J5). Next, we define 7 = (7k)k€N. Then the
map A : P — Ui Jx given by Ap) := 7 o lies in A,. Moreover, A, has a Real structure
defines as follows: if ¢ € PX, then we set

M) := M) € Ji (3.22)
Now, for all A € A,,, we let
up= N ¢ Uy, (3.23)
kSn(pefpﬁ

Let x € X,,. Foreachk<nand g€ fP,’;, there is j’qﬁ € Jr such that ¢(x) € U]’?k c Xi. Define the
4

map Ay : P — U Jx by Ay (@) := (j’(;)k. Then, one can see that x € ﬂksnﬂ(peg,ﬁ (Z)‘l(U/’fx((m) =

fo. Furthermore, pn(U/{l) = U;; hence~, (U,'f);LeA,, is a Real open cover of (X}, p,,). If for any

f € Homp/([m], [n]), we define amap f: A, — A, by

(f/l)((p) :=A(foq), forallAle A, and g€ ZPZ,

one sees that f(Uf) c U}’(IM. Thus, yU. = ((Uf),leAn)neN is a pre-simplicial Real open cover
of (X, p.). O

In the same way, for all N € N and n < N, we denote by AI,,\[ the set of all maps A :
Uk<n Homa ([k], [7]) — Ug<n Ji that satify A(Homa ([k], [1])) < J, and we set

i ~—1
uy:= N P~ (Uj()-
k=n@peHoma ([k],[n])

Then, we provide A with the Real structure defined in the same fashion, and we give it the
N-simplicial structure defined as follows: for any f € Hom,n ([m], [n]), the map f : A],;’ —
AN is (fA) (@) := A(f o). We thus obtain a N-simplicial Real cover N Ue = (v Un) nen of the
N-skeleton of (X., p.), where ;vUy, = (U}) jepn-

We endow the collection of Real open covers of (X., p.) with the partial pre-order given
by the following definition.
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Definition 3.5.3. Let U. and V. be Real open covers of a Real simplicial space (X.,p.),
with U, = (U]’?)J-ejn andVy, = (Vjer,. We say that 'V, is finer than U. if for each n € N,
there exists a Real map 0y, : (I,,, ) — (Jn, ~) such that Vl” c UH”N.) foreveryie€ I,. The
Real map 0. = (0,,) nen is required to be pre-simplicial (resp. N-simplicial) if U. and V. are
pre-simplicial (resp. N-simplicial).

3.6 "Real" Cech cohomology

Definition 3.6.1 (Real local sections). Let (§,0) be an abelian Real (pre-)sheaf over (X, p)
and letU = (U;) jej be a Real open cover of (X, p). We say that a familys; € §(U;) is aglobally
Real family of local sections of (§,0) over U if for every j € ], s; is the image of s in§(Uj) by
O'Uj .

We define CRs5(U,§)p,0 to be the set of all globally Real families of local sections of (§, o)
relative to'U; i.e.

CRss(U,8)p,0 := {(Sj)jej c[[5Wp s;j=0y;(sj), Vj€ ]}.
JjeJ

To avoid irksome notations, we will write CR;(U, §) or CRys(U, §) s instead of CR;s(U, §) p,o-
It is clear that CR,(U, §) is an abelian group.

Now let (X.,p.) be a Real simplicial space, and let U. be a pre-simplicial Real open
cover of (X., p.). Suppose (§°,0°) is a (pre-simplicial) abelian Real (pre-)sheaf over (X., p.).

Definition 3.6.2. We define the complex CR{(U.,§")p. o+, also denoted by CR;(U.,§") if
there is no risk of confusion, by

CR{(U., ") := CRss(U, "),y om, for n €N, (3.24)

AReal n-cochain of (X., p.) relative to a pre-ssimplicial Real open cover U. with coefficients
in(§°,0°) is an element in CR%(U.,3°).

Let us consider again the maps ¢ : [n] — [n + 1] defined by (3.1), for k = 0,...,n+
1. We have Real maps & : Ju+1, ) — Un, 7), &k 1 (Xps1,Pn+1) — (X, pn), and &g :

F"*, 0™ — (§",0™); and since Ek(U]’.“l) cyn

£ () for every j € J,,+1, we have a restric-

tion map
~% n n n+1 n+1
such that ¢"*1 o¢

n+1
U; 90)
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Definition 3.6.3. Let U. be a pre-simplicial Real open cover of (X., p.). For n =0, we define
the differential map

d":CR}(U.,§") — CRL(U., ) (3.25)

also denoted by d, by setting for ¢ = (cj) jej, € CR(U.,§*) and for j € Jy1:

n+l

(do)j:= Y (-DF&E;(cz(j)- (3.26)
k=0

Remark 3.6.4. The differential d of (3.26) do maps CR(U., ") to CRE(U.,F*); indeed,
combining the fact that the € are Real maps and the discussion preceeding the last defini-
tion, one has

n+1 n+1

(de); —Z( 1)’“s,€<cg,€(,))—2( 1)’“ek(aUn | Cetp) = Ty (de) ).

Lemma 3.6.5. The differential maps d are group homomorphisms that satisfy d"od™ ' =0
forn=1.

Proof. Thatforany n €N, d" is a group homomorphism is straightforward. Let (cj/) e, , €
CR:1(U.,3"). Then, for j € J,,+1 one has

n+1
(dl’ld}’l—lc)] — Z (_l)l(g;’l‘Fl)* Z( 1) (ék) (C{:‘ O£n+1(]))
=0 k=0

n+1

n
=3 Y CDMEED T 0 G (Capogn()

1=0 k=0
n n .

_ 2+l yx xnyk

- ZO . OZkZZ (€ €2p- K (€ (c 8 oe’“rl (]))
p=0 k=0,k=2p

n

n
Z Y Gl ) o@D el ()

0 k=0,k<2p+1

=0,since e} og = £]'[{ o], forany r,q < n.

We thus can give the following

Definition 3.6.6. A Real n-cochain c in the kernel of d" is called a Real n-cocycle relative
to the pre-simplicial Real open cover U. with coefficients in (§°,0°); the Real n-cocyles form
a subgroup ZR,(U.,§") of CR(U.,§*). The Real n-cochains belonging to the image of
d"! are called Real n-coboundaries relative to'U. and form a subgroup BR\(U.,§*) (since
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d? = 0). The n'" Real cohomology group of the pre-simplicial Real open cover U. with
coefficients in (§°,0°) is defined by the n'"* cohomology group of the complex

dn—2 _ . dn—l 0. dm . dn+1
ee — > CR;ZS 1(u.;8{ ) - CR;ZS(UO)SI ) - CR?;—I(UO)S ) ..
That is,

ZRg(U.,§")  kerd"
BRA(U.,3*)  Imdnl

HR!(U.,§°) :=

Example 3.6.7. (Compare with [88, Example 4.3]). Let (X., p.) be the constant Real simpli-
cial space associated with a topological Real space (X, p); that is (X, pn) = (X, p) for every
n=0. SupposeU =: Uy = (U?)je]o is a Real open cover of (X, p). Define ], := ](’)1+1 together
with the obvious Real structure. Then (J,, ~) is admits a simplicial structure by

F oy eer Jin) 1= (G £(©)> s Jfemy)s for all f € Homp (Im], [n]).

Let U(’;.O i T U})O N..N U;.)n and U, = (U;?)jejn. Of course U, is a Real open cover of
(Xn,pn), and for any f € Homp([ml], [n]) one has f(U(’}0 ..... jn)) = U(’;O ..... in € qum) N..N
Ul =uU™  ;hencel, is asimplicial Real open cover of (X.,p.).

T ™ " Fljorenin)
Let (F,0) beoan Abelian Real sheaf on (X, p) and let (§",0") := (§,0) for alln = 0. Then,

HR}(U.,§*) can be viewed as the "Real" analogue of the usual (i.e., when all the Real
structures are trivial) cohomology group H* (U, ) and is denoted by HR*(U,§). A Real
0-cochain is a globally Real family (sj) jej of local sections. Given such a family, the differ-
ential d° gives: (d°s), joj) =S i, Sjoyy, . + it hence defines a Real 0-cocycle if there exists
a Real global section f € I'(X,§) such thats;j = fy, forall j € ]J.

A Real 1-coboundary is then a family (cj, j,) j,, j1es Of sections cjyj, € §(Uj,j,) =T (Ujyjy, F)
verifying c; 5 (p(x)) = o(cjyj, (x)) for every x € Ujy;,, and such that there exists a globally
Real family (sj) jej of sectionssj € I'(U},3) such that cj,j, = s;j, —sj, over all non-empty in-
tersection U, .

Finally, a Real1-cochain ¢ = (cj, j,) € CRy,(U, ) can be seen as a family of sections cj, j, €
F(U]-Ojl,&") satisfying Civir (p(x)) = a(cj,j,(x)). Such a cocyle is 1-cocyle if and only if one
has (dc)j, j, j, = 0 for all jo, j1, jo € J; in other words, cj,j, + cj, j, = Cj,j, over all non-empty
intersection U, j,.

We can apply Lemma 3.5.2 to generalize the definition of the Real cohomology groups
relative to pre-simplicial Real open covers to arbitrary Real open covers of (X., p.).

Definition 3.6.8. Let (X., p.) bea Real (pre-)simplicial space and let (§*,0°) € Ob(Sh,, (X.)).
For any Real open cover U. of (X.,§"), we let

CR*(U.,§") := CR(U., ), (3.27)
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and we define the Real cohomology groups of U. with coefficients in (§°,0°) by
HR*(U.,T") := HR(U., 3. (3.28)

We head now toward the definition of the Real Cech cohomology; roughly speaking,
given an Abelian Real (pre-)sheaf (§*,0°) over a Real simplicial space (X., p.) , we want
to define the Real cohomology groups HR"(X.,§") as the inductive limit of the groups
HR"(U.,§") over some category of Real open covers of (X., p.). To do this, we need some
preliminaries elements.

Lemma 3.6.9. Let (X.,p.) and (§°,0°) be as above. Assume U. and V. are Real open covers
of (X.,p.), withU, = (U]’-Z)]’e]n andV, = (Vl-n)iel,,- Then all refinements@. : (I., -) — (J., 7)
induces group homomorphisms

0, :HR"(U.,§") — HR"(V.,§"). (3.29)

Proof. Invirtue of Lemma 3.5.2, one can assume that U, and V. are pre-simplicial, and so
that 0. is a pre-simplicial Real map. Define 0;,: CR"(U.,§*) — CR"(V.,§") as follows: for
any ¢ = (¢j) jes, € CR"(U.,F"), we put

* L .
(an)l L an(l')lvinr

i.e. (0c);istheimage of ¢y, ;) by the canonical restriction §” (Ugn T §"(V]"). Astraight-
forward calculation shows that this well defines an element in CR™(V.,F?ullet). More-
over, it is clear that 6}, is a group homomorphism for any n. Moreover, since 0. is pre-
simplicial, £ 00,11 =0, 0&. Then, for i € I,,;1, one has

n+l1 n+l

(d03:(0); = kZ_O(—l)’“é,’;(cgnogk(,.)W;; = kZO(‘”kéi(%koemm)wf“ = (0,,,d(0),

then d"o0; =0 ,od" forall n € N. It turns out that 8, maps ZR" (U.,§") into ZR"(V.,§")
and maps BR"(U.,§*) into BR"(V.,§"). Consequently, 8 passes through the quotients:

03 ([c) := [0%(c)], for ce ZR"(U., ). 0

As noted in [88], the map HR*(U.,§*) — HR*(V.,§°) may depends on the choice of
the given refinement.

Definition 3.6.10. Let (X.,p.) and (§°,0°) be as previously. Let U. and V. be Real open
covers of (X.,p.). Let ¢, v, : CR*(U.,§*) — CR"(V.,§") be two families of group ho-
momorphisms commuting with d. We say that (¢,,) nen and (W) nen are equivalent (resp.
N-equivalent, for a given N € N such that the N -keleton of V. admits an N -simplicial Real
structure) if for all n € N (resp. for all n < N), there exists a group homomorphism h" :
CR"(U.,§*) — CR™Y(V.,F*), with the convention that CR™'(V.,§*) = {0} (and hN*! =
hY in case of N -equivalence), such that

Gn—wp=d" Toh"+h" 1 od", VneN (resp.Vn < N). (3.30)
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Observe that such N-equivalent families ¢. and . induces group homomorphisms
HR"(U.,§") — HR"(V.,§"),

also denoted by ¢, and v, respectively, and given by ¢,([c]) := [¢,(c)], and ¥, ([c]) :=
[wn(c)lforallce ZR"(U.,§"). Assume h" : CR™*(U.,F*) — CR" 1 (V.,F*) is such that (3.30)
holds for all n < N, then for all ce ZR"(U.,§"), one has

(pn—wn)(cD) =[d" (R ) + K" (d" )] =0;

in other words, ¢p,, and v, define the same homomorphism from HR"(U.,§*) to HR"(V.,§")
when n< N.

It is clear that (N-)equivalence of morphisms ¢, : CR"(U.,§*) — CR"(V.,§") is an equiv-
alence relation. We also denote by ¢. for the (N-)class of ¢..

Definition 3.6.11. Denote by*) the collection of all Real open covers of (X., p.). LetU., V. €
N. Wesay that'V. is h-finer than U, if V. is finer than Ue in the sense of Definition 3.5.3, and
if there exists N € N such that the N -skeleton of V. admits an N-simplicial Real strucutre.
In this case, we will writeU, <y V. orU. <, V..

We refer to [88, Lemma 4.5]) for the proof of the following

Lemma 3.6.12. Let U, andV. be Real open covers of (X., p.) such thatU, =y V.. If6.,0. :
(I., 7) — (J., ) are two arbitrary refinements, then their induced group homomorphisms
0; and (0.)* are N-equivalent. Consequently, there is a canonical morphism

HR"(U.,§") — HR"(V.,§")
foreachn<N.

Example 3.6.13. By Lemma 3.5.2, from anyy Real open cover U. of (X., p.) and anyy N € N,
one can form an N-simplicial Real open cover \vU. of the N-skeleton of (X., p.). Next, we
define a new Real open cover UY by setting

nuN =

n

n J - N
{ hNu ifn< (3.31)

Un  ifn=N+1

It is clear that the N -skeleton of ;UY admits an N-simplicial Real structure. Recall that,UY
is indexed by I., with I, = AY ifn < N and I,, = ], if n = N+ 1. Now we get a refinement
nO.: (., 7) — (J., 7) by setting

NOp =

{ AN — Jo, A— Adyy), ifn<N (3.32)

Id:J, — Ju, ifn=N+1

hence . <y ;UY forall N € N. In particular, U, <o U..
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We deduce from the example above that "<j," is a pre-order in the collection 1. Sup-

9/
pose that U. <5, V. <, Wand K, — I, N J. are refinements. Then it is easy to check that
the maps 0; and (0,)* defined by (3.29) verify the relation (6,00/)* = (8),)*c0;; forall n € N.

For n € N, we denote by 91(n) the collection of all elements U, € 91 such that U. < U.
for some N = n+1; i.e., U. € D(n) if there is N = n + 1 such that the N-skeleton of U. ad-
mits an N-simplicial Real structure. It is obvious that "<j" is also a preorder in 9(n).
Furthermore, Lemma 3.6.12, states that if U. <5 V. in 91(n), there is a canonical map
HR"(U.,§") — HR"(V.,§"). It follows that for all n € N, the collection

{HR"(U.,F") | U. € N(m)}
is a directed system of groups; this allows us to give the following definition.

Definition 3.6.14. We define the n'* Cech cohomology group of (X., p.) with coefficients
in(§°,0°) to be the direct limit

HR"(X.,§"):= lim HR"(U.,3"). (3.33)
U.eN(n)

Lemma 3.6.15. For every U, € N, pre-simplicial or not, there is a canonical group homo-
morphism
6y, : HR"(U.,§") — HR"(X.,3"),

forallneN.

Proof. For every U. € N (simplicial or not), and for every n € N, we define the map 0y, :
HR"(U.,§*) — HR™(X.,§*) by composing the canonical homomorphism

N0 HR"(U.,§") — HR"GUN, 3"
with the canonical projection
pi. t HR"(UY,§*) — HR"(X.,§"),

forsome N=n+1;ie Oy, = pﬁf. o nO;, (recall that 560, is defined by (3.32)). O

3.7 Comparison with usual groupoid cohomologies

In this section we compare our cohomology with the usual cohomology theory in some
special cases, especially with that developed in [88].
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Proposition 3.7.1. Suppose S is an Abelian Real group. Let'S be the fixed point subgroup
of S. Let (G, p) be a Real groupoid. Then if p is trivial , we have

HR*(S.,8) = H"(S.,"$).
In particular, if S has no non-trivial fixed point, we have HR* (G.,S) = 0.

Proof. Let (c;) € ZR"(U.,S). Since p = Id, we may take the involution on J, to be trivial.
For every g € U”", we have

a(g)=ci(g)=c(g)e’s.
Thus ¢y € ZR"(U.,”S).
Conversely, we obviously have H"(S.,”S) ¢ HR™(G.,S) since p is trivial. O

Corollary 3.7.2. Ifp and the Real structure of S are trivial, then H*(SG.,S) = H*(G.,S).

Let us focus now on the case where Greduces to a Real space (X,7) and S = 7%!. Then
7 induces an action of Z, on X by (-1) - x:=7(x), (+1) - x:= x.

Proposition3.7.3. (i) HR*(X,z%") = Hp,, (X, 2), where the sign "~"stands for the Z, -

equivariant cohomology with respect to the action of Z, on Z given by (-1)-n :=
-n,(+1)-n:=n.

Gi) H*(X,2) =0 H(*ZZ,_) (X,2) @ H(*Zz,ﬂ (X,Z), where the sign "+" means the trivial Z,-
actionon”Z.

Proof. (i) Let ce HR™(X,Z%") be represented on the Real open cover (U i) of X. Then

Ciyoin (T(x)) = —cj,...j,(x) implies T*cj, . j, (x) = —cj,...j,(x),Vx € X; in other words, c
is Zy-equivariant with respect to the Z,-action "—" on Z. The converse is easy to
check.

(ii) We define the involution ¥ on H"(X,Z) by #(c) := —t*c. Then it is straightforward
that the Real part TH"(X,7) = HR"(X,7%), while the imaginary part TA"(X,7) is
T
exactly H(Zz,+) (X,2).
O

3.8 Long exact sequences

Let (§°,0°) and (6°,¢*) be Abelian Real sheaves on a Real simplicial space (X., p.). Sup-
pose that ¢. = (Pp)pen : (§*,0°) — (B°,¢°) is a morphism of Abelian Real (pre)sheaves,
and that U, is a Real open cover of (X., p.). Consider the pre-simplicial Real open cover
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yU. associated to U.. Then for any n € N, and any A € A, there is a morphism of Abelian
groups

G :F"U) — &"U), 51— Py (s2), (3.34)

satisfying ¢/, o pp = ¢y 0 oy This gives a group homomorphism
A
¢n: CRLGU., §")or — CRY (UL, B°)-.
Moreover, for any A € A,+; and any k € [n + 1], one has a commutative diagram

(»anUf‘
£

kA
WU ) — = "W )

d E
¢'n+ n+

n+l rrn+l Y 1 n+l yrn+l

FreL ) T g

Thus, d" o}, = P11 ©d"; i.e. one has a commutative diagram

CR?S(hu"S.)U. i CR?S-'_l(uuoyg.)U" (3.35)

J/(/Sn l(z)nﬂ

CR™ (., %) e —2> CRTH (L., 6°).

N S

that shows that ¢ gives rise to a homomorphism of Abelian groups
(1)« : HR"(Ue, §")or — HR"(U., &%), [c] — [Pn(0)]; (3.36)

and therefore a group homomorphism ¢, : HR™(X.,§")y+ — HR™(X.,®"). defined in
the obvious way. We thus have shown that HR* is functorial in the category Sh p. (X.).

Proposition 3.8.1. Suppose (X.,p.) is a Real simplicial space such that each X, is para-
compact. If

0— F"0") G002 @0 —0

is an exact sequence of Real (pre-)sheaves over (X., p.), then there is a long exact sequence of
Abelian groups

00— FIRO(X.’SIO) &, I‘:IRO(X.,TS’.) &) FIRO(X.,S".) i I‘_’IRI(X”gh) &)

The proof of this proposition is almost the same as in [88, §4].
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3.9 Thegroup HR’

We shall recall the notations of [88, Section 4] that we will use throughout the rest of
the chapter. Let U. be a Real open cover of a Real simplicial space (X., p.) and let ;U. be
its associated pre-simplicial Real open cover. Recall that any ¢ € T’,ﬁ is represented by its
image in [n]; i.e. @ = {p(0),...,(k)}. Then P,, is nothing but the collection of all non empty
subsets of [n]. Henceforth, any subset S = {iy, ..., ix} < [n], with iy < ... < i, designates the
maps ¢ € ’J”f, such that ¢(0) = iy, ..., (k) = i.

Notations 3.9.1. With the above observations, any element A € A\, is represented by a
@™ —1) — tuple (As) gzscin), Where the subsets S are ordered first by cardinality, then by
lexicographic order; i.e.

Se{{o},...,{n},{0,1},..,{0,n},{1,2},...,{1,n}, .., {0, 1,2},...{0, 1, n}, ..., {0, ..., m}},

and As := A(S). For instance, any element A € A is represented by a triple (Ao, A1, Ao1), with
Ao =A({0}), A1 = A({1}) and Ap1 = A({0,1}).

Recall that if (§°,0°) is an abelian Real sheaf over (X., p.), we are given two "restriction"
maps on the space of global Real sections &, &7 : 30 (X0)y0o — 3! (X1)41. Let us set

Tiny(§)o = ker | F2(Xo)go —F (X1) ={seFXo)po | E5(5) = &5 (9)}.

1

(LI Ll
*

Proposition 3.9.2. (/88, Proposition 5.1]) Let (§°,0°) be an abelian Real sheaf over (X., p.)
and let U. be a Real open cover of (X.,p.). Then

HRY(X.,§)o+ = HR'(Ue, T")o* ET 100§ )0 (3.37)

Proof. Oneidentifies Ao with Jy. Note that P; = {e, £1,1d1;}, and that forany A = (A9, A1, Ao1)
in Ay one has &(A) = A(gg) = A1, &1(A) = Ae1) = Ag. We thus have U} = U;m N sgl(Ugl) N
E71(UY). Now, let (sp) aeefp € ZR’(Us, §")o+. Then

0= (dS) ag. 1,000 = Eg (51,) — &1 (52,), on U, (3.38)

Therefore, £;(sx,) = &] (53,) on &' (U} )N &' (U ), and &; (s7,) = &] (s3,) on éal(U/f{l) N
51_1((];100)’ for all Ag,A; € Jo. Applying 7j; to both sides of the above identity, we get that
S1, =Sa, and Si, = Siy in other words, sy, =s;, on Ugo N Uf{l for all Ag, Ao € Jo. Since (%, %)
is a Real sheaf on (X, po), there exists a global Real sections s € 5%(Xo) »0 such that Spy =iy
for all A € Jy. Now, equation (3.38) is equivalent to 58 (s) = €] (s); i.e,, s € I'iny(§*) o+ and this
ends the proof. O
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3.10 HR' and the Real Picard group

Let us consider the same data as in the previous section. Let U. be a Real open cover
of (X., p.). For A = (A9, A1, A2, Ao1, A02, A12, Ao12) € A2, one has

U3 = Poo (UR) N @yt (U3 )N Gy (U )NE (WU )nE WUy )nEg Uy )nU; , (3.39)

where @go = €70 €], 01 = €504 and gy = €70 €.
Let ¢ = (ca)xen, € ZR'(U., ")+ Then

_ o~k ~% ~k 2
0 = (dE) gt 2201 Aos o Aonz = €0 €Az Az — €1 CAgAzdgr + €2 CAgAi Agp» ON Uy, (3.40)

. . . o, o _ _ _ 2 . ~
and of course we get a similar identities for (d¢)3 1, 1,7, 102112001, 0 U 5+ Now applying 7]
to (3.10), we obtain
Choridor = ChoMiAgz — CA1 212
on &1 U NE N WU ) neaL WU ) nUL nU! nU! n#A7l(U? ), which means that for
1 Ao 0 M 0 A2 Ao Aoz M2 1 Ao12”’
any Ao, A1, Ao1 € Jo, Saga, 1., does not depends on the choice of A¢;. Therefore, there exists a
. 1{z=17770 \ ~ z=1(770 _

Real family (fy,1,) € [Ty 1,60, S (81 (U ) NE (UM)) such that fAOM'U}tomm = CAgA A, fOT
any (1o, 11, 401) € A1. Now, the cocycle relation (3.10) becomes

&6 [y — &1 faors + &5 faoh (3.41)

NnU}

1
nU} nU;} .

1
onU Aoz

Aod1d01
Let (G, p) be a locally compact Hausdorff Real groupoid. We are interested in the 1°°
Real Cech cohomology group of (., p.) with coefficients in the Abelian Real sheaf (8°,0°) =
(S,0) over (G., p.) associated to the Real §-module (G xS, px ~), where (S, 7) is an Abelian
group endowed with the trivial G-action. Note that in this case, for any pre-simplicial
Real open cover U, € 91(n) of (G.,p.), elements of thew CR™(U,,8"*) are of the form
(cA)aen,,, where ¢y e T(U},S) are such that ci(pn(g)) = c,l(g) € S for any g € U;’f c§,.

Proposition 3.10.1. With the above notations, the Real Cech cohomology group HR'(G.,S)
is isomorphic to the group Homgpg (G,S) of isomorphism classes of Real generalized homo-
morphisms (G, p) — (S, 7).

Proof. The operations in Homgpg (G, S) are defined as follows. If (Z,1),(Z',7) : (G, p) —
(S, 7) are Real generalized homomorphisms, their sum is

(Z, 1)+ (Z',1):= Zxg0 Z'] - (3.42)

where (z,z') ~ (z-t71,2'- t) for all £ € S, together with the obvious Real structure 7 x 7’. The
inverse of (Z,1) is (Z~!,7), where Z 1is Z as a topological space, and ifb: Z — 7~ lis the
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identity map, then the S-action on Z ~1 is defined by b(z) - t :=b(z- =Y and the G-action
is defined as follows: (g,b(z)) € G X Z Vlifand only if (g,z) € G x Z, in which case we set
g-b(2) :=b(g - z). Finally, the Real structure on Z ! is 7(b(2)) := b(7(z)). Then we define the
sum in Homgys (G, S) by [Z, 7]+ [Z, 7] := [(Z,1) + (Z',7")], and we put [Z, 7] ! := [(Z71, 7)].
It is not hard to check that subject to these operations, Homgp (G, S) is an Abelian group.
Now, suppose we are given a Real open cover U = (U;’) jeso of (G, p) trivializing the
Real generalized homomorphism (Z,7) : (G, p) — (S, 7). Let (s) jej, be a Real family of lo-
cal sections of the S-principal Real bundle t: (Z,7) — (G?, p). Form a pre-simplicial Real

.....
.....

Ul =g € Snlrgn el . rg) e UY, , sgn e Ul }. (3.43)
Then, for all g € U(ljo,jl)’
element cj,;, (g) € S such that g-s;, (s(g)) = sj,(r(g)) - ¢j,;, (g). We then obtain a family of
— S such that

t(g-sj, (s(g) = r(g) = t(sj,(r(g))); hence, there exists a unique

. . . 1
continuous functions cjj, : U, o)

857, (5(®) =55, () -cjpj (&), VEEU, i) (3.44)

Furthermore, notice that U} Then

— 1 0 =—1 0 2
Gojp — €0 (Ujl) néey (Ujo)' Let (g1,82) € U,

(Jo,j1,J2)"
(8182) -5j,(5(82)) = g1 -5, (r(82)) - ¢jy j,(82) = 81 -5, (s(81)) - ¢}y, (82)
=5y (r(81)) - Cjyjy (81) - Cjy j,(82);

hence cj,j,(8182) = ¢j,j, (81) - ¢jy j, (§2). In other words,

53 C&o(jo,jr,j2) * (éicfl(jo,]'l,]'z))_l -E; C&, (o, jrrj2) = 1
over all U(Zjo,jl.jz)' Moreover, we clearly have Ciria (p(g) = m € S. This gives us a Real
1-cocycle (¢jy ) Go, e € ZR (U, 8%).

Suppose f : (Z,1) — (Z',1') is an isomorphism of Real generalized morphisms (see
chapter 2). Up to a refinement, we can choose U in such a way that we have two Real
families (s;) jej,, (s’)]-(_;]0 of local sections of the Real projections v : (Z,7) — (X, p) and
v (Z',7) — (X, p) respectively. Since for all j € Jo and x € U}, v'(fy;(s))(x)) = v(s;(x)) =
x=1 (s']. (x)), there exists a unique element ¢ ; (x) € S such that s’j (xX) = fu;(5;(x)-;(x), and
this gives a Real family of continuous functions ¢; : U; — S. It follows that if ¢ = (¢}, ;)
and ¢’ = (c;.0 i
one has

) are the Real 1-cocycle associated to (Z,1) and (Z’,1') respectively. Then,

1
over U(jo,jl)’
8- fu;, 51, (s(@N) -9 = fu, (5jy(r(@) -9y (r(8) - ¢}y, (8);

But, since f is §-S-equivariant, we get

Tujy sy (rem * Cioji (8) - 9y (5(8)) = fuy, (5o (1(8))) -y (r(g)) - C}Oh (8);
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thus ¢ (8)- €3, (&) = 0,518 9, (r (@)™, 08 (€€ i) = &3 P €107, 5 Tor
all (jo, j1) € J1. This shows that ¢’.c™! € BR!(U.,S). We then deduce a well defined group

homomorphism
¢1 : Homp(§,8) — HR'(G.,9), a1([Z, 7)) :=[cj,j,] € HR'(U.,S), (3.45)

where U. is the Real open cover defined from any Real local trivialization of (Z, 7).

Conversely, given a Real Cech 1-cocycle ¢ = (cy,2,) over a pre-simplicial Real open
cover U. € (1), we let Z :=[[y,ea, Up, X S, together with the Real structure v defined by
v(x, 1) := (p(x), 1), and equipped with the Real G-action g- (s(g), 1) := (r(g), Caon, (&) - 1) for
any g € U){O At LES and the obvious Real S-action. It is easy to see that the canonical
projections define a Real generalized morphism (Z,v) : (G,p) — (S, 7). One can check
that if [c] = [¢'] then (Z,7) = (Z',7') by working backwards. O

Remark 3.10.2. Suppose that (S,0) is a non-abelian Real group. Then we still can talk
about Cech Real 1 -cocycles on (G., p.) with coefficients on the non-Abelian Real sheaf (8°,0°),
and then form in the same way HRY(S.,8"*) as a set. However, there is no reason for HR'(S.,S)
to be an Abelian group, it is not even a group since the sum of a Real 1-cocycle is not neces-
sarily a Real 1-cocycle. Nevertheless, the result above remains valid in the sense that there
is a bijection between the set Homgpg (G, S) of isomorphism classes of generalized Real mor-
phism (S, p) — (S,0) and the set HR'(S.,S).

We will study in the next chapter (see Section 4.5) the case of a non abelian Real group for
which this set admits an Abelian monoid structure.

A particular example of Proposition 3.10.1 is when S = S! together with the complex
conjugation as Real structure; in this case, the associated Real sheaf is denoted by S' as
mentioned earlier. It is well known that the Picard group Pic(X) of a locally compact topo-
logical space X is isomorphic to the 1% sheaf cohomology group H!(X,S! x) (see for in-
stance [19, chap.2]). In the Real case, we shall introduce the Real Picard group PicR(9) of a
Real groupoid, and we will apply Proposition 3.10.1 to get an analogous result.

Definition 3.10.3 (Real line G-bundle). 1. By a Real line G-bundle we mean a Real G-
space (L,v), and a continuous surjective Real map n : (L,v) — (9(0),p) such that
7: L — G9 is a complex vector bundle of rank 1, and such that for every x € 39, the
induced isomorphism vy : Ly — Ly is C-anti-linear in the sense that vy (v - z) =
Vy(V) - Z.

2. A homomorphism from a Real line G-bundle (L,v) to a Real line G-bundle (L',V') is
a homormophism of complex vector bundles ¢ : L — L' intertwining the Real struc-
tures and which is G-equivariant;i.e. p(g-v) = g-p(v) forany (g, v) € G x L.
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3. Wesay that a Real line G-bundle (L, V) islocally trivial if there exists a Real open cover
U of (59, p), and a family of isomorphisms of complex vector bundles ¢ : Uj x C —
Ly, such that

* ¢;ilp(x),2) = Vu, (pj(x,2) forallxe U; and (x,z) e Uj x C,
* ifr(g) € Uj, and s(g) € Uj,, then one has .9, (s(g),z) = ¢, (r(g), 2).

Example 3.10.4. The trivial action G on G0 xC (i.e. g-(s(g), z) := (r(g), z)) is Real; moreover,
the canonical projection 3© x C — G© defines a Real line G-bundle that we call trivial.

Definition 3.10.5 (Real hermitian G-metric). Let (£, V) be a locally trivial Real line G-bundle.
AReal hermitian §-metric on (£, V) is a continuous function h: L — R, such that

e h(v(v)) =h(v),and h(v-z) = h(v) - |z|2,f0rall vel, zeC;
* h(g-v)=h(v), forall(g,v) e Sx L, and

e h(v) >0 wheneverve LT := L0, where0:G© — L is the zero-section.

If such h exists, (L,v, h) is called a hermitian Real line §-bundle (we will often omit the
metric).

Definition 3.10.6 (The Real Picard group). The Real Picard group of (G, p) is defined as the
set of isomorphism classes of locally trivial hermitian Real line G-bundles. This "group” is
denoted by PicR(9).

Theorem 3.10.7. (compare with [19, Theorem 2.1.8]). Let (G, p) be a locally compact Haus-
dorff Real groupoid. Then PicR(9) is an Abelian group. Furthermore,

PicR(G) = HR'(G.,8").

Proof. Associated to any hermitian Real line G-bundle 7 : (£,v) — (G?, p), there is a Real
generalized morphism (£!,v) : (G, p) — (S!, 7) obtained by setting

Ll:={vel|h) =1}. (3.46)

7 (LY v) — (GO, p) is indeed an §1—principal Real bundle, and £! is invariant under the
action of G. Hence (£!,v) is indeed a Real generalized morphism. Conversely, if L, V) :
(G,p) — (S!, 7) is a Real generalized morphism, define £ := £ x1 C, where S' acts by
multiplication on C; v(v,2) := (V(v),2), g (v,2) :=(g- v, 2) for (g,v) € G £, and h(v, z) :=
|z|2. Then (£, v,h) is a hermitian Real line G-bundle. Moreover, it is not hard to check that if
(£,v,h) and (£',v',h’) are isomorphic hermitian Real line G-bundles, then their associated
Real generalized homomorphisms (£!,v) and ((£)},v) are isomorphic. We then have a
map

PicR(9) — H'(S,SY,, (£, v,h)] — [L1,v] (3.47)

which is clearly an isomorphism of Abelian groups. Now, applying Proposition 3.10.1, we
get the desired result. O
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3.11 Ungraded Real extensions

Let us consider the subgroup extR (T,S) of ungraded Real S-twists of the Real groupoid
T;ie (T,0) € extR (I',S) if 6 = 0. Similarly, we define the subgroup ExtR G,9) ofm(& S)
of ungraded Real S-central extensions over §. Elements of ExR (G, S) will then be denoted
by pairs of the form T,1).

LetT=8S—=G§—">G[U € &E{Jr(?; [Upl,S) be an ungraded Real S-twist, for a fixed
Real open cover Uy = (U;)) jeJo- Consider again the pre-simplicial Real open cover U. of
(9., p.) defined by (3.43). Recall that the groupoid G[Uy] is defined by

9ol = {(o & j1) € Jox G x o g€ Uy -

Suppose that the S-principal Real bundle 7 : (G, ) — (S[Uo], p) admits a Real family
of local continuous sections s, j, relative to the Real open cover V; of (G[Uol, p) given by
Vi = (V(b'o,jl))(jodl)eh’ where

V.

1 ) 1 .
Goun) = Uk x Uy iy * Uk

Then, for any (g1, g2) € U(Zjo,jl,jz)’ we have that
(s jo jr (Jor 81, J1) - Sy jo (1, &2, J2)) = 7 (S jy jy (Jo, &1, 1)) - 78 (S}, j, (j1, &2, J2))
= (jo, 8182, J2) = (S, j, (jo, 8182, J2));

thus, there exists a unique element wyj,, j,,j,) (g1, §2) € S such that

Sjoj2(J0, 8182, J2) = W(jo, j1,j») (&1, &2) - Sjo ji (Jo, &1, J1)-Sjy j» (1, &2, J2)- (3.48)

This provides a family of continuous functions @y, j,,j,) : U(zj0 i S determined by (3.48)
and that verifies clearly WG, i1 ) (P81, P(82)) = W (jo,ju,j) (81, 82), V (81, 82) € U(sz,].hjz) c Go.

It is straightforward that the family (v, ,,,)) verifies the cocycle condition; hence we ob-

tain a Real Cech 2-cocycle
o(T) 1= WG j1.1) o el € ZRZ (U, S) (3.49)

associated to 7.
In fact, this construction generalizes for arbitrary Real open cover U. of (G., p.).

Lemma 3.11.1 (Compare Proposition 5.6 in [88]). Let (G, p) be a topological Real groupoid.
Given a Real open cover U. of (S.,p.), let ﬁﬂ(g [Upl,S) denote the subgroup of all twists
S—=G—5GU, € xR’ (G[Uopl,S) such that admits a Real family of local continuous
sections sy : {Ag} x Uy x {11} — § relative to the Real open cover

1
Vl = ({/‘,0} X U(/IO,AI,/IOI) X {A'l})(/lo,/ll,/lol)EAl
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of (§[Uol, p). Then the canonical map
extRy (G[Uol,S) — HR*(U.,S), [T] — [w(T)], (3.50)
is a group isomorphism.

Proof. First of all, we shall prove that e/xtT%ﬂ(S [Uopl,S) is a subgroup of extR (S[Uo),S). Let
T=(S—§—"GUl), T =(§—= & —=G[Uyl )
be representatives in &-tT%{l(S [Uol,S). Then their tensor product (cf. (2.8)) is
T&T := (S — G&G —= G[Uy] ,0),

where 585 = G x g §'/S. Let fi: {Ao} x U} x (A1} — G and f] : {Ag} x Uj x (M} — &'
be Real families of continuous local sections of 7 and 7’ respectively. Then we get a Real
family of continuous local sections s : {Ag} x U }L x (A1} — G&G' for 7 by setting

5/1(/10;8,)11) = [(fﬂ(//‘/O)g’Afl))f/{(AO)gy//‘/l))] ’

which implies that T&J" € &E{{}(S (Uol, S.

Now let T be an (ungraded) Real twist of (G[Uy], p) such that 7 verifies the condition of
the lemma. Assume that 77 is any Real twist of (G[Uy], p) isomorphic to T. Let f: G — &'
be a Real S-equivariant isomorphism that makes the following diagram

G —" GUyl (3.51)
p
9/

commute. Thus, given a Real family s, : {Ag} x U/% x {11} — G, the maps fosy : {Adg} x
U /{ x {1} — G’ define a Real family of local continuous sections for 7’; hence the class
[T € extRy (S[Uol, S1).

Suppose we are given a representative
T=8—=5—"> 35U

in extRy (G[Uol,S). Recall that for (Ao, A1, dor) € Ay, U}, 1 = UL nr lU)ns™H W),

and for any A = (A, A1, 1201, A2, 112, A012) € A2, we have from (3.39) that
Us =& or (U )n&y os™ (U} )nET osT (WU )nES (U Y)nETH (U )N (U )T, .

Then, for all (g1, g2) € U5, one has
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* g1 = Z‘l(gl,gz) € T_I(U/({O) n S_I(ng) n Ui02 = U/%OAZ;LOZ’

e g1=82(g1,8) € UAlm’ g =&o(g1,8) € s‘l(Ugl) N Ullz; and hence
—1,+70 —1,770 I _ gl
gl eEr (UAO) ns (UA'I) N UAOI — U/IOAIAOI’ al’ld
~1,7+0 1,770 I _ gl
& ET (U/ll) ns (UM) n U/llg - Uﬂt1/12/112'

Then as in the discussion before the lemma (cf. (3.49)), there exists a Real family of func-
tions wy : Uy — S' such that

SAoA2A02 (AO) 8182, AZ) =wy) (glr gZ) *SAoA1 Ao (107 81, Al) *SA1 A0 (/ll) 82, A'Z) (352)

and w3 (p(g1),p(82)) = wx (g1, 82), forall (g1, 82) € U/%O/lllz/lolloz/llz/lmz' Moreover, it is easy to
verify by a routine calculation that (wj) 1cp, verify the cocycle condition on

3 .
Ufloﬂl A2A3A01 A Aos A2 Ais Az Aotz < 2;

therefore, we have constructed a Real Cech 2-cocyle (w) 1¢ A EZ R?(U.,S) associated to 7.

Assume that (5)) rep, is another Real family of continuous local sections of 7, and that
(@A) 2en, € ZR?(U,,S) is its associated Real Cech 2-cocycle. Then for any (Ap, A1, A01) € Ay

and g€ U/{ there exists a unique ¢y 1,2,, (&) € S such that

oA1do1’
S1071 101 (8) = Capai 201 (8) *SApAi A0 (8) (3.53)

where we abusively write, for instance, sy,1,,, () forsj i, 1,, (10, & A1). Since (53,1, 2,,) and
SioA1A; are Real families, we have that

Cloi he (P(8)) = Clonin, () forall g € U}LO Ador-

It turns out that the cy,,2,,’s define an element in CR'(U,,S). Moreover, for A € A, as
previously, and for (g1, g2) € U 2 we obtain from (3.52) and (3.53)

510/12).02 (gl gz) = CA'OAZAOZ (gl gz)_l : CAOAIAOI (gl) : CAIAZAIZ (gZ) : (I)/l (gl’ gZ) : 5/10/11/101 (gl) . 511/12112 (gZ);

and

(Wa-@7)(81,82) = Chonotns (8182) " -Chorinor (81)* Chidnisy (82) = (dC)2(81, 82);

hence ((w - (D_I)QL)}LEAZ € BR?*(U.,S!). In other words, the class in HR?(U.,S) of the Real
2-cocycle (wy) does not depend on the choice of the Real family of local sections of 7.

We want now to check that the map (3.50) is well defined. To do so, suppose that T = T’
in &E{u(S [Uo],S), and that (syy,2,,) and SIAO Nido, AT€ Real family of local continuous sec-
tions of 7 and n’. Let us keep the diagram (3.51). Let (wj)en, and (wil) Aen, be the asso-
ciated Real 2-cocycles in ZR?(U.,S) of T and 7’ respectively. Then we define an element
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(DagriAe) € CRY (U, S) as follows: for any g € U)
S such that

oAidor” Do2,20; (8) is the unique element of

5,10/11/101 (g = bloflﬂm €4) 'fos/loﬁl/’lm (8). (3.54)

This is well defined since ”,(5%0,11/101 (8)) = (Spga00; (8)) = 7' (f 0Sa01 00, (8)). Furthermore,
(f ©Sa911101) Ao, A1 A0 en, 1S @ Real family of local continuous sections of 7. Then, for all
AeAyandall (g1,82) € U/%, we can write

foSa012102(8182) = wa(81,82) - foSau1100:(81) - fOSA, 10015 (82),

up to a multiplication of w, by a Real 2-coboundary. It then follows that

w1 (81,82) @) (81,82) " = Dagtsnes (8182) " Bagaines (81) baitans, (82) = (dD)A(g1, 82).

Consequently, (w))aen, depends only on the class of T in e/xﬁ{u(S [(Upl,S). The fact that
(6201, 1,) also depends only on the class of 7T is straightforward. We then have proved that
any element [T] in extRy (G[Uol,S) determines a unique cohomology class

[w(T)] € HR?>(U.,S). (3.55)

Conversely, given a pair (w ) ep, € Z R%(U.,S), we want to construct an ungraded Real
extension of (G[Uy]l, p) which is in &ﬁﬂ(g[uo],sy For this we proceed as in the proof of
Proposition 5.6 in [88]. For A € A,, put

to1 := (Ao, Ao1, A1),
Hoz2 := (Ao, Aoz, A2),
Hi2 := (A1, A12, A2).

Let ¢y gy, := w2 We have Vi = (Vy
and Vl}m ={AgtxU /{0 Midor {A1}. I is equipped with the obvious involution, so that V; is a

Real open cover of G[Uy]. We set

)ier,, where I consists of triples o1 = (49, Ao1,11)

fw = ]_[ {(t)g)lJOl) | S S’g€ VI}OI}/ ™
Ho1€N

subject to the product law

[t1, 81, Mo1l - [t1, 82, 12] = [T+ L2 - Cpgy oo 12 (81 82)5 8182, Ho2],

where

(t) g) HlZ) ~ (C'UOIIJOLUOI (r(g)) r(g))_l . t : C#OI,UOZ#IZ (r(g)) g)) g} ,UOZ)- (3'56)
The projection 7 : ' — G[U,] is defined by n([t, g, to1]) := &, and the Real structure is

(£, 8, o1l := £, p(g), o1l
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It is straightforward to see that these operations give I’ the structure of ungraded Real S-

twist of G[Uol; what is more, the maps s, : Vﬁ}m — T defined by s, (8) := [0, g, po1] are

a Real family of continuous sections of 7, so that the Real extension
T=8—=T*—"G[U]
isin e/xtTK{}(S [(Uol,S). Itis also clear that [w(T)] = [w]. O

Corollary 3.11.2. We have Ect\f{+(9,S) = HR?%(S.,S).
3.12 The cup-product HR'(-,Z,) x HR'(-,Z,) — HR*(-,SY)

Letd,8' € HRY(S.,Z>,), andlet Land L' be representatives of their corresponding classes
in Homys (G, Z2) (cf. Proposition 3.10.1). Then by viewing Z, = {¥1} as a Real subgroup
of S! (identifying —1 with (—1,0) and +1 with (1,0)), we define the tensor product r*L ®
s*L' — G, and and using the same reasoning as in Example 2.5.8, we see that this is clearly
a Real Z,-principal bundle; thus we have an ungraded Real Z,-central extension

Z, —r*Les*L — G.
Therefore, we get an ungraded Real S!-central extension (L— L, G) given by
L—L":=(*Les*L)xz,S, (3.57)
together with the evident Real structure and Real S$!-action.
Definition 3.12.1. We define the cup product

— : HRY(S.,Z,) x HR'(S.,Z,) — HR%*(G.,SY

§—06 :=wl—L),
where L — L' is determined by equation (3.57).
Lemma 3.12.2. The cup product — defined above is a well defined bilinear map; i.e.
(61+682) — (0] +065) =61 — 061 +61— 05 +082— 06 + 82— 5.

Proof. 1f §; is realized by the generalized Real homomorphism L; : § — Z,, then 6; + 62
is realized by L; + L,. The result follows from the easy to check bilinearity of the tensor
product r* L ® s* L' with respect to the sum in Homyg (G, Z5). O
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3.13 Cohomological picture of the group ExtR(G,S")

Our purpose in this section is to provide a Real Cech cohomological picture of ExtR(G, S1),
for any given locally compact Hausdorff Real groupoid (G, p).

Let T = (G,6) € extR(S[Ugl, S"), where as usual Uy is a Real open cover of G©. Let U. be
the pre-simplicial Real open cover of (9., p.) defined as in (3.43).

Define a continuous map 6 j j, U(ljo,jl) — Z, over all U(ljo,jl) €Uy bydj,j, (&) :=6(jo, & j1)-
Then, over all U(zjo,jl,jz)’ we have that & ,;,(8182) = 6((jo, &1, j1) - (1,82, j2)) = 8jyj1(81) -
6 j,j»(82). Moreover, since ¢ is a Real morphism, we have that 67 ;- (p(g)) = 6 j,;, (8); hence
T determines a Real Cech 1-cocycle

8(T) = (8oj1) o jen € ZR' (Ua, Z2), (3.58)

Then, (3.58) gives a Real Cech 1-cocycle (§3,1,1,,) € ZR' (U, Z,) defined by 61,1,1,,(8) :=

0(Ag, g A1) forany ge U i this does make sense, for we know from Section 3.10 that

oA dor’
Real Cech 1-cocycles do not depend on Ag;.

If T’ is another Rg S'-central extension over G, we may suppose it is represented by a Rg
Sl -twisted (§,8") of G[Uy]. Then by definition of the grading of T&J’, we have 6(T&®T") =

ST +6(T.

Theorem 3.13.1 (Compare Proposition 2.13 [30]). Let (G, p) be a locally compact Hausdorff
Real groupoid. There is a set-theoretic split-exact sequence

0— HR*(S.,S") — ExR(S,S") ~ HR'(S.,Z5) — 0 (3.59)
so that we have a canonical group isomorphism
dd: ExiR(S,S") = HR(S.,Z») x HR*(S.,8Y), (3.60)
where the semi-direct product HRY(S.,7Z,) x HR?(S.,SY) is defined by the operation
6,w)+ (6, w):=0+6,6—06)w-o).

Proof. The first arrow is the canonical inclusion ExtR G,sh c Egt\R(S, sh, and hence is
injective. The exactness of the sequence (3.59) is obvious, by definition of 6 and ExtR (G, Sh).

The map 6 is well defined; indeed, if T ~ 7" in extR(S Uol, S, they differ from a twist
coming from an element of PicR(G[Uy]), and hence by construction of §, one has §(7) =
d(7"). Moreover, § is surjective, for if L € Homgpg (G, Z2) represents the Real 1-cocycle
(€j,j1) € ZR'(U., Zy), then L— L is graded as follows:

L\_/L:: (§1 i (T*L®S*_L) XZZ Sl - 9[u0]16l))
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where
5'((]0,% J1)) =€y ().

We see that 6 (L — L) = €. Finally, note that the operation law comes from the definition of
the sum in m(SSI). O

3.14 The proper case

In this section, we are interested in some particular Abelian Real sheaves on (9., p.),
where (G, p) is a proper groupoid. More precisely, we aim to generalize a result by Crainic
(see [23, Proposition 1]) stating that for a proper Lie groupoid G, and "representation" E of
G (123, 1.2]), the differentiable cohomology H (’;(9, E)=0forall n = 1. Let us first introduce
some few notions and properties.

Definition 3.14.1 (Real Haar measure). Let (G, p) be a locally compact Real groupoid, and
let {1} yeqo De a (left) Haar system for G (cf. [76, $.2]). Define a new family {tg} cqo of
measures 5, with support §* for all x € 3, defined by

15 (C) := P (p(C)), for all measurable subset C < G*. (3.61)

We say that {u*} ycgo is Real if
pt =gy, Yxe GO (3.62)

Lemma 3.14.2. Any Haar system for G gives rise to a Real one.

Proof. Assume {u*} is a Haar system for G. For every x € 3, we set
~X . 1 X X
o= 5(“ + ). (3.63)

It is clear that {{i*},cgo0 is a Haar system for §; measurable subsets for i* being exactly
those for u*. Moreover, one has

| ) 1 ~
mp =y (0 0p " op) = (5 u7) = 7, Vxe O,
0

Remark 3.14.3. From the lemma above, we will always assume Haar systems for G to be
Real.

In what follows, the Real group K is either the additive group R equipped with the Real
structure t — f := —t, or the additive group C equipped with the complex conjugation
z+— Z as Real structure.
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Definition 3.14.4. Let (G, p) be a locally compact Real groupoid. A Real representation of
(G, p) is a locally trivial Real K -vector bundle it : (E,v) — (G, p) endowed with a (left)
continuous Real G-action; that is a Real open cover (U;) of (G, p) and isomorphisms ¢ je
Uj x K' — E|Uj such that v(¢p;(x, (ay, ..., ar))) = c/)]r(p(x),(c'zl,...,c'lr)), VxeUj(a,.., ar) €
K", and

e Vx€G9, the induced isomorphism v, : E, — Epx) isK-antilinear:

ve(&-a)=vyi()-a, VEe Ey,acK;

* Vg€, theisomorphism Egg) — E;(g), induced by the G-action, is linear.

Note that such a Real representation (E,v) can be viewed as a Real §-module in the
following way: E is the groupoid E —= GO with rg(¢) = sg(€) := (&) for every ¢ € E, for
any x € 3O, E, = E* = E¥ is isomorphic to the group K, then the product in E is defined
by the sum on the fibres. The Real sheaf on (G., p.) associated to the Real G-module (E, v)
will be denoted (E*, v*).

Definition 3.14.5. ([90, Definition 2.20]) A locally compact Real groupoid (3, p) is said to
be proper if any of the following equivalent conditions is satisfied:

(i) the Realmap (s,1):G — G© x GO is proper;
(i) forevery K < G compact, G is compact.

Proper Real groupoids can be characterized by the following (we refer to Propositions
6.10 and 6.11 in [89] for a proof)

Proposition 3.14.6. Let (G,p) be a locally compact Real groupoid with a Haar system
{1} yego. Then (G,p) is proper if and only it admits a cutoff Real function; that is, a
function x: §© — R, such that

@) Vxe 3G, clpx) = c(x);
(i) Vx€GQ, [o.c(s(g)du(g) =1;

(iii) themapr : supp(cos) — GO is proper; i.e. for every K = G© compact, supp(c)ns(GX)
is compact.

Theorem 3.14.7. Suppose (G, p) is a locally compact proper Real groupoid with a Haar
system. Then, for any Real representation (E,v) of (G, p), we have

HR™S.,E°)=0, Vn=>1.
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To prove this result, we shall recall fundamentals of vector-valued integration exposed,
for instance, in [94, Appendix B.1], and then adapt them to the case when we deal with Real
structures. Let X be a locally compact Hausdorff space, and let B be a separable Banach
space. Let u be a Radon measure on X. Then measurable functions f : X — B are defined
as usual, and such function is integrable if

£l :=fX||f(x)||d,u(x)<oo.

The collection of all B-valued integrable functions on X is denoted by £ (X, B), and the set
of equivalence classes of functions in £ 1(X, B) is a Banach space denoted by LY(X,B) ([94,
Proposition B.31]). Furthermore, C.(X, B) is dense in LY(X, B) The B-valued integration of
elements of L! (X, B) is defined as a linear map I : C.(X, B) — B given by

1(f) ::fo(x)du(x), and [ I(AIN =11 fl1- (3.64)
Moreover, this integral is characterized by the following

Proposition 3.14.8. (cf. Proposition B.34 [94]) Let u be a Radon measure on X, and let B
be a Banach space. Then, the integral is characterized by

(@) forall f € C.(X,B) and ¢ € B*,
® U f(x)du(x)) =f (f () dux);
X X
(b) if L: B— B’ is any bounded linear map between two Banach spaces, than
LU f(x)du(x)) :f L(f (x))dp(x).
X X

Now suppose (X, p) is a locally compact Hausdorff Real space, pu is a Real Radon mea-
sure; i.e. u(p(C)) = p(C) for every measurable set C c X. Let (B,¢) be a separable Real
Banach space. Then from the above, we deduce the

Lemma 3.14.9. LetC. (X, B) be equipped with the Real structure denoted by p : C.(X, B) —
C.(X, B), and given by p(f)(x) := ¢(f(p(x))). Then, under the above assumption, the inte-
gral [ : C.(X,B) — B is Real, in that it commutes with the Real structures ¢ and p; i.e

fXC(f(p(x)))d,u(x) = C(fxf(x)du(x)),vf € Cc(X, B). (3.65)

Proof. For any ¢ € B*, define ¢ € B* by ¢(b) := ¢(¢(b)). Then, from Proposition 3.14.8 (a)
and the definition of ¢, one has

")(C Uxf Cdp (’C))) :fxmdﬂ(x) = fX P (f () du().
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Thus,

Again from (b) of Proposition 3.14.8 and from the fact that u is Real, we then get

<P(C (fo(x)du(x))) = <P(fXC(f(p(x)))d“(x)),V<peB*,
and the result holds. .

Now let us investigate the case of a Real groupoid (9, p) together with a Real represen-
tation (E,v). Let u = {,ux}xeg(m be a Real Haar system for (G, p). For any x € GO we can
apply (3.64) to E, and get the integral fgx : Cc(§%, Ey) — Ey. Further, it is very easy to
check that

Vx ( fg N (Y)dux(y)) = L o vl (PN AuPP (y), V f € Co(GY, Ey). (3.66)

Proof of Theorem 3.14.7. Fix a Real Haar system {u*} xeGO) for (G, p) and a cutoff Real func-
tion ¢: G©® — R,. Let U. be a Real open cover of (G.,p.). Let 1 := (A9, A1,...,do1..n) € Ay
and U]’f € yU,. Denote by A1y the subset of A, consisting of those A € A,+1 such that
AS) = Asforall @ # S < [n]. Then, if for any x € Uon, we denote

(Uy * GY) nsupp(cos) :={(g1,...,&nY) € Uy x (G* nsupp(cos)) | s(gn) = r(y) = x},
we have that

(U} *§")nsupp(ces) . |J U (3.67)

;1€An+1|,1

Notice that for 1 running over A1), only its images As € Ays—1, for Sc [n+1] containing
n+ 1, are led to vary. On the other hand, since §* nsupp(co s) is compact in G (by (iii)
of Proposition 3.14.6), the union (3.67) is finite. In particular, for every S € S(n+1) :=
{Scn+1] | n+1eS # @}, where elements of S(n + 1) are ranged in cardinality and in
lexicographic order, there is iés € Ass_1,ls=0,...,mg, such that

U} * G nsupplcos)c  J U, (3.68)

I=(1s)ses(n+1)

where for any [ = (Is) sesn+1) € N2""" written as

the element A' € A, is given by the following

l . .
{ A(S):=Ag, foranySc(nl; (3.69)

AL(S) = Aés, forany Se S(n+1).
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Now foreach Se S(n+1), £Z+1 =:€5:[#S—1] — [n+ 1] denotes the unique morphism in

Homy/ ([#S — 1], [n + 1]) whose range is exactly S. It is then clear that

Es((U} * §") nsupp(cos) = Ujfs'l, VSeS(n+1). (3.70)

ls S

Next, choose for every S € S(n + 1), a partition of unity

@ s Es((U} * §)nsupp(cos)) — Ry
S

mgs
subordinate to the open covering (U#ISS—l)
N Is=0
For all n > 1, we define the map h": CR% (U, E*) — CR’(U., E*) by

(hnf))l(gly---’gn):: (_1)n+1f Z f/ll(glr---rgnry)' H
G581 (I§) sesnr) SeS(n+1)
I1 9315 Es(g1r-w gn 7)) c(s(y)dp*® (y). (3.71)
ls
Notice that

1
(U;*Sp(x))msupp(cosolo)c U ui
I=(Is)sesn+1)
where the 1! ’ s are defined in the obvious way. Hence, we get a partition of unity of
msg
Es((U /{’ * GPW) N supp(co so p)) subordinate to the open covering (U’f‘i‘l) by setting
N Is=0

(P]-Lls (ES(P(gl); LR p(gl’l))) = (P/lls (ES(gl) ceey gl’l))-
S S
Next, using ( 3.66), it is straightforward that

(hnf);l(P(gl),,P(gn)) = ’V|U/{l © (hnf)l(gl;;gn);

which means that (A" f) 1) 1ea,, € CRI (U, E*).
Assume now that (f3)ea, € CRIL(U., E*). Then, for every Uf €Uy and (g1,...,8n) €
U/’f, one has

(h”d”fu(gl,...,gn)=(—1)”“f Yo @ Hugengur) 1

G5E (1) sestnsn) SeS(n+1)
n+1

[T, s E g1 gn ) - cls(y)dp’ & (y)
AS
Is
= fa(g1,---, 8n) — Ar(g1,---,8n),  (3.72)

where

Z fgz+1(/ll)(éz+l(glw--;gn;Y))' H

S5& (16) sestnsn) SeS(n+1)

Ar(gLyee e 8n) = (=1 Y (-DF
k=0
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[T, 155 (1, g 1)) - clsy))ApE p).
Is S

We want to show that

ALy ) =@ IRT ) (g1, 80). (3.73)
One has
n—1
(dn_lhn_lf)/l(gl)---)gl’l):(_l)nZ Z ng(/l)rk(EZ(gl,---,gn),Y)' l_[
k=0J9°&n 1=k, 7) TeS(n) TeS(n)

l—[ (pE‘Z(A);k,T (5?(5Z(g1; ey gn),’)/)) . C(S('}’))d/,ts(g”) (')/)
Tk, T

+_[ Y fewm(En- g T
Gs(gn-1)

Tn:=("n,T) TeS(n) TeS(n)

[1 Penyn €781+ 8n-1,7)) c(s())dpE1(y)
'n,T

= B/l(gl))gn) + C/l(gl))gn)
(3.74)

Notice that by the left-invariance of {u*} .o, the second integral C, in the right hand side
of (3.74) can be written as

C/'l(gly---rgn):f f fEZ(]L)rn(glr---rgn—l)grﬂ/)' H
Gs@&n J(rp, 1) resm TeS(n)

H (sz(l);n,T (E’%(gl, ey 8n-1,8nY)) " C(S(f}/))dus(gn—l) )
'nT

:j; Z fEZ(/L)Tn(§Z+l(gly---;gn;)/))' l_[

& (1 1) Tesin) TeS(n)
[T 0z EFER (8L §n-1, & V) - (s AR E V(). (3.75)
'nT nyeT

On the other hand, for any k = 0,...,n— 1, one has (EZ(gl,...,gn),)/) = éZ“(gl,...,gn,y);
hence

n-1
Ba(gl,...,gn)z(—l)”Z(—l)kfgs(g) Y fown@E g g [

k=0 (re, ) TeSmn) TeS(n)

[T0uyer @FELT (81w 8 V) - s A& ().
k T

Tk, T

Thus, (3.74) becomes

(@ h" DAL g = (D" Y (- DF L D DN I UA CHRC T A )R

k=0 (T, T) TeS(n)
[T [T ETE 81 8 V) - clsy)dp*ED ().
TeSmyr,r k0T

(3.76)
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Now, forany k =0,...,n, riy = (rk, 1) Tesm), lety € Gs@8n) guch thatEZ“(gl, e 8 Y)E Uénzmrk'

Then, there exists [ = (Is)sesn+1) such that (gy,...,8n,7) € U/’;,“, so that

~n+1 n n
€ (81,-..,.8mY) € Uggm)fk U UEZ“(/V)'

One can then suppose that for any k € [n] and any family r; = (r¢,7) resm), there exists
a family ! = (Is)sesn+1) such that E‘Z(/l) Tk = EZ”(?LI). Moreover, in virtue to the identi-
ties (3.2), it is straightforward that for each k € [n] and any T € S(n), there exists a unique
S € S(n+1) such that ef™! = ¢*! o, so that £;*! = g% 0 g7*!. Therefore, we obtain
from (3.76) that

n
@ " g 8 = (DY (—D’CL Y feman@EEL - &)
k=0

s(gn)
&n (lS)SES(n+1]

l_[ H(pAlS (§g+l (gl’ LERS ] gnrY))C(S(’)/))dus(gn) (,y)
SeS(n+1) Ig s

= Al(gl; ---;gn)-
(3.77)
Combining with ( 3.72), we thus have shown that
h'od"+d" ' oh" ' =Idcprqi, ) YR 2 1; (3.78)

i.e. h* defines a contraction of CR:S (U., E*) for any Real open cover U. of (., p.) and this

ends our proof. O
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The Real graded Brauer group

¢

In this chapter, we investigate Real graded groupoid C*-dynamical systems. From
these we define the Real graded Brauer group BrR(9) of a Real groupoid. The main purpose
is to establish a cohomological formula of BrR(G).

4.1 Rg Dixmier-Douady bundles

We refer the reader to Appendix C for the basics of Real graded Banach bundles.

Definition 4.1.1. Let G i>s”—> X be a second countable locally compact Hausdorff Real

groupoid. Let p : A — X be a locally trivial Rg u.s.c. Banach bundle. A G-action by iso-
morphisms a on A is a collection (ag)geg of graded isomorphisms (resp. *-isomorphisms)
ag: Asg) — Arg such that

(a) g-a:= ag(a) makes (A,0o) into a (left) Real G-space with respect to p;

(b) the induced anti-linear graded isomorphisms Ty : Ay — Az verify Trgoag = agzo

(©) agg =agoagy forany(g,g)eG?.

We say that (A, ) is a Rg u.s.c. Banach G-bundle. If the field A = [[x Ax — X is con-
tinuous, then (A, a) is called a Rg Banach G-bundle.

One also defines Rg u.s.c. C*-G-bundles, and Rg u.s.c. Hilbert bundles. In the case of
C*-G-bundles, the isomorphisms a are required to be *-isomorphisms, while in the case
of Hilbert G-bundles, they are required to be isometries.

75
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Definition 4.1.2. A morphism of Rg Banach G-bundles (resp. C*-G-bundles) from (A, @)
from (B, B) is a morphism ® : A — B of Rg Banach bundles (resp. C* -bundles) which is
G-equivariant; i.e., ®rg) o g = fg o Dy(q) forall g e G.

Remark 4.1.3. Notice that if (A, a) is Rg Banach G-bundle, then a, =1d,_ for all x € X.
Indeed, we have for every x € X, ay: Ay — Ay is a graded automorphism, and @, = ay x =
ayoay. In particular, ifwe put x = gg~' € X for g € G, we obtain Agg-1 =Agoag1 =1d and

_ -1
thenag-1 = ag foreveryge§.

Definition 4.1.4. A Rg Dixmier-Douady (D-D for short) bundle over (G,1) is a Rg C*-G-
bundle (A, @) such that A — X is a Rg elementary C* -bundle that satisfies Fell’s condition.
Denote by @%(9) the collection all Rg D-D bundles over S.

Suppose «a is a G-action by isomorphisms on the Rg C*-G-bundle A. Consider the Rg
X-algebra A = Cy(X;A). Then a induces a Rg Cy(9)-linear isomorphism a : s*A — r* A
defined by a(f)(g) := agx(f(g)) for fes*Aand g€ §.

Example 4.1.5. Let X x C be endowed with the Real structure (x, t) := (t(x), t), and the G-
action by automorphisms g - (s(g),t) := (r(g),t). Then with respect to the projection X x
C — X, X xC isa Rg D-D bundle over G i? X.

Example 4.1.6. Letu = {u*}yex be a Real Haar system on G i>s”—> X . Let the graded Hilbert

space F = I2(N) ® I2(N) be equipped with a fixed Real structure of type Jro (see Appendix A
22). For x € X, we put i?(,,,x = L2(9x)®f]:(, together with the scalar product(-, -) (x) given by

€& my(x) = fg (€(@)n(@)cdps(g), for &ne I*(§%F0) = LA 4.1

Let IJ:Cg = ]_[xeXﬂ:Cx be equipped with the action g - (s(g), p&¢) := (r(g),(po g‘l)éé) €
ﬂA{r(g). Define the Real structure on f]A-Cg by (x,0&&) — (1(x), ()& Jr 0 (&)). Then one shows
that there exists a unique topology on 3269 such that the canonical projection f}ACg — GO
defines a locally trivial Rg Hilbert G-bundle.

Now, let K, := K(Hy) be equipped with the operator norm topology, and put

j%g = ]_[ j%x
xeX

together with the Real structure given by (x, T) := (%, T), where T € K is defined by T (p&¢) :=
T(t(@)®Ady, o(&)) for any p&& € Hz. Next, define the Real G-action ® on Kg by

04(s(g), T):=(r(g),8Tg M.
We then have a Rg D-D bundle (JA<9, 0) over G given by the canonical projection

Kg— X, (x,T) — x.
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Let G i>s'—> Xand T i>;—> Y be Real groupoids and let

Z—=X

I

Y

be a generalized Real. Let p : A — X isaRg (u.s.c.) Banach bundle. Thens* A = Z x; x , A
is a principal (right) G-space by:

(z,4).8 = (28, ag' (@)

for r(g) = z. It is obviously a Real space with respect to the involution (z, a) := (Z, @). Next,
define A to be the quotient space s*A/G together with the induced Real structure defined
by

[z,al :=[(z, a)l,

where we use the notation [z, a] to denote the orbit of (z, a) in AZ. Consider the continu-
ous surjective map to pr; :s* A — Y, (z,a) — t(z), where, as usual, pr; denotes the first
projection. Since t(zg) = t(z) for (z,8) € Z x5, x,r § (condition (i) of Definition 2.3.1), we
get a well defined continuous surjection pZ : A — Y given by pZ([z, al) := t(z). Further-
more, since t is Real, one has

p?((z,al) = p? (2, a)) = t(2) = t(2) = pZ((z, a)).

Thus, pZ : A — Y is a continuous Real surjection. Moreover, it is not hard to check that
pZ AL —TO g open and the map a— [z, a] defines a graded isomorphism from A,
onto AZ . (see [49, p.14]).

t(2)

Proposition 4.1.7. . Let G i>s'—> X and T i>s'—> Y be locally compact Real groupoids. Sup-
pose that Z : T — G is a generalized Real homomorphism and that (A, a) is a Rg Banach
G-bundle. Then, with the constructions above, pZ AL —Yisa Rg Banach bundle. Fur-
thermore,

aZ[

y 2 al :=1[y-z,al, fort(z) =s(y), 4.2)

defines a Real left T -action on A making (A%, a?) into a Rg Banach T -bundle called the
pull-back of (A, @) along Z.
In particular, if (A, a) € BrR(S), then (AZ, a%) € BrR(X).

The proof of this proposition is almost the same as that of [49, Proposition 2.15], hence
we omit it.
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Corollary 4.1.8. Let G i? X and T i>;—> Y be locally compact Real groupoids. Suppose

that Z : G — T is a Real Morita equivalence. Then the map o7 @(9) — W(F) given
by

D% (A, a) = (A%, a?) 4.3)
is a bijection.
We close this section by recalling a construction we will use in the sequel.

Definition 4.1.9. (cf. [49, p.20]). Let (A, ) be a Rg (u.s.c.) Banach G-bundle. Define the
conjugate bundle A, a) of (A, a) as follows. Let A be the topological Real space A and let
b: A — A be the identity map. Then: A — X defined by p(b(a)) =b(p(a)) is a Rg (u.s.c.)
Banach bundle with fibre Ay identified with the conjugate graded Banach algebra of A
(the grading is Z; = Ai,i = 0,1). Furthermore, endowed with the Real G-action by auto-
morphisms ag(b(a)) :=b(ag(a)) forge G,a e Ay, A — X becomes a Rg (u.s.c.) Banach
S-bundle. If (A, @) € BrR(S), then (A, @) € BrR(G).

4.2 The group BrR(S)

In this section we define the Brauer group of Real graded D-D bundles over a locally
compact Real groupoid § # X with a paracompact base space.

Definition 4.2.1. Let G i? X besecond countable locally compact Hausdorff Real groupoid.

Two element (A, @) and (B, B) ofm(g) areMorita equivalent if there is a Rg A -B -imprimitivity
bimodule X — X which admits a Real G-action V by isomorphisms such that

Aue(Ve(©), Vem) = aglay, €,m);and

(4.4)
<Vg(£)» Vg(ﬂ))‘Bs(g) = ﬁg((é;ﬂ)st(g))

forallge§, and&,ne Xyg).
In this case we write (A, &) ~x,v) (B, B).

Example 4.2.2. Suppose that® : (A, a) — (B, B) is an isomorphism of Rg D-D bundles over
§=—=X.Then (A, a)~@,p (B,p).

Lemma 4.2.3. Morita equivalence of Rg DD-bundles over G i>s”—> X is an equivalence re-

lation in @(9).
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Proof. Again the proofis a the same as in [49] (Lemma 3.2). Let us just recall how to prove
that the relation is symmetric. Suppose (A, a) ~¢,v) (B, ). Then define the structure of
Rg B-A-bimodule on the conjugate bundle (X, V) (cf.Definition 4.1.9) by setting:

b-1($):=u§-b*), 5,0, tm):=(, M5,
) -a:=wa*-&), W, ma, =4,

forall x € 5@, ae Ay, be By and &, € X . With these operations, each fibre of X be-
comes a graded B-A-imprimitivity bimodule which satisfies conditions (a) and (b) of Def-
inition ?2. It is moreover easy to verify that relations (4.4) hold if we replace (A, a) by (B, f)
and (X, V) by (X, V); so that (B, §) ~ 57, (A, ). O

Definition 4.2.4. Let G i>;—> X bea second countable locally compact Hausdorff Real groupoid.

The Real graded Brauer group of § BR(S) is defined as the set of Morita equivalence classes
of Rg D-D bundles over G. The class of (A, @) in ErT{(S) is denoted by [A, a].

Example 4.2.5. Let G consist of the point {*} together with the trivial involution. Then,
every Rg DD-bundle over {x} is trivial; i.e. it is given by a Rg elementary C* -algebra X p- We
thus recover the Real graded Brauer group of the point BrR(x) = Zg described in A.5.

Let (A, a) and (B, B) be Rg DD-bundles. We have already defined the tensor product
A& xB which is a Rg C*-bundle over X. We want to equip this tensor product with a Real
G-action a® B such that (A& xB, adpf) € BrR(G). We define adp as follows. For all g € G,
we put @g®Bg : Agg)®Bsg) — Arg)®Brg), a®b — ag(a)®Pfg(b). Note that from the
definition of a Real G-action on a Rg C*-bundle, a,&p, is a graded *-isomorphism that
clearly verifies conditions (b) and (c) of Definition 4.1.1. Therefore, the same arguments
used in [49, p.18] can be used here to show that a®p is continuous; thus, its restriction
a®f on the closed subset A® xB of A®B defines a Real G-action. Furthermore, it can be
shown that this operation is Morita equivalence preserving ( [49, p.19]).

Proposition 4.2.6. Let G $ X be a locally compact Real groupoid such that X is para-

compact. Then BrR(S) is an abelian group with respect to the operations
A, al+ (B, Bl :=[A&xB,a&p]. (4.5)

The identity of BRR(S) is given by the class0:= [X x C,T x bar] of the Rg D-D bundle defined
in Example 4.1.5. The inverse of [A, a] is [Z, al.

Proof. See Proposition 3.6 and Theorem 3.7 in [49]. O

For the sake of simplicity we will often use the following notations.
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Notations 4.2.7. We will write A for the class [A, a] in Eﬁ{(g’;); we will also leave out the

actions when we are working in the group BrR(S): for instance we will write A + B instead
of [A, al + B, Bl.

Lemma 4.2.8. Let(A,a)€ @(9) and let (ﬂ%g, 0) be the Rg D-D bundle defined in Exam-
ple 4.1.6. Then A + fJACg =Ain Erﬁ(g).

Proof. Recall that the Real G-action @ is given by Adg, where O is the Real G-action on the
Rg Hilbert G-bundle 3269 — X (see Example 4.1.6); i.e. 04(T) = O T@gl. The Rg Banach
G-bundle (A& xA, a0) is easily checked to be a Morita equivalence

(AdxKg,ad0) ~ (A, a)

in BrR(G) with respect to the pointwise actions and inner-products operations:

(@dT)- (b8 = (-1)°T%qb6TE, and
Aok, (DOE,don) (—=D%%pd* O Ty ;
(b&&)-¢c = bcdé, and
(b&&,don) 4, (&, (x)-b*d,

forxe X, a@TeAxéﬂ%x,béf,déneﬂx@f{m andceA,. O

Lemma4.2.9. Let G i>s’—> X be alocally compact Hausdorff Real groupoid with paracom-

pact base space, and let (A, a) € BrR(G). Then A =0 in BR(S) if and only if there exists a
Rg Hilbert G-bundle (7, U) such that (A, a) = (K (), Ady) in BrR(G).

Proof. 1f (X, V) is a Morita equivalence between (A, @) and the trivial bundle X x C, then
each fibre X, is a graded Hilbert space; and since X, is a full graded Hilbert .A,-module
and since X is a Real Morita equivalence, there is an isomorphism of graded C*-algebras
@y : Ax — K(Xy) such that ¢ (4 (¢, m) = T¢y, for all ¢,n € Xy, and @z(a) = ¢ (a) for all
a € A,. Moreover, in view of relations (4.4), we have

Prg)(@g(Ay, 6 M) = @rig) (A, (Ve (©), Ve = Tv, e vn = Ady, (Tt p),

for everyy € G and ¢,n € Ag(g). It follows that the family (¢,) xex is an isomorphism of Real
graded D-D bundles ¢ : (A, @) — (K(X), Ady).

Conversely, using the same operations as in the proof of Lemma 4.2.8, the Rg Hilbert
G-bundle (47, U) defines a Morita equivalence of Rg D-D bundles between (K (), Ady)
and the trivial one X x C — X. O
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From this lemma we deduce the following characterization of Morita equivalent Rg
D-D bundles.

Corollary 4.2.10. Let(A,a) and (B, B) € BrR(G). Then A =B in BrR(S) ifand only if there
exists a Rg Hilbert S-bundle (A7, U) such that (A& xB, aéﬁ) = (K (P, Ady) in BrR(G).

4.3 Complex and orthogonal Brauer groups

The purpose of this section is to compare the group BrR(9) of a Real groupoid § i>s—> X
we defined in the previous section with the well-known graded complex and Brauer group
Br(S) of the groupoid G (see [70], [28], [87], and [30]), as well as with a generalization of
Donovan-Karoubi’s graded orthogonal Brauer group BrO(X) ([28)).

Recall [87] that the graded complex Brauer group /B?(S) is defined as the set of Morita
equivalence classes of graded complex D-D bundles ' over the groupoid G. Moreover, there
is an interpretation of Br(9) in terms of Cech cohomology classes; more precisely, there is
an isomorphism

Br(3) = A°(S.,Z,) @ (H'(S.,Z2) x H?(S.,8"). (4.6)

For topological spaces, this group was denoted by GBr*°(X) in Parker’s paper [70].

In order to defined twisted K -theory, Donovan and Karoubi have defined in their fun-
damental paper [28] two groups GBrU(X) and GBrO(X) respectively called the graded uni-
tary Brauer group and the graded orthogonal Brauer group of the sapce X. The former is
just the finite-dimensional version of GBr*°(X), while the latter is the set of equivalence
classes of graded real simple algebra bundles. They show that

GBrOX = H°(X,Zg) ® (H' (X, Z2) x H*(X,Z2)). 4.7)

We will define an infinite-dimensional analog of GBrO(X) for groupoids, and show later
an isomorphism analogous to (4.7).

Proposition 4.3.1. Suppose that G i>s’—> X isa Real groupoid which can be written as the

disjoint union of two locally compact groupoids G, —= X; and G, —= X, such that
7(g1) € G2,7(82) € 51,V g1 € 1,82 € G2. Then

BrR(S) = Br(S1) = Br(Sy).

Proof. Observe first that 7 induces an isomorphism G, = G5, so that Ef(Sl) = E}(Qg).

lElements of /B\r(S) are defined in the same way as that of ]?rT%(S) except that no Real structures are in-
volved
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Let (A,a) € W(S). Then A = A; & A, where A} — X; and A, — X, are graded
complex elementary C*-bundles. It is straightforward that the graded action a of A in-
duces a G;-action a; on A;,i = 1,2, making (A;, a;) into a graded complex D-D bundle
over G;. However, since the projection p : A — X; LI X, intertwines the Real structure of A
and that of X, we have a; € A, and a, € A; for all a; € Ay, as € A». Indeed, over all x € X3,
the involution induces the conjugate linear isomorphism

TetAx=ADx — Az = A2z

It turns out that the Real structure of A induces an isomorphism of graded complex D-D
bundles
71 (Ag, a2) — (A1, a1)

over the groupoid G». In fact (A4, @) is isomorphic to the Rg D-D bundle (4',a') = (t* A, 7*a);
i.e. (A’,a’) is such that

Al = (A2)z if x € Xy;
A=A s if x € Xo;
@g, = ag : (A2)sgy — (A2)rg), 81€ 51

@y, = ag : (A1)sg) — Arg), &2€ 92

(4.8)

Note that the same is true for every Rg Banach bundle over G. Define the map

(1)122 Eﬁ{(f}) - /B}(gl)
Aal — [A,a],

®,, is well-defined since if (A, @) ~, vy (B, ) in BrR(9), then the restriction (X1, V;)
of (X, V) over G; induces a Morita equivalence of graded complex D-D bundles (A;, ;) ~
(B1, B1) over ;. Moreover from the identifications (4.8) we see that @, (—[A, a]) = —®([A, a]).
Furthermore, we have clearly (A&xB); = A;®x,B; for i = 1,2, and that the involution in-
duces an isomorphism of graded complex D-D bundles A, ® x, B, = A18x,B = A8 X23_1
over §o —= X, , which shows @y, is a group homomorphism.
Conversely, if (A}, a;) is a graded complex D-D bundle over §;, we define the Real graded

D-D bundle over § by setting A :=A; & TI*XZAI’ anda:=a; 671

*

16,015 then we define

®),: Br(§) — BIR(9)
(A, a1l — [A1®T|*X2A1,a1®T

*

192

It is clear that ®;, and <1>’12 are inverse of each other. O

a:l].

Corollary 4.3.2. Let G i>s"—> X be a locally compact Hausdorff groupoid with paracom-

pact unit space. Let the product groupoid G x 8! —= X x 89! be equipped with the Real
structure (g, +1) — (g, F1). Then

BrR(S x S*Y) = Br(9).
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Proof. Apply Proposition4.3.1to §= (G x {+1}) 1 (G x {-1}). O

Example 4.3.3 (Computation of BrR(S*')). The groupoid S*! —= 8% identifies with
{pt} x {£1}. Thus from Corollary 4.3.2 we get

BR(S™Y) = Br({pt}) = Z,.

Definition 4.3.4. Let G i>s—> X bealocally compact groupoid. A graded real > D-D bundle
(A, a) over G consists of a locally trivial C* -bundle p : A — X, a family of isomorphisms of
graded R-C* -algebras a g : Asg) — Ar(g), such that

(a) the operation g-a:= ag(a) makes A into a G-space with respect to the projection p;
(b) agp=agoayV(g h) eG?;

(c) the complexification (Ac, ac) of (A, a) defines an element of the collection @(9) of
graded complex D-D bundles over G, where Ac := A ®r C — X is the bundle with
fibre (Ag)x := Ax®rC, and for g€ G, (ac)g:= a®Idc.

Definition 4.3.5. Let G i? X be a locally compact groupoid. The graded orthogonal

Brauer group BrO(S) of § is defined to be the set or Morita equivalence classes of graded
real D-D bundles over G, where two such bundles (A, a) and (B, B) are said to be Morita

equivalent if and only if their complexifications (Ac, ac) and (B¢, Bc) are Morita equivalent
inBr(S).

We will use the same notations in 1/3\1‘(9) and I?rT)(S) as in Notations 4.2.7.

Theorem 4.3.6. Let G i>s’—> X be alocally compact Hausdorff Real groupoid with X para-
compact.

1. Ifthe Real structure T is fixed point free, then we have an isomorphism
Br(9) ® Z[1/2] = (BrR(S) ® BI(S /1)) ® Z[1/2], (4.9)

where G/ is the groupoid G/, —= X/, obtained from G i>s’—> X by identifying ev-
ery point g € G with its image by .

2. It is trivial, then every element A € BrR(S) is a 2-torsion; i.e.

2A =0.

Furthermore, BR(S) = BrO(S). In particular, BrO(S) is an abelian group under the obvious
operations, zero element being given by the trivial bundle X x R — X with the G-action
8- (s(8), 1) :=(r(g), 1.

2Here "real" with a lowercase "r" is to emphasize that the fibers of A are R-C*-algebras.
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We shall mention that roperty 2 was already proved by D. Saltman in the special case
of Azumaya algebras with involution (see [79, Theorem 4.4 (a)]). Our result is then a gen-
eralization of this to infinite-dimensional Real bundles of algebras.

To prove Theorem 4.3.6 we need the

Lemma 4.3.7. Let (G, 1) be a locally compact Hausdorff Real groupoid with paracompact

base space. Then the assignment (A, @) — (1* A, T*a) defines an involution on the group

t: BHS) — Br9)
A — —T*A

such that the Real part Br(S); is isomorphic to BrR(S) after tensoring with Q; more precisely,
5 1 1
Br(9); ® Z[E] =BrR(9) ® Z[E]'

Proof. That 7 is a group homomorphism follows from the functorial property of the abelian
Br(9) ([49]). Now let
®c : BrR(§) — Br(9), A — A

be the map consisting of "forgetting the Real structures”, and let

®p: Br(9) — BIR(9)
A — A+T(A)

That ®¢ is a well-defined group homomorphism is clear.

To prove that @y is well defined, we shall first verify that (A& x7*A, a®7* a) € BrR(G)
for all (A,a) € %%(9). Let 0 = (04)x be the family of conjugate-linear isomorphisms of
graded complex C*-algebras o, : A BA; — AzA, given on homogeneous tensors by

o (adb(b)) := (=1)°%%% (héb(a)). (4.10)

Then o is a Real structure on the bundle A& x7*A — X, and it is a matter of simple verifi-
cations to see that conditions (a)-(c) in Definition 4.1.1 are satisfied when (A& Xﬁ, a®T*a)
is equipped with the involution o.

Suppose now that (A, a) ~4,v) (B,B) in @‘(9). By using the same reasoning as the one
we used above for graded complex D-D bundle, one verifies that the graded complex Ba-
nach G-bundle (X& x7*X, V&T*V) admits a Real structure g~
G-bundle. Note that this bundle implements a Morita equivalence (A® xT*A, a®t*a) ~
(B& XT*_IS, ﬁ@ﬁ) in ‘B\t(S). Moreover, since by definition

making it into a Rg Banach

A (SO, ' 0bMN) = 4,46, EN O bm),b(M), and &Ebm), ¢ b))y 475
forevery x € X,¢,¢',n,n' € Xy, then we see that the inner products A@XW<" Sand (-, '>B®xﬁ
of X& Xﬁ intertwine the Real structures; hence we have a Morita equivalence
(B&xt*B, B&T* B)

S * S\ 4 * ~ - _
(ASXT* A, a8T* @) ~ s 7% ver T
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in @(9), so that @y is well defined.
®p is a group homomorphism since Br(G) is an abelian group and since 7 is linear; i.e.
for every A, B € Br(9),

A+TAN+(B+T(BN=A+B)+TA+B).

Let us verify that up to inverting 2, ®, and ®¢ are inverse of each other, where @/, is the
restriction of ®x on the fixed points E}(S)R of 7. First observe that if (A, a) € @(9), then
the Real structure of A induces an isomorphism (A, a) = T*A,7"a) in @(9). Thus, for
A € BrR(G), we get (® o D¢)(A) = 2A. Suppose now that A € Br(G)g. Then (d¢ o D) (A) =
®¢(2A) = 2A, which completes the proof. O

Remark 4.3.8. It is straightforward, by using Lemma 4.3.7, that one has a similar charac-
terization for graded complex D-D bundles as that of Corollary 4.2.10.

Proof of Theorem 4.3.6. 1. It suffices to show that the imaginary part ’Br(G) with respect to
the involution 7 : /BY(S) — /BY(S) of Lemma 4.3.7 is isomorphic to /BY(S/ ) (afer inverting
2), and then we will apply Lemma 2.1.4.

Assume (A, a) € W(Q) is such that 7(A) = —A. Then thanks to Corollary 4.2.10, there
exists a Rg Hilbert G-bundle (%, U) and an isomorphism of Rg D-D bundles

T* A8 xK (), T a® Ady) — (A& xK (), ad Ady). (4.11)
We then obtain a Rg D-D bundle (A/;,a’) over G/, —= X/, by setting
Al = A8xK ()8 xK(1* ), and a” := ad Ady® Ad,+), (4.12)
with projection p; : A/; — X/, given by
p:(adTOT) = p(a), for adTOT' € A 8K () &K ().

Next define the map
¥,: ‘BrR(§) — Br(§/y)
.A _ ‘A/T'

This definition does not depend on the choice of (%2 ,U), for if (ff ’,U") is another Rg
Hilbert §-bundle such that (t* A& x K (), 7*ad Ady) = (Aé x K ("), ad Ady), then putting

Al = A8 x K (& xK(1* 74,

we get

.A/T@X/T.A,/T EA@Xﬁ‘gxfgx(%@)ﬂ’*%@Xﬁ’éx‘[*%')
;K(j@éxﬁ@)x‘[*%®x%/®x‘[*%').
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Moreover, K (& x & x1* # & x H#'& x1* ' defines a graded Hilbert G/, -bundle. Hence,
by Corollary 4.2.10 and Remark 4.3.8 we see that A/; = A'/; in Br(S/,). Y, isa group ho-
momorphism by commutativity of the graded tensor product.

Conversely, denote by 7, : § — G/, the canonical projection. Then the pull-back of a
graded complex D-D bundle (A, a) € Br(G/,) is a graded complex D-D bundle (A, a') :=
(mrA,mia) € Bt(S) which clearly verifies (1*A’,7*a’) = (A',a') in Bt(G) (this is because
for all x € X we have A, = A%);so #(A) = -A"and A’ € IBr(S). Thus the pull-back map 7
induces a group homomorphism

ni: BrS/) — Br(9)

A — Ai=mlA.

Now, for all A € Br(G/,;) we have (n*A)/,; = A since 7*7*A = n*A and so that a graded
Hilbert §-bundle 7 such that relation (4.11) holds for the graded complex D-D bundle
(n; A, i) is the trivial one X x C — X. This shows that ¥ on; =1d. Also, one clearly has
n; oW, =1d, which gives the isomorphism IBr(G) = Br(3/,). Combining Lemma 4.3.7 and
Lemma 2.1.4, we obtain the desired isomorphism (4.9).

2. We always have A + A=0in B/rT{(S) forall (A, a) € @%(9). Moreover, we have al-
ready seen in the end of the proof of Lemma 4.3.7 that the Real structure of A induces an
isomorphism of Rg D-D bundles (A, a) = (ﬁ, T*a). In particular, if 7 : § — § is trivial,
we have (A, a) = (Z, a@); hence A =-Ain ErT%(S).

Furthermore, 7 being trivial, each fibre of A is in fact a Rg elementary C*-algebra, and then
the complexification of a graded real elementary C*-algebra. (A, @) is then the complexifi-
cation of a graded real D-D bundle over G. Conversely, every complexification (Ac, ac) of
a graded real D-D bundle (A, a) over G is a Rg D-D bundle whose Real structure is carried
out by C;i.e. a®pl:=aegfora®gle Ay ®r C. This process is easily seen to provide an
isomorphism ]?rﬁ(S) = @(9). O

Observe that Rg D-D bundle (A, a) can also be considered as a graded real D-D bundle
(Areal, @reqr) by forgetting the complex structure of the fibers. Moreover, the conjugate
bundle of real C*-algebras (A;eql, @reqr) is itself. Hence, if the involution 7 of G is fixed
point free, we have m = 17"Areal = Areal, which means that (A, .47, @reqr) is a bun-
dle of graded real elementary C*-algebras over the quotient groupoid G/, —= X/, . We
therefore have the

Proposition 4.3.9. Suppose G i? X is endowed with a fixed point free involution t.

Then there is a group homomorphism
Yreal EIT:{(Q) - Er\O(S/T)

obtained by "forgetting the complex structures” of Rg graded D-D bundles over G.
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Remark 4.3.10. Beware that ¥ ., is not injective; indeed Y ooat(A) = ¥ rear(A) forall A e
§r§(9), while in generalﬁ ZAin §r§(9).

4.4 Flementary involutive triples and types of Rg D-D bun-
dles

In this section we define the fype of a Rg D-D bundle over a Real groupoid. We start by
introducing some notions.

Definition 4.4.1. An elementary involutive triple (K, KK, t) consists of a graded elementary
C*-algebralk, a graded C* -algebra K~ isomorphic to the conjugate C* -algebra of K, and a
conjugate linear isomorphism t: K — K~ of graded C* -algebra. Such triple will be repre-
sented by the map t. Denote byﬁ the collection of all elementary involutive triples.

A morphism fromt tot' is the data of homomorphisms of graded C* -algebras ¢ : K — K/,
and ¢~ : K~ — K'~ such that the following diagram commutes

b

[K/

(4.13)

Finally, we define the sum in f by:
t+t = (KOK', K™ &K', tét).
Example 4.4.2. The Real structure "bar" ofﬂ%o induces an isomorphism offJACO into its con-

jugate algebra. We then have an elementary involutive triple ty = Ko, Ko, bar).

Definition and Lemma 4.4.3. Two elementst,t’ € ] are said to be stably isomorphic if and
only ift+t is isomorphic tot +ty; in this case, we writet = t'. The set of stable isomorphism
classes of elements of R forms an abelian group InvR under the sum defined above. The
inverse of tin InvRR is the stable isomorphisms class of

—t:= (K7, K, t7™).
The class of t in InvR will also be denoted by t.
Proof. Ttis straightforward that t+t =t'+ tin InviR. Moreover, we have

A

t—t= (K&K, K &K, tdt™ !

1

KSR, KSR, 1),

via the isomorphism (Idg 45 -,¢"), where ¢’ : K~8®K — K&K~ is the canonical isomor-
phism ¢/ (T&T") := (-1)°T9T' T'& T, and t' := ¢’ o (t&t™1). Thus, t—t =, to. 0
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We can recover the group BrR(x) from InvR. More precisely, suppose t = —t, and
(@, ¢"): K&Ky, K~ &Ko, tdbar) — (K~ 8K, K&K, t ' &bar)

is an isomorphism. Then, ¢’ o (t&bar) = (t '&bar) o ¢ is a Real structure on the graded
elementary C*-algebra K&K (ff{). Moreover, if ((po,(pg) is another isomorphism, it is easy
to check that ¢’ o (t®&bar) and ¢ o (t&bar) are conjugate, hence define the same element
of BrR(#). Conversely, any Real graded elementary C*-algebra is obviously a 2-torsion of
InvR. We then have proved the following

Lemma 4.4.4. The group BrR(x) is isomorphic to the subgroup of Invi of elements of order
2.

Now let us return to the study if Rg D-D bundles over Real groupoids.

Proposition 4.4.5. Let (A, a) € BrR(S). Then each fiber A, gives rise to an element t/ €
InvR, and the family t" := (t}) xex defines a cohomology class in HR®(S., InvR). This process
defines a group homomorphism

t: BR(S) — HR%(S.,InvR),
which is surjective.

Proof. Denote by 7 the Real structure of A. Over all x € X, there is a conjugate linear iso-
morphism of graded C*-algebras 7, : Ay — Ajz. Then the graded elementary (complex)
C*-algebras A, and Aj; are of the same parity. Let (U, ) be a local trivialization of the
graded elementary complex C*-bundle A such that U = (U;) is a Real open cover of X.
Then the isomorphisms ¢; : U; x K, — Ay, induces a family of graded isomorphisms
¢y : Ky — Ay Then ty := (K, Ky, £y), where £y := @3 0T 0@y, is an element of Inv, and
the assignment X 3 x — t, € Invi is a locally constant G-invariant Real function. Indeed,
the G-invariance (i.e. t;(g) = ts(g) in Inv for all g € G) comes from the commutative dia-
gram

N Ps(g)
KS(g) AS(g)

its(g) lTS(g) \LTr(g) tr(g)l
Ps(@) ag

N Pr@ -~
Ksg) Asg Ag Krg

Moreover, since 7 is a continuous function, t4 : X 3 x — t, € Inv§ is locally constant.
Hence t* € HR°(G., InvR).

That t = —t4 and t"*® = ¢4 + (3 is clear from the definition of the sum and the in-
verse in InvR, and from the definition of the conjugate bundle and the tensor product
of Rg D-D bundles. Observe that from the construction of 9A<9, t*s = ty = 0 since fJACQ, =
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eex KUI?(G)) ® 3/%0 with involution given by jzx 29T — 1(p)® Adj,,(T) € j%,-c. Thus,
if A=3Bin @(9), we have (thanks to Lemma 4.2.8 and Lemma 4.2.10) A + B + j%g =
fK(.‘J:CQ ®X%) = 0; hence t*~2 = tA - t® = 0, which shows that t: BrR(G) — HR°(G., Invf)
is group homomorphism. It is surjective since for all t € HRO(S., |nv§i),

Kgp:= [] KibKe,, (4.14)
xeX

equipped with the obvious involution and G-action, defines a Rg D-D bundle over §. [

Definition 4.4.6. For (A, a) € BrR(G), the element t* of Proposition 4.4.5 is called the type
of (A, @). The homomorphismt: BR(SG) — HR(S.,InvR) is called the type map.

Definition 4.4.7. A Rg D-D bundle (A, ) is said to be of type i mod 8 ift* is the constant
functiont" = i € Zg < InvR. By BiR;(G) we denote the set of Morita equivalence classes of Rg
D-D bundles of typei mod 8 over G i>s—> X . Next, we define

7
BrR.(9) := @D BrRi(9).
i=0
Example 4.4.8. Let K be, as usual, equipped with the Real structure J g. Then Ko — - isa
Rg D-D bundle of type 0 over PU(H) == -, where the Real PU(H) -action is given by Ad;
ie. [u]-T:= Ady(T), for [u] € PUF) = Aut@ (Ky), T € Ko.

We have the following easy result which shows that the study of BrR(S) reduces to that
of Rg D-D bundles of type 0.

Proposition 4.4.9. Let G i>s"—> X beas usual. Then ErT{O(Q) is a subgroup of Erﬁ(S). Fur-

thermore, the sequences of groups

0 — BrRo(G) - BrR(G) — HR°(G.,InvR) — 0 (4.15)
0 — BrRy(S) - BrR.(G) — HR°(G.,Zs) — 0, (4.16)

where 1y is the inclusion homomorphism, are split-exact. Therefore, we have two isomor-
phisms of abelian groups

BR(S) = HR(SG.,InvR) ® BRo(S), and BrR.(S) = HR(S.,Zg) ® BrRo(9).

Proof. We only prove for the first sequence, from which we deduce the second one. It
is clear that toyy = 0 and ¢ is an injective homomorphism. We also proved in Proposi-
tion 4.4.5 that t was surjective. To show the sequence splits, we only have to verify that
the correspondence t — fJACg,t, where JACQ_t — X is the Rg D-D bundle given by (4.14)
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defines a group homomorphism HR°(S., |nvf%) — EE{(Q). This is immediate from con-
struction: we have fJACg,Htr =K Gt® xX g,¢» and a routine verification shows that any isomor-
phism t+ty = t' + tg induces an isomorphism of Rg D-D bundles UACQ,HtO = TJACg,trHO so that
JACQJ = SACQ,t/ in BrR(9) if t ~; t'. Also from the definition of —t, we have 3A<9,_t = fJACg,t = —chg,t.
Finally it is obvious that UACg,t is of type t. O

4.5 Generalized classifying morphisms

In this section we are dealing with the Rg D-D bundle Ko, Ad) of type 0 over the Real
groupoid PU(F) —= -, where PU(H) is equipped with the compact-open topology and

the usual involution induced by the degree 0 Real structure Jor on H.

Definition 4.5.1. Let (A, a) € BrR(9) of type 0. A generalized classifying morphism for
(A, @) is a generalized Real homomorphism P : § — PU(H) such that A a) = (JACP ,AdP)
as Rg D-D bundles.

Remark 4.5.2. Note that JACOP =P X 50(f0) JACO =P x fJACOI ~, Where the equivalence relation is
(@, T) ~ (- [ul, (w1117 for[u] € ITI\J(ﬂ:C). The Real G-action by automorphisms is given by
the Real (left) G-action on P.

Before going on the study of generalized classifying morphisms, we shall say some-
thing about generalized Real homomorphisms § — PU(H). First of all, recall from Re-
mark 3.10.2 that although the Real group ﬁ](ﬂtf) is not abelian, it still is possible to define
Real PU(H)-valued Cech 1-cocycles over any Real groupoid G, and hence form the set
HR(S.,PU(H)). Furthermore, as we had already pointed out, using the same arguments
as in Proposition 3.10.1, HRY(S.,PU(H)) and Homgg (G, PU(KH)) are set-theoretically bi-
jective.

However, when identified with Homg, (9,15[\](9;()), the set Homgsg (G, ISI\J(UCC)) admits
the structure of abelian monoid defined as follows. Fix an isomorphism

of Rg Hilbert spaces. Then the map
PUH) x PUKH) 3 (1], [ua]) — [ &11] € PUFHSF) = PUTH)
is a Real a homeomorphism, where the unitary u; ®u, is given on H &H by

(U1 &) (E18E2) := (1)U Uy (£ Uy (&),
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Given py,p2 € Homm@Q(S,ﬁJ(ﬂA{)), we may, without loss of generality, assume they are
represented on the same open Real cover U of X; i.e. py, p2: G[U] — PU(H) are strict Real
morhisms. Henceforth, the map

pi&ps: GU— PUKH)

N 4.17)
Yy — p1(y)®p2(y)

becomes a well defined strict Real homomorphism. Therefore we have:

Definition and Lemma 4.5.3. For [P;],[P>] € Homyg (G, ﬁ](ﬂtf)). We define the sum
[P1] + [P2] :=[P; ® P3],

where Py ® P, is the generalized homomorphism from G i>s"—> X to PUH) —=- ob-

tained by composing the corresponding morphism p1®p, € Hompye,, (S, PU(H)) with the
generalized Real morphism induced by a canonical Morita equivalence G ~ G[U]. Then
Homupe (G, PU () is an abelian monoid with respect to this operation.

Remark 4.5.4. The same reasoning applies to the Real group U° (H): the operation of ten-
sor product of cocycles makes the set Homge (G, U (F0)) = HR(S., U°(H)) into an abelian
monoid. Similarly the corresponding operation in Homggs (G, U° () is denoted additively.

We list some simple properties for generalized classifying morphisms.

Proposition 4.5.5. If P, and P, are generalized classifying morphisms for (A, a,) and
(A2, @), respectively, then Py ® P, is a generalized classifying morphism for the Real graded
tensor product (A& x Az, a1®as).

Proof. Up to considering the pull-back of A;,i = 1,2 along the canonical Real inclusion

G[U] — G, we can suppose that the (A;, ;) are Rg D-D bundles over the Real cover groupoid
§[UJ, where U is an open Real cover such that the morphisms p; € Homgpg,, (9,1§[\J(U:C))

corresponding to P; are represented. The isomorphisms (A;, a;) = (IJACP i AdP") mean that

the pull-back (p;.*fJACO, p; Ad) is isomorphic to (A;,a;),i = 1,2. We thus have reduced the

proposition to show that

(A1 y A, a1®az) = (p1&p2)* Ko, (p18p2)* Ad),

where Y =[];c; U;. But this is clear by using functorial property of BrR() in the category
RB; and the isomorphism of Rg D-D bundles (Ko®.Ko, Ad® Ad) = (Ko, Ad) over PU(F().
O

Proposition 4.5.6. Suppose Z :T' — G is a generalized Real homomorphism. Let (A, a) €
BrR(G) of type 0. If P is a generalized classifying morphism for (A, a), then Po Z is a gen-
eralized classifying morphism for A%, a%) e @(F).
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Proof. This is a consequence of the cofunctorial property of BrR() in the category R®:
i.e. A=XP implies A% = (K7 = K17 O

Proposition4.5.7. Let (A, @), (A2, az) beisomorphic Rg D-D bundles of type 0 over G i>s’—> X.
If P, and P, are generalized classifying morphisms for (Ay,a1) and (A, as), respectively,
there exists a G-PU(KH) -equivariant Real isomorphism Py = P».

Proof. Let fi : Ai — Pji X554 Ko,i=1,2, and ¢ : Ay — Ay be isomorphisms of Rg D-D
bundles. Then h:= f, 0(,b0f1_1 1Py X 5040 j%o — Py X 5060 IJACO is an isomorphism of Rg D-
D bundles over §. P; — X and P, — X being PU(J)-principal bundles, it follows from
the theory of principal bundles (see for instance Husemoller [38, §4.6]) that there exists
an isomorphism of ISI\J(J:C)—principal bundles f : Py — P, over X such that h([p, T]) =
[f(g), T] for all [¢, T] € Py X 50(f0) JACO. Moreover, f must be Real since & is. Also, since h
is G-equivariant, we have h([g-¢,T]) = g-h(lp,T]) = g-[f(p),T1 = (g f(¢), T], so that
[f(g-9), TI=Ig - flp), T,VIp, Tl € P, X50(d0) JACO. f is thus an isomorphism of generalized

—~

Real homomorphisms Py = Py:§ — PU(H). O
From Proposition 4.5.7 we deduce, among other things, the following

Corollary 4.5.8. Ifthereexists a generalized classifying morphism for (A, a) € BrR(S), then
it is unique up to isomorphism of generalized Real homomorphisms.

The existence of generalized classifying morphisms is the content of the nex section.
4.6 Construction of the classifying morphism P

Itis known (see [87]) that graded complex D-D bundles are, in some sense, classified by
the groupoid PU(() —=-; i.e. giving a graded complex D-D bundle A over § is equiv-
alent to giving a generalized morphism P € Homg (S, PU(H)), where & is the category of
topological groupoids and isomorphism classes of generalized morphisms. In view of the
isomorphism established in Lemma 4.3.7, it is natural to expect a similar correspondence
in the category of Real spaces. We show that the §-equivariant ﬁl(fff)-principal bundle
associated to a Rg D-D bundle admits a natural involution turning it into an element in
Homgy g (9,15[\1(5:0), where the Real groupoid ﬁI(J:C) —= . is given the compact-open
topology (which is equivalent to the *-strong operator topology) and the usual involution
Ad]o,mz' -

A Rg D-D bundle (A, @) € *BtR(9) being of type 0 means that the fibres A, are isomor-
phic to the graded complex elementary C*-algebra fJACeU =K (JA{), and there is a Real local
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trivialization (Uj, @) jey with commutative diagrams

hj ~
Ay, —= U; x Ko (4.18)

TUjl lrxbar
h-

]

.A|Uj4>U]Tij()

and a Real family of continuous function a;; : U;; — Aut©® (JACO) =PU(H), over every non-
empty intersection U;j = U; N U}, such that the homeomorphism

hioh;IZUinj%oﬁUinjzo

sends (x, T) to (x, a;;(x)T). Notice that (a;;) € ZRl(U,ﬁI(ﬂ)). We then obtain the "Real"
analog of the well known Dixmier-Douady class (see [27], [75]). What is more, we get a Real
ITI\J(JA{) -valued Cech 1-cocyle u over G as follows. From the Real open cover U = (U i)jess
from the Real open cover U; = (U(ljo,jl)) of G by setting U(ljo,jl) ={geflr(@eUj,s(ge
Uj,} (cf. (3.43)). Using the isomorphism of Rg C*-bundles s*A — r*A over § induced by
the Real G-action a and the commutative diagram (4.18), there is a Real family of contin-

uous family o jyy : UL . — Aut@(Kg) = PU(F) such that

(Jo,j1)
— 7. -1 1
Ko, i) (8) = Rl 0 Xg© hjlls(g),Vg €Uy iy (4.19)
where ijy, ., Arg) — {r(g} x Ko, and Rj g 188} % Ko — As(g) are the restrictions of
: : e gk L TT. % -1.77. K, o* :
the isomorphisms hj, : r A|U(1j0,j1) Ujy x Ko and k" : Uj, x Ko s AIU(le’jl)' It is easy

to verify that u# = (u jo,j1)) is @ Real 1-coboundary. We are going to show that the general-
ized Real homomorphism corresponding to the class to the class of u* in HR'(S., PU(F0))
is actually a classifying generalized morphism for (A, ).

We first give further constructions. For x € X, let P, := Isom® (5A<0,A ¥). Put

P:=[] Px. (4.20)
xeX
For g€ G and p = (s(g),¢) € Py(g), the G-action a of A provides the element g- p € P (g
given by
g p:=(r(g)agoy). (4.21)

We wish to define a topology on P such that not only the canonical projection P 3
(x,¢) — x € X is continuous but also the formula (4.21) defines a continuous action of §
on P with respect to the projection just given. To do so, we first consider the pull-backs
s*P— Gand r*P — G of P — X along the range and source maps. Then we look at the
fibred-product s*P xgr*P — G.
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Lemma 4.6.1. The G-action a of A induces a (set-theoretical) embedding
s*Pxgr*P— G xPU).
Proof. 1f ((g,), (g, W) € s* P xg r* P, then ¢~ o g o € Aut® (XKp) = PU (). It is straight-
forward to see that the correspondence
s*Pxgr*P — GxPUJ)
(89) (&) — gy 'oagop)
is a well-defined injection map. O

Definition 4.6.2. Let (A,a) € @(9) of type 0, and let P be given by (4.20). Let the space
s*P xg r*P be given the topology induced from the product topology of G x PU(H) via the
embedding of Lemma 4.6.1. Then we endow P with the topology induced from the embed-
ding

P — §*Pxgr*P
(x,0) — ((x,9),(x,9)
In this way, P is looked at as a subspace of G x PUH).

From this definition, it is obvious that the projection P — X is an open continuous
map with respect to which the formula (4.21) defines a continuous G-action on P. More-
over, P is a Real §-space with respect to the involution P 3 (x,¢) — (X, ), where for
pE Isom@® (U%O,Ax), the isomorphism ¢ is defined by ¢(T) := ﬁ forall T € fJACO.

Proposition 4.6.3. Let u € O(F0) and [u] its class in the group PU(H). For @ € P, we put
@-lul:=@oAd, € Py. Then the map P 3 (x,p) — (x,@ - [ul) € P defines a principal Real
PU(K)-action on P compatible with the G-action with respect to the projection P — X. In
other words, we have a generalized Real homomorphism

pP——s.
X

from§ to ﬁ](fff).

Proof. The continuity of the map PUH) x P > ([ul, (x,9)) — (x,¢ - [u]) € P is a direct
consequence of the construction of the topology of P. It respects the Real structures since
forall T e JACO,

@-[ul(T) = p(uTu™1) = po Ady(R) = o Ady(T),= (¢ - [@))(T).

It only reminds to check that the ﬁ](ﬁ)—action is principal; i.e. that condition
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(i) in Definition 2.2.1) is satisfied for the map P x PU(H) — P xx P given by

((x, ), [ul) — ((x, ), (x, - [])).

But this is clear; indeed that map has inverse P x x P — P x ISI\J(JA{) defined by

((x,9), (X, 1)) — ((x, ), o).
O

Proposition 4.6.4. The class of [P] € Homye (G, ﬁ](fff)) in HR'(S., ﬁJ(G:C)) is ,uA, the latter
being given by (4.19).

Proof. The Real local trivialization (U}, h;) of (4.18) gives rise to a Real family of local
sections s; : U; — P such that s;(x) = h]‘ﬁc e Isom©® (Xo,.A,). For g € U(ljo'j1
g hﬁlls(g) =ago h;llls(g)’ hence g-s;, (s(g)) =s;,(r(g)) - K(j,, j)» which proves the result (cf. the

) we have

proof of Proposition 3.10.1 for the construction of the class of such cohomology class). [

Proposition 4.6.5. Every Rg D-D bundle (A, a) of type 0 over G i? X admits a general-

ized classifying morphism P(A). Furthermore, the assignment

A~

[P — A([P]) := P X550 Ko

induces a well defined surjective homomorphism of abelian monoids
A : Homgg (G., PUH)) —  BrRo(S). (4.22)

Proof. LetP:§ — ﬁ](ff{) be the generalized Real homomorphism defined above (cf (4.20)).
Then the family of fibrewise maps

P59 Ko 3 (x,9), T) — @(T) € Ay

is clearly an isomorphism of Rg D-D bundles over G. Therefore, P: § — PTL\I(G:C) is a gen-
eralized classifying morphism for (A, a). The uniqueness of P is guaranteed by Corol-
lary 4.5.8.

The map A is well defined since an isomorphism of generalized Real homomorphisms
P = P! obviously induces an isomorphism between the associated Rg D-D bundles. It is
a homomorphism of abelian monoids, for if [P], [P'] € Homgg (G, PU(H)) then, thanks to
Proposition 4.5.5 and the uniqueness of the generalized classifying morphism, P ® P’ is
a generalized classifying morphism for A([P])®xA([P']) and for A([P] + [P']) at the same
time; so that A([P ® P']) = :T<§®P' = A([P])® xA([P']), which implies A([P] + [P']) = A([P]) +
A([P']) in l?rﬁo (9). The surjectivity of A is a consequence of the existence of the generalized
classifying morphism we just proved. O
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Remark 4.6.6. Let X be a locally compact Hausdorff space. Recall that Atiyah and Segal
defined the monoid Proj* (X) to be the set of infinite dimensional projective graded complex
Hilbert space bundles on X (see in [8, pp.11-12]) subjected to the operation of graded ten-
sor products, and showed that as a set, Proj* (X) = H' (X, Z,) x H*(X,Z). Note that if X is
endowed with a Real structure t, then Hompg G(X,PU(H)) is nothing but the Real analog of
Proj* (X). We thus may expect to have a similar result as in the complex case; this will be
discussed in the next sections.

4.7 Intermediate isomorphism theorem

Consider once again the abelian monoids Homgq@(S,fJO (if{)) and Homgz g (9,156 (ff()).
There is a canonical monomorphism

pr : Homge (G, U (F)) — Homgpe (G, PU(H))

induced by the canonical Real projection GO(J:C) — ﬁ](ff{); le,ifU:§ — UO(JA{) is a
generalized Real homomorphism, then we obtain a generalized Real homomorphism

proU:=U x4, PUTH) : § — PUT).
Definition 4.7.1. An element [P] € Hommqs(S,ﬁ[\J(iﬁf)) is called trivial if [P] = [pr o U] for
someU: G — U°(F).

Define an equivalence relation in Homgg (G, PU(H0) by saying that P,,P,: G — PU(H)
are stably isomorphic if there exists a trivial generalized Real homomorphism Q such that

[P1]+[Q] = [P2] +[QI.
In that case we write [P1] ~g; [P2]. We define
Homgg (9, PU (), := Homge (G, PUFD)/ -,
The class of [ P] with respect to "~;" is denoted by [P]s;

Lemma 4.7.2. [P] is trivial if and only if P is the generalized classifying morphism of a Rg
D-D bundle of the form (X (%), Ady) where (7, u) is a Rg Hilbert G-bundle.

Proof. Assume P = proU trivial. Let [w] € HRY(X, ﬁo (ff-()) be the class of the Real U° (U:C)—
principal bundle U — X, and let [c] € HR(S.,U°(H)) be the class of U as Real U°(H)-
principal §-bundle. Suppose, without loss of generality, that U = (Uj) jes is a Real open
cover of X on which w is represented, and such that c is represented on the Real open

cover U; = (U(ljo,jl))jo,hef- Then we get a Rg Hilbert G-bundle (%7, u) by setting:

S =1]Ujx K- (4.23)
jel
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where U; x K> (x,8) ~ (x,w;;(x)¢) € Uj x S:C; if [x,¢]; denotes the class in A of (x,8) €
Uj x K, we define the Real structure [x, ¢lj— 1%, & j (where as usual the "bar" in H is the
Real structure Jyr), and the projection 7 : H — X by 7([x,¢];) = x; the Real G-action U is

Uy ([s(8),€1j,) := [1(8), (i jn) (&€ jo- (4.24)

By construction, we see that proU = U x4, Ko is a generalized classifying morphism
for (fK(%Z),AdU) and that the class ,ux(j?) (recall (4.19)) in HRI(S,ﬁJ(U:C)) is Ad., where
(Adc)(]'o,h) = Adc(jo,h)' ) )
Conversely, a Rg Hilbert G-bundle (7, U) gives rise to a class [w] € HR'(G.,U° (%)),
hence to a generalized Real homomorphism U: § — IR (ff(). It follows from Proposi-
tion4.6.4 that proU:§ — PUH) isa generalized classifying morphism for (K (), Ady);
therefore P = pr o U by Corollary 4.5.8. O

Lemma 4.7.3. Homgpe (G, PU(H)); is an abelian group with respect to the sum, the inverse
of [Plst is [P*]s; where P* is the generalized classifying morphism for the conjugate bundle

of A([P]).

Proof. We only need to verify the existence of the inverse. P® P* is a generalized classifying
morphism for the Rg D-D bundle A([P])® xA([P]). From Corollary 4.2.10, P ® P* is then a
generalized classifying morphism for (X (%Z ), Ady) where (%Z ,U)isaRgHilbert G-bundle.
Therefore, [P ® P*] is trivial, by Lemma 4.7.2. O

The main result of this section is the following

Theorem 4.7.4. Let G i? X be a locally compact second-countable Real groupoid with

Real Haar system. Then ErT{O(Q) = Homgpg (G, ﬁj(j:c))st.
The proof is based on the following lemma.

Lemma 4.7.5. (Compare [87]). The sequence of abelian monoids
0 — Homge (5, U°(F0) 25 Homgpe (G, PU)) 2+ BrRy(5) — 0 (4.25)
is exact.

Proof. We have already seen that pr was a monomorphism of abelian monoids, and A was
an epimorphism of abelian monoids. It then remains to show that ker A = Im(pr).

Im(pr) c kerA: indeed, from Lemma 4.7.2 and Corollary 4.5.8, for all [U] € Homgpg (G, uo (if{)),
the Rg D-D bundle A([proU]) is of the form (K (), Ady), hence A([proU]) = 0in BrRy(S)
by Corollary 4.2.10.

ker A c Im(pr): if A([P]) = 0 then P is the generalized classifying morphism for some
(fK(ff), Ady). So, by Lemma 4.7.2, [P] is trivial; in other words, [P] = [proU] e Im(pr). O
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Proof of Theorem 4.7.4. Firstof all, observe that there is a canonical isomorphism of abelian

monoids A
Homgpe (G, PU(F0))

= Homgp (G, PU(F0) g1,
Im(pr)

the quotient monoid is then an abelian group. Moreover, from the exact sequence (4.25)
we deduce an isomorphism of abelian monoids

2 :BrRy(S) — Homggs (S, PUT0) 4,

such that Z(A) is the class in Homge (G, PU(H)); of the generalized classifying mor-
phism P of (A, a). Furthermore, by definition of the inverse in Homgg (S, PUF0) st, We
see that this isomorphism respects the inversion; it therefore is an isomorphism of abelian
groups, this completes the proof. O

4.8 Example: computation of BrR¢(*)

Here we apply the observations of the previous sections to compute the Rg Brauer
group of a locally compact Real group G —=-.

If § = G—=- is a Real group, and if S is a Real group, then Homg (G, S) identifies
with the set Hom(G, S)g of continuous Real group homomorphisms from G to S. In par-

ticular L
Hom(G,PU(H))r

Hom(G, U°(F0)r
For instance, if G is given the trivial Real structure, then

Homgpe (G, PU(H)),; =

Hom(G, PU(H(g))
Hom(G, U°(Hg))

Homgpe (G, PU(H), =

Moreover, a Rg D-D bundle over G —= - is obviously of constant type since it is given
by a Real bundle over the point together with a Real action of G; so BrR(G) = BrR, (G). It is
convenient to write ﬁﬁ%g(*) instead of ErTR(G) since it is exactly the Rg Brauer group of the
point with the trivial Real G-action. Similarly, we write ]?r\Og(*) and Efg(*).

Now, applying Proposition 4.4.9 and Theorem 4.7.4 to G, we get

Proposition 4.8.1. Let G be a locally compact Real group. Then

Hom(G,PU(H))r
Zg ®

BRg(%) = et
Hom(G, U%(H))r
Er\Og(*) ~ @Hom(G,PU(fHR))

Hom(G, U°(Hg))
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4.9 The main isomorphisms

The purpose of this section is to establish the main result of this chapter. Namely, we
prove the following theorem.

Theorem4.9.1. Let G i? X bealocally compact Hausdorff second-countable Real groupoid

with Real Haar system. Then

BR(S) = HR(S.,Inv® e (HR'(S.,Z5) x HR*(S.,Sh);
BR.(S) = HR"(S.,Zg)® (HR'(S.,Z5) x HR*(S.,Sh).
We first deduce from Theorem 4.9.1 and Theorem 3.14.7 the following corollary.

Corollary 4.9.2. Let G i>s'—> X bealocally compact Hausdor{f second-countable Real proper
groupoid with Real Haar system. Then

BRG) = HRG.,InvR) e (ARG, Z2) x ARG, 2"N);
BR.(9) = HR'S.,Zy)®(HR'(G.,Z2) x HR*(G.,Z°h).

We also deduce a generalization of Donovan-Karoubi’s isomorphism (4.7):

Corollary 4.9.3. Let G i>s”—> X be a groupoid with paracompact unit space and Haar sys-

tem. Then
BrO(9) = H°(S.,Zg) ® (A (8., Z2) x H(S.,22)).

Proof. This follows from Theorem 4.3.6 2), Theorem 4.9.1, and the fact that when G is given
the trivial involution, HR"(S.,S!) = H"(S.,Z,) (see 22). O

The proof of Theorem 4.9.1 is divided into several steps that mainly consist of con-
structing an isomorphism Homg (G, PU(F0) s = ExtR(G, S).
Let us consider the following "generic" Rg S!-central extension Es, of PUF) —=-

1 ~ A pr o~ A
St —UH) —=PUKH) (4.26)
la
2y

where d([u]) is the degree of the homogeneous unitary u.

Let G i>s’—> X be aReal groupoid andletP: G — PU(H) bea generalized Real homo-

morphism. Then we get a Rg S!-central extension P*[EJA% of G by pulling back Eg, via P
(see Definition and Proposition 2.7.2).
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Lemma4.9.4. Theassignment P — P* Es, induces a well defined homomorphism of abelian

monoids L -
. Homwge(G,PUH) — ExR(G,Sh)

[P] — [P*Eg,]

Proof. Assume P = P’ are isomorphic generalized Real homomorphisms from G to PU ().
As usual, we may assume that P and P’ are represented in Homm%(S,lsl\J(iﬁf)) on the
same Real open cover U of X by two Real strict homomorphisms f : §[U] — ﬁJ(U:C)
and f': G[U] — PUF), respectively. The pull-backs P”‘[E‘,JA<O and (P’ )*[Eico are then Morita
equivalent to
S —= U0 x 5y, SIW —= SIUI
-
Zs

and
s — U0 X s, pr IU — SlUI

:

Zy

respectively, where in both cases, the projection is the canonical one onto the second fac-
tor. Since P = P/, there is an isomorphism of Real groupoids ¢ : G[U] — G[U] such that
f' = f o¢. Therefore, the map

U0 %, pug0,  SU — TEF) x 5550 S

defined by (u,y) — (1, $(y)) induces an isomorphism of Rg S$'-central extension P* Ex, =
(P’ )“Eg,- Hence 7 is well defined.

Let us check that .7 is a homomorphism. Let [P;],[P,] € Homm®(9,l§fj(if{)) and let
p1,p2: §lUl — PU(H) be Real strict morphisms representing [P1] and [P;], respectively
in the category R®q. Then the map
(060 % 11050 pr 1) %500 (OO 51550, GUD) — OEEFO X, 555 5c850) prp S
defined by

((u1,7), (u2,7)) — (1®uy,y),

is easily checked to define an isomorphism of Rg S'-central extensions
Py [E9A<0)®(P; Ex,) =P @ Pg)*[EgACO.

Thus, .7 ([P1] + [P2]) = 7 ([P1]) + 7 ([P>]), and we are done. O
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Lemma 4.9.5. If[P] is trivial, then 7 ([P]) =0 in ExR(G,S)). Therefore, 7 induces a ho-
momorphism of abelian groups

Homgs (G, PUI0) s — ExR(S, SV,
also denoted by 7 .

Proof. Since .7 ([P]) depends only on the isomorphism class of P, it suffices to suppose
P = proU for some generalized Real homomorphism U : § — U°(H). Let u: G[U] —
U(H) be a Real strict homomorphism representing U in the category R®q. Then the
Real groupoids morphism p : §[U] — lfl\l(if{) given by p(y) = [uy] represents P. It follows
that the map

9 [u] - U(g{) X pr’ﬁj(j:o,p 9 [u] X p’ﬁj(j:(:),pr U(:}C)

Y — (ty, 7, Uy)
is a well defined section of the projection of (p*lsl\l(f]:(), G[U],0 0 p); the latter is then a

strictly trivial Rg S!-twist (cf. Proposition 2.5.7). Therefore, P* Ex, isa trivial Rg S'-central
extension of G. O

At this point, we are following closely [90, §2.6] to construct a homomorphism &’ in
the other direction; and then we will show that .7 and &' are inverses of each other.

LetE = (T,T,8, Z) be a Rg S'-central extension of G i>s’—> X.

Definition 4.9.6. ( (90, Definition 2.37]). A function ¢ € Gc(f) is said §1-equivariant if
EAP) = A7YEF) forany A€ S and any 7 €T.

Let u = {t}yey be a Real Haar system of the Real groupoid T—=Y . For y € Y,
consider the graded Hilbert space Lf, = L2(TV )§1 consisting of Sl—equivariant functions
on I'Y which are L? with respect to u. Note that the Z,-grading of L?, is the one induced
by 6; i.e., foré € Gc(fy)gl, define 6¢ by

GO = ~D°VeP), (4.27)
where y € T is such that 7 (y) = y. Let

M, =L50H, and A ;= ]7[%”’ (4.28)

where, as usual 3 = [?(N) is the generic separable infinite dimensional Hilbert space, en-
dowed with the Real structure Ji given by the complex conjugation with respect to the
canonical basis. Then the countably generated continuous field of infinite dimensional
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graded Hilbert spaces %;j: — Y, is alocally trivial graded Hilbert bundle, and hence triv-
ial thanks to [27, Théoréme 5]. By identifying 7 y with the space

LAT905 = € €350 1 AP = A7'é(p), YA e STy eIV,
we define the Real structure on /% by
M, 38— €M, (4.29)

where () := £(7) for all € T7. Together with this involution, %21: is clearly a Rg Hilbert
bundle over Y.
Forye Y, let OZ/}J =U° (JA{,c%”iy) UUL(K, Jt; ) be the space of homogeneous unitary
operators from H to ¢ ) Put
=1 %,
yey
The field % is endowed with the topology induced from .7#: a section Y 3 y — Uy € %
is continuous if and only if for every ¢ € H, the map y — uy¢ is a continuous section of
C%Zf — Y. The bundle @/1 — Y is, in an obvious way, a Real U(H)-principal bundle, with
the Real structure OZ/}'}, U— i€ %r R where for £ € K, i) = TE) € %y Notice that
scalar multiplication with elements of the fibers ?/Af, y induces a Real S'-action on %}. It
follows that its quotient
P = Ul S (4.30)
is a Real PU(J)-principal bundle over Y. We write [(x, u)] the class of (x,u) € @Zf,y in the
quotient P%;.
One defines a Real left I'-action on IP%} — Y in the following way: let y € I" and
[(s(y),w)] € P%}, then y - [(s(g), u)] is the class [(r(y),y - w)] of the element (r(y),y-u) €
U 1y Where for each & € J{, the function (y - )¢ € L* ([T F0)" is given by

(y-wé: T s h— (wd)(§ 'h),

where y € 1~"y is any lift of y with respect to the projection I — I'. It is easy to verify that
with respect to this well defined Real action, I]MZZf is a Real ﬁ](if-()-principal bundle over
the Real groupoid T’ i? Y , in other words, it is a generalized Real homomorphism from

['to PU) —=-.

PU-
Now the composite § Z, F —E PU(J{) gives us the generalized Real homomorphism

PE:=P%02Z7':G— PUID. (4.31)

Remark 4.9.7. Notice that the Real T -action on P%x is induced by the Real T -action on
@/} defined by v - (s(y),u) := (r(y),7 - u), where for ¢ € iﬁ(, ((y-wé)(h) = (u{)(if‘lh) for all
heT™ D, Infact, %} is a Real U(F) -principal bundle over the Real groupoid T —= Y .
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Lemma 4.9.8. Let[E; = (fi,Fi,éi,Zi),i = 1,2 be Morita equivalent Rg S!-central exten-
sions of G == X , with equivalence implemented by an S'-equivarient Morita equiva-

lence Z :T1 — Fg (see Definition 2.6.1). Denote by Z' = Z1S!: Ty — T, the induced Morita
equivalence. Then I]J’?/r2 oZ'and I]MZ/rl are isomorphic.

Proof. This is a consequence of [90, Lemma 2.39]. O

Lemma 4.9.9. Assume[, and[E, are Morita equivalent RgS' -central extensions of G. Then
[PE1] = [PEa].

Proof. A Morita equivalence I ~z G induces an isomorphism of abelian monoids
Z,. :homgg (T, PU(FH)) — Homgpe (G, PU(FH))

given by Z,.[P]:=[Po Z71 (190, Proposition 2.35]).
Now if Z is a Morita equivalence from E; and E,, then under the notations of Lemma 4.9.8,
the commutative diagram of generalized Real homomorphisms

r,—=>——r
induces a commutative diagram of abelian monoids

ZI

*

Homge (I'1, PU () Homgg (2, PU ()

Zl* ZZ*
Hompe (3, PUF)

Consequently, P%}z o(ZN oz = IP?/}I o Z7! = PE;. But from Lemma 4.9.8, P%}l o
(27! =P%;,. Therefore, PE, = PE,. 0
Lemma 4.9.10. The assignmentE — PE induces group homomorphism

P': ExiR(G,S") — Hommpe (§, PUFH)) 1, [E] — [PEly.
Moreover 7 o &' =1d.

Proof. The second statement follows from [90, Proposition 2.38].

For the first statement, we shall check first that [PE] is trivial for E trivial. But, thanks to
the previous lemma, it suffices to show that PEy comes from a generalized Real homomor-
phism U : § — U°(H(), where E, is the trivial extension (G x S',G,0). This is obvious since
L2(G* x Sl)§1 = [2(S%), which implies in particular that there is a canonical Real graded
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G-action on the Real (trivially) graded Hilbert bundle .75, .
Let [E;], [Eo] € ExtR(G,S'). For the sake of simplicity, we shall assume E; and E, are rep-
resented by Rg S'-twists (I'y,T,8;) and (I's,T,8,) over the same Real groupoid T —~=v

Morita equivalent to G. Let u; be a Real Haar system of I';,i = 1,2. Then T'; &I, is equipped
with the Real Haar system p; xs1 t2, and I' is equipped with the image of the later (here
U1 Xs1 l2 is meant to say the product measure is invariant under the diagonal action by
S1). For y € Y, we denote by C.(T}; 30 &¢, v Cc(T2;H)S' the completion, with respect
to the inductive limit topology in C.(TY®T))S", of the €. (T?)-linear span of

[a68 16 e ee e},

where &, 0¢&; € C(TY8T5)®" is defined by [(71,72)] — &1 (71)€2(f2), and where C.(I") acts
on C,(I)®' by the formulas: (&1-¢) (1) = &1 (F1)p0m1 (71), and (p-E2) (F2) = p(m2(72))E2(72)
foré; e Gc(f{)gl,(p eC.I),é e Gc(f%') andy; € f?, i =1,2. Then, passing to the L[%-norms,
the graded Hilbert spaces L?(T'} 8T )S" and L2 T )S'% 2 L? (f;’)gl are isomorphic.
Define a generalized Real homomorphism % (I') : T — U° (0 by the Real filed
U (1) := [ ] OO, L2(17) @ F0),
yey

where the Real I'-action is induced by the Real I'-action on the Rg Hilbert I'-bundle .7 (I') =
ey L*IY)@H — Y defined by y-(s(y), &) := (r(y),y-&), with (y-&) (h) := &(y~' h) for every
heT™™ (note that the grading of () is carried by L[2(T7Y) and is given by (01 ® 02)¢(y) :=

(—1)1 M+ ¢ (y)). Then, remarking that pro% (I') = % (I /S', we define an isomorphism
of Real ISI\J(GA{)—principal bundles over T’ i? Y

P, ®P%, ® (pro% (1) — P 4,

) (4.32)
[(yud]e[(yu)le[(y,v)] — (v (10Ul

as follows: given & € K, we write u;(&) = Y ¢{ ®17{, i =1,2, where (/b{ € Lz(ff)y,n{ €K,
and similarly, v(&) =) j wf ® (/€ [3(I'Y) ® H; then the unitary v- (u; ®uy) is defined by
- bw) @ =X, (vl ¢lop])en]enied

AN o - (4.33)
e[ o) eHeHeH=I2[ e T)HS @ K.

Thus [P%}léfz] ~st [[P’?/}1 ® IP%}Z] in Homgpg (F,ﬁ](if-()). Therefore, by functoriality, we
have [P(E; ®E;)] ~5; [(PE>)® (PE»)], which means that 2/ ([E;]+[E,]) = £/ ([E1]) + 2 ([EL)).
O

Lemma4.9.11. We have &' o  =1d; consequently, we have a group isomorphism

Homgpe (G, PU(F0)s, = ExtR(G, SH).
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Proof. Inview of Lemma 4.9.10, we only have to verify that %'0.7 =1d. Let [P] € Homg (G, ﬁ](if-())
be represented by a pair [(U, p)] € Homgye,, (5, PU(F0)). Recall (see Proposition 2.4.13) that
P=Po Zﬁll’ where 1y : §[U] — G is the canonical Real inclusion and P’ is the generalized
Real homomorphism induced from the strict Real homomorphism p : §[U] — PU(J).
Notice that P’ = [[; U; x PU(H) together with the Real G[U]-action gj,;, - (s(g)j;,[u]) :=
(r(g) jy, [u]). On the other hand, there is canonical Real §[U]-action on the Rg Hilbert bun-
dle %ﬂ “Gdey hence P% "G = = PU(H, 7 *U(TH)) =11;Uj x PUF() = P'. Tt follows that

P, 00 © Zil EP'0 z-1 = p, and hence &'(7 ([P))) = [P]. 0
Proof of Theorem 4.9.1. By Theorem ?2, Theorem 4.7.4, and Lemma 4.9.11: we have an
isomorphism

ddo.7 o P :BrRy(§) — HR'(S.,Z5) x H*(G.,S").
The result then follows from 4.4.9. O

4.10 Oriented Rg D-D bundles

Definition 4.10.1. ForA € BrR(S), its imagein HR°(S., InvR)®(HR'(S.,Z,) x HR*(S.,SY)
is called the D-D class of A and is denoted by DD(A).

Definition 4.10.2. Given a Rg D-D bundle (A, &) of type 0, the Rg S' -central extension ob-
tained by the composite

BrRo(9) 2 Homgs (G, PU(F0) -2 ExiR(S, ")
is called the associated Rg extension and is denoted byt 4.

Definition 4.10.3. A Rg D-D bundle (A, a) is called oriented if its D-D class is of the form
(0,0,¢); (A,a) is then of type 0. By BR(G) we denote the subset of BIR(S) consisting of
oriented Rg D-D bundles.

It should be noted that the associated Rg extension E4 of an oriented Rg D-D bun-
dle is even in the sense that the grading 6 of E4 is the zero function. Of course Morita
equivalence and tensor product of Rg D-D bundles preserve orientation. Thus BrR"(9)
is a subgroup of BrRy(9). Indeed, using similar arguments as in [42, §3.4], we obtain the
"Real analog" of Kumjian-Muhly-Renault-Williams [49].

Theorem 4.10.4. Let G i? X bealocally compact Hausdor{f second-countable Real groupoid
with Real Haar system. Then

BR"(9) = Homyes (G, PU° (90) 5, = FIR%(S., SY).
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Remark 4.10.5. We shall note that the above result generalizes Rosenberg classification of
real continuous-trace algebras given in [78]. Indeed, let (X,T) be a compact Real space.
Then BR' (X) = HR2(X,S") = HR3(X,Z""). Thus, if A € BR (X) with Dixmier-Douady
class DD(A) = a € HR3(X, 7%, we have t*a = —a, which coincides with [78, Proposition
3.1].



Equivalence Theorem for Real Graded Fell
systems

:

This chapter is aimed at investigating Fell bundles and their C*-algebras in the graded

and Real case (see [48] or [90, A.2] for an introduction to Fell bundles). We will study in §.
5.2 the graded Real reduced C*-algebras of given graded Real Fell bundles and their Morita
equivalences. More specifically, we will give in §. 5.6 the analogue of the Renault’s equiv-
alence theorem (cf. [64, Theorem 2.8]) for the graded Real reduced groupoid C*-algebras.
We refer to [77, 64] and more recently [65] for more details on the Renault’s equivalence
theorem for groupoid C*-algebras and for groupoid crossed products. In Section 5.3 we
will introduce the notion of garded Real Fell pair, and equivalence of graded Real Fell bun-
dles, and then in Section 5.6, we will profit from the technical tools of Sims and Williams
in [83] using the so-called linking groupoid (cf. [69]).
We should mention that the Renaul’s equivalence theorem has been already proven by P.
Mubhly and D. Williams for trivially graded Fell bundles (see [66]). We however propose
a different approach from theirs taking into account those not necessarily trivial gradings
(and Real structures).

Throughout this chapter, (G, p), (T, ), etc. are locally compact, second countable, Haus-
dorff Real groupoids with open source and range maps, and u (or yg, ur, etc.) is a Real Haar
system.

5.1 RgFell bundles and their full C*-algebras

107
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Let p: & — G be a Rg Banach bundle with Real structure o : & — &’. Set
&% :={(er,e) € & x & | (plen), ple) € P}

Endow &2 with the obvious Real structure ¢'?. If m: @ — G denotes the partial multi-
plication of the groupoid G i>s—> X , then the pull-back (m*&’, m* o) is a Rg Banach bundle

over (G@,g®),

Definition 5.1.1 (Compare [48]). A multiplication on (£, 0) is a continuous Real map
&3 (e1,e2) — ((pler), plen)), e1es) em* & (5.1)

that satisfies the following properties:

(i) the induced map &g x &, — &gy, is bilinear and sends é;f X éalf to é"gi;;j, i,j=0,1, for
(g eg?;

(ii) (associativity) (e;es)es = e1(e2e3) whenever the multiplication is defined;
(i) lerezll < llerlllell, for every (e1,e2) € &2

A *-involution on (&', 0) is a continuous 2-periodic Real map (*): & 3 e— e* € & such
that

(iv) p(e*)=ple)L;

(v) the induced map (*) : 6g — &,-1 is conjugate linear and graded, for all g € G.

Finally, we say that p : (£,0) — (G, p) is a Rg Fell bundle if in addition the following
conditions hold:

i) (e1e2)* =e;e}, V(e e) € &;
wii) lle*ell = |lel®, Vee &;
(viii) e*e=0, Vee &;

(ix) (fullness) the image of &g x &, — &gy, spans a dense subspace of Egp,.

The pair (G, &) is called a Rg Fell system; we will also write ((3, p), (&,0)) when the needs
arise.

Remark 5.1.2. Conditions (v),(vi) and (vii) of the definition imply that for x € X, & isa
graded C* -algebra. In particular, the restriction &© := € x, together with the Real structure
o, defines a Rg C* -bundle over X.
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Given a Rg Fell bundle & over a second countable locally compact Hausdorff Real
groupoid G with a Real Haar system u, we want to turn the space C.(G;&) of compactly
supported continuous sections into a Rg C*-algebra (C*(G; &), o) that we will call the full
Rg C*-algebra associated to (&, 0). For this end, observe first that C.(G; &) is graded by

Ce(G;&E) 3 & — €0, (5.2)
where € is the (fiberwise) grading of &, and has the natural Real structure given by
Ce(G;E)3E—0a():=00l0p. (5.3)
The following is a particular case of [32, Proposition 3.11].

Lemmab5.1.3. Let(&,0) bea Rg Fell bundle over G, and let B be a Real subspace of (Cy(G; &), o)
that is invariant under the grading. Assume that

(@) &€ B and g e Cy(S) implies ¢ -& € B, where (¢-&)(g) := p(g)é(g), and
(b) foreachge G, theset{((g) : ¢ € B} is dense, as a graded subspace, in &g.
Then, as a Rg subspace, (B, o) is dense in (Cy(G; &), 0).

Definition 5.1.4. Let (&,0) be a Rg Fell bundle over G. Given f € C.(G®) and & € Cy(G; &),
we define the function f ® £ : ¥ — m*& by

(fe¢)(g h) = f(g hi(gh) e,

forall (g, h) € §2. Such a function will be called an elementary tensor. Next, we set
C(G?)6C(G; &) :=span{f @¢ : feCc(G?),¢€Co(GEN}.

Proposition 5.1.5. (Compare with [32, Proposition 3.40]). Let (&,0) be as above. Then,
each elementary tensor f ® ¢ is a compactly supported continuous sections of (m*&, m* o)
over G& vanishing at infinity; i.e. f®¢e€ C.(G®:; m*&). Furthermore, C.(G@)6Cy(G; &),
equipped with the Z, -grading 1®¢ and Real involution p® ®0, is dense in (Cy(G?; m*), m* o).

Proof. That an elementary tensor f ® ¢ defines a continuous section in C(G®;m*&) is
clear. Moreover, from the definition, one has [[(f ® {)(g, W)l = I f(g, M IIIE(gh)]l; hence
supp(f ®¢&) c supp(f), and this shows that f®¢ € C.(G?; m*&). Note that the grading 1®¢
and the Real structure p® ® o of C.(G§?)5Cy(G; €) are respectively given over elementary
tensors by

A®e)(f®d) (g, h) = f(g, he(gh)), and
PP e0)(fedg h = flo(g),p(h).vE(p(gh));
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while that of Cy(G®@; m* &) are
(m*e))(g, h) :=€egn({(g, ), and

m*a({)(g,h):=m o (p(g),ph)).

Itis easy to see that m*e(f ®¢) = (1®e)(f® ) and m*o(f ®¢) = (p(z) ®0)(f ®¢); therefore,
Cc(G@)6Cy(G; &) is a Rg subspace of €y (G@; m* &).

To prove that (C.(G?)6C(G;&),p? ® 0) is dense in Cy(G@;m* &), we just have to
check that the conditions (a) and (b) in Lemma 5.1.3 held for the Rg Fell bundle (m* &, m*v)
of (G?, p(z)) and the Rg subspace C.(G@)5Cy(G; &). For peC (G%) and an elementary ten-
sor f®¢, one has (p-(f®&)(g,h) =¢(g h)f(g hi(gh)=(pf®&I(g, h); then condition
(a) holds. For condition (b), we are using the same arguments as in [32, Proposition 3.40].
Let (g, h) € G@ andee m* &g, = Egn, and let f € C.(G?) such that f(g,h) =1. Choose
a section ¢ € Cy(G; &) such that {(gh) = e. Then (f ® {)(g, h) = e, which completes the
proof. O

Proposition 5.1.6. Let (G, &) be a Rg Fell system and let u be a Real Haar system for G. Then
(Cc(G;8),0) is a Rg ™ -algebra with respect to the following operations:

& *n)(g) :=[qr(g)f(y)n(y‘lg)dur(g) 1), foré,neCq(S;&), and (5.4)

§r(g)=¢g™h". (5.5)
The following lemma will be needed in the proof of the above proposition.

Lemma 5.1.7. Let the above settings be given. Then, given a section y € C.(§?; m*&), the
formula

vig):= fgs(g) roy g dn®m), (5.6)

provides a continuous sectiony € C.(G; €).

Proof. Observe that, from the definition of m* &, for every y € G5,

XY '8 €8y g = Ep;

so that y(y,y'g™")* € &4. Hence, for every g € G, the integral (5.6) takes values in &, and
v is then a section of &. It then remains to check that ¥ is continuous and compactly
supported. However, from Proposition 5.1.5, y is the uniform limit of a sum of the form
2. fi®¢&;. On the other hand, it is easy to see that if y ; — x with respect to the inductive
limit topology in C (6¥; m*&), then ¥ j — w with respect to the inductive limit topology.



5.1. Rg Fell bundles and their full C*-algebras 111

It turns out that we can restrict ourselves to the case when y = f®¢ is an elemantary tensor.
In this case, we have

v = fgs(g) Foy g hdu™®mig™".

Next, it is not hard, using the Stone-Weierstrass’ Theorem, to check that span{fi.f,: Gx G >
(81,82) — filg) fo(g) | fi, f» € Cc(9)} is dense in C.(G x G). Now, since G is a closed
subset of the normal space G x G, we can extend the function f € C.(G?) to all of G x G.
Thus, we can suppose that v is of the form

V)= | FORTE Dde P g 62

It follows that suppy < (supp f1) (supp f2), where the latter is the set

{81821 81 € supp f1, g2 € supp f» €}.

This shows that 1 is compactly supported. Now we can use the same arguments as above
and that of Renault in [76, Proposition II.1.1] to show the continuity of ¥. Extend the
function §® 3 (g,7) — fo(y"'g™") to a bounded continuous function f> : §x § — C.
Since the function § 3 g — Ig € C.(9), where lg(y) — fi(y) f>(g,7) is continuous, so is
the function

GxX>3(g,x)— fgxf1(Y)fz(g,Y)dHS(g)(Y)f(g_l)* € &y,

and in particular, its restriction to the subspace {(g,s(g)) € G x X | g € G} is continuous;
hence the function defined by (5.7) is continuous. Therefore, ¥ € T'+(G; &). O

Remark 5.1.8. Notice that in the above proof we have freely used the assumption that the
involution in C.(G; &) given by (5.1.6) is well defined. In fact, this is not hard to check as it
will be fleshed out below.

Proof of Proposition 5.1.6. We shall first show that the operations are well defined. Given
£€C:(G6),¢(g7) €8s thusE*(g) =&(g™1)* € &y and &* iswell in C(G; &), the continuity
of * coming from that of £ and supp¢* being exactly

(suppé)~':={g~' € G| g e suppgl.
Note that the formula ¢ * 7 defined by (5.4) is just an application of Lemma 5.1.7 by setting:
x(81,82) :=1(82)"E(g1)*, for (g1, 82) € §%;

so that
sen@ =[xy e du® .
Gsg™h
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Furthermore, if g € supp (£ #7), then there exists y € G"8) such that both of é(y) and n(y~'g)
are nonzero. Then Y~ g € suppn, and then supp(¢ * n) < (supp &) (suppn).

Itisroutine to check that the convolution and the involution operations are compatible
with both of the Z,-grading and the Real structure of C.(G; &). Furthermore, the convolu-
tion is associative: if {,7,{ € C;(§; &), and g € G, then

& *mn) *{(g) ngr(g) Exn Gy edu"® (y)
:fgr(g) grmé(h)n(h‘ly)((y—lg)dur(y)(h)dur(g)m
:fgr(g)€(h)f9r(h)n(h—ly)é(y—lg)dur(mmdﬂr(g)(h)
- L”g) ¢ fgsm) Ny ) dpt P dp @ (i,

where we used the associativity of the multiplication on (&, o) to get the third equality and
the left invariance of the Haar measure p to obtain the last one. Then we get

(&xm) * () = fg o SO O @ dp" ()
=& m*0)(g).

We shall also verify that the operation (5.1.6) anti-commutes with the convolution. To do
this, observe that since the *-involution on (&, ) is antilinear, the same arguments we
used in the proof of Lemma 3.14.9 would show that if f € C.(§; &), and g € G, then

(f f(y)du“g)(y)) = f foy*du® ).
Ggr® Ggrg

It follows that if {,n € T'+(G; €) and g € G; then

Exm'(g)= Ugs(g) Sy g @ )
— -1 ,-1y* * g7..5(8)
—f ny g ) Em du s (y)
gs(g)
=f n*(gPE(y Hdu'® (y)
gs(g)

= n* (& (y tg)du"® (y), by the left invariance of y,
r(g)

=n"*&*(g).

At this point, it remains to show that these operations are continuous with respect to the
inductive limit topology. Suppose that {; — ¢ and n; — 71 in C.(G; &) with respect to the
inductive limit topology, and that K and L are compact subsets of G such that, eventually,
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supp¢; < K and suppmn; < L. Then, eventually, supp(¢{; * ;) € KL. Now, from (3.64), one
has

”6 *1— 61' * nz” = \/;r(g) ||(f(7/)n(fy_lg) _ é‘l(,},)nl(,)/—lg)”dur(g) (Y)
< f9 W =& MG 9 ldu"

+f9r(g) IEMInG ™) —nity ' g)lldu"® ().

Therefore, {; *xn; — ¢xnin C.(9; &) with respect to the inductive limit topology. Moreover,
eventually, supp¢; < K ~1. Then, from the definition of the *-involution,

I1E* (@) =& @1 =1 =&ig™ D" I;
hence ¢; — ¢* with respect to the inductive limit topology. O

Remark 5.1.9. Although we had not mentioned it before, we used in the last part of the
proofthe fact that given € C.(G; &), the function G > g — |£(g)|l € R, is u-integrable since
it is continuous and compactly supported.

Definition 5.1.10. Assume (G, &) is a Rg Fell system. For & € C.(G; &), we set
€ :=sup | NE@Idu*(y).
xeX JG*
Then, we define the I-norm on C.(G; &) by

€17 := max{lI¢Ily, 1§ 1}

The proposition below can been seen as a generalisation of [76, Proposition 11.1.4]
or [32, Proposition 3.57]. For this reason, we will omit the proof.

Proposition 5.1.11. Suppose (G,&) is a Rg Fell system. Then the I-norm is a norm on
Cc(G; &), compatible with the grading, invariant with respect to the involution o, and defin-
ing a topology coarser than the inductive limit topology.

Proposition 5.1.12. Let (G,&’) be a Rg Fell system. Then the Rg * -algebra (I':(G;&),0) ad-
mits a self-adjoint two-sided Real approximate identity with respect to the inductive limit
topology.

The proof of Proposition 5.1.12 will be delayed until Section 5.5

Definition 5.1.13. Let (L}(G; &), 0) be the Rg Banach * -algebra consisting of the completion
LYG; &) of C.(G; &) with respect to the I-norm, and the grading and Real structure extended
to L'(G; &). Then the full Rg C*-algebra of (&, 0), denoted by (C*(G; &), 0), is defined as the
enveloping C* -algebra C*(G; &) of L*(G; &), provided with the grading and the Real struc-
ture ole (G; &) extended .

Recall (see for instance [26, 2.7.2]) that given a *-algebra A with an approximate identity, and equipped
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5.2 Reduced crossed products

Our goal in this section is to construct a graded Real C*-algebra associated to a Rg
Dixmier-Douady bundle (A, a) over a Real groupoid § i>s—> X , by using some tools we

will be developing here for Rg Fell bundles. Namely, we are constructing the reduced C* -
algebra of a Rg Fell system (G, &). Note that this construction is known in the case where
no grading nor Real structure are involved (see for instance [90, p.907], and in [48] for the
special case of proper groupoids).

Proposition 5.2.1. Let (G,&) be a Rg Fell system. Consider the Rg C*-algebra (A, o), where
A:=Cy(X;&). Then,

(i) the operation

(f-6)(8):=f(r(g)¢(g), for fe A {eC.(G;8), andge§, (5.8)
defines a Rg (left) A-action on (C.(G;&),0).

(ii) the operation
A8, M (x) :=f9x€*(y)n(y‘1)dux(g), foré,neC.(G;8), andxe X, (5.9)

defines a Rg A-valued inner product on (C.(G; &), 0).
Therefore, with these operations, (I'c(G; &), 0) is a graded Real pre-Hilbert A-module.

Proof. (i) In view of Definition 5.1.1, for every g € G, there is an action of &) on & such
that

O'r(g]XO'gl @) \LO’g

gp(r(g)) X (ggp(g) > Gp(g)

and such that é"ri( g % éagj is sent to é";j , 1, j €{0,1}. Tt then follows that, given f € A and

£ € C(G;8), wehave f.& € C.(G; &), and the operation is compatible with the gradings and
the Real structures.

with a seminorm ||| such that ||ab]| < ||alllbll, |a* || = llal, and |a* al = ||all?, its envelopping C*-algebra can
be constructed as follows: set I :={a € A| ||al = 0}; then the map a— | a|l defines a norm on the quotient
A/I, and the completion of A/ with respect to this norm a C*-algebra. Now, if 0 : A — A is a Real structure
on A, then the map A/I 3 [a] — 6 ([a]) := [o(a)] € A/I is well defined and provides a Real structure on the
quotient A/I, and then a Real structure on the envelopping C*-algebra. The same holds for a grading € on
A.
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(ii))The formula well defines an element of A; indeed, given ¢,n € C.(G; &), put Fep:§—
&,y — & (Y)n(y™h). Then one obtains 4(&,n) = pu(Fs,) € A (cf. [76, Definition 1.2.2]).

Let ¢ € C.(G; &). We verify that 4({,¢&) € Ay, i.e. 4({, &) (x) is a positive element of the C*-
algebra €. For every x € X:

A6 () = f EyH*E(y™Hdu*(y) = 0, thanks to (viii) Definition 5.1.1.
9x

Also, it is clear that if 4({,{)(x) =0,Vx € X, then { =0 on G. The remaining properties of
the inner product are very easy to check; for instance, for &,n € C.(G; &), one has

AEMT () = (&M x)* = fgxn*(y)é(y‘l)dux(y) =4(n,&(x), Vxe X.

Let us verify that 4(:,-) is compatible with the Z,-gradings and the Real structures. The
mere use of the properties defining a graded Real Fell bundle allows us to see that for
i,j € 10,1}, a(Cc(G;&)1,Ce(G;6)) = A, Now, to show that o(a(¢,m) = a(a(é),0m)),
we may apply the equality (3.66) to each fiber & of (&jx,0) and the function §* >y —
&y~ € &x. Then,

vx(al&,m(x)) ngp(x) Ux(f*(p(Y))n(P(Y)_l))dup(X)(Y)

= [, 7@ MomaHdu )
= 40 (©),0m)(p(x),VxeGY;
thus 0 (4{(&, M) = a(a (), am), V¢, € Cc(G;E). O
Definition 5.2.2. Foré e C.(G;&), put
1€z = adg, M2
where the norm |.|| in A is, of course, given by | f | = supll f (x) || &, for f € A. Then, we define
the Rg Hilbert A-module (L*(G; &), 0) as the complet);)r(z of (C.(G; &), 0) with respect to || - ||».
Definition 5.2.3. Forevery{ € C.(G; &), define a Rg * -morphism
71(6): Ce(G;8) — € (G;6)
by left multiplication; namely:
m1&)(m) :=E&xn, forne Cq(G;8). (5.10)
Proposition 5.2.4. The operation (5.10) provides a Rg * -monomorphism
71:Co(G;6) — Lall*(G6)),§ — mi(&). (5.11)

Furthermore, m; extends to a Rg *-representation of (L'(3;&),0), also denoted by n; and
called the left regular representation. We will write ﬂlg,g’ (or Jtlg ) when there is a risk of
confusion.
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Proof. Let&,ne C.(G;&). Itis clear that 7;(¢) is A-linear. For x € X, one has
A€ %1, & %) (x) :fgx((f*n)(g_l))*(cf*n)(g_l)d;ux(g)

-J fg(g)”(Y_lg_l)*f(ﬂ*dﬂ“g)(y)  cunnt g hap  indptg
X S Sg

= f f n*(gE y Hdp'® (y) f M g Hdu'® (mdu*(g)
Gx JGs(g Gs(®

:f f N E T @dr @ (y) f &g mnth™Hdu® (mdp(g),
Gx Sr(g) gr(g)

by the left invariance of the measure p.

It follows that for all x € X

A€ *m,& My () ngx ” Ugr(g)n*(Y)rf*(Y_lg)du”g)(y))
UW) €(g‘1h)n(h‘1)dp’(g)(h)d) H du(g)

= fg fgr(g) 1€ L @ P pner Hlldu™® (dpt(g)

< 11a¢&, Y X am, my ().

Therefore, [|7;(E) M2 < €l21nll2, VN € C.(G; &), and then m;(¢) is bounded with respect
to the norm ||.||2. Thus 7;(¢) extends to a bounded A-linear operator on the completion
L*(G; ).

Suppose that &,n,{ € C.(G; &). Then for all x € X

AmEOW= [0+ £
B f . fSr(gJ N ME G @du® (g Hdut ()

:fgx”*mfgrm & @8 han Y (@dp ),

where the last equality is obtained by switching the integrals. Now by applying the left
invariance of the Real Haar measure u, we get

A, O (x) zfgxn*(y) (fgsmf*(g)((g_lY_l)dusm(g) du*(y)

= L e «O)(y " Hdu*(y)
=AM, 1 1(O*)(x),

where 7;(£)* := {* = (.). Hence, m;({) is adjointable for all £ € C(G;&), and this shows
that the map (5.10) is well define. Moreover, it is obvious that 7; is a *-monomorphism
and is compatible with the gradings and Real structures. Therefore, the last part of the
proposition follows. O
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Definition 5.2.5. We define the Rg reduced C*-algebra (C; (G;&),0) of (G, &) to be the clo-
sure (with respect to the operator norm) of the image of (L'(G; &), o) by the left regular repre-
sentation, together with the grading and Real structure inherited from that of £ A(L*(G; &));
ie.

CH(G;6) == m(LY(G;E)) € La(L*(G;E)).

Remark 5.2.6 (The reduced norm). Alternatively, we can think of (C; (G;&),0) as the com-
pletion of (C.(G; &), o) with respect to the reduced norm || - ||, given by

€N == sup {7 Enl21n€Cc(GE}, foré € Ce(G;E). (5.12)
Inllz=1

The following example will play a central role in the sequel.

Example 5.2.7. Let (A, @) € W(S) with Real structure o. Then the pull-back (s* A, s*0)
of (A, ) by the source map s is a Rg Fell bundle over G as follows: for all (g, h) € G2, the
map s*Ag x s*Ayp — s* Agy, is given by (a,b) — ap-1(a)b € s* Agp = Aggn) = Asny, and
the involution is Asg) 3 a~— ag(a®) € s* Ag-1 = Ar(g). All the properties of Definition 5.1.1
are obvious.

Definition 5.2.8. Let G i>s—> X be a locally compact Hausdorff Real groupoid, and let

A, a) e W(S). Then, the reduced crossed product (G X, A, s*0) of (A, a) with (G, p) is
the Rg C* -algebra given by
Ax,G:=Cr(G;s"A),

equipped with the Real structure s* o and the grading s*e, where e is the fiberwise grading
of A.

Proposition 5.2.9. Suppose that A =B in BRR(S). Then, as Real graded C* -algebras,
A >4r9 NMorimB >4r9-

Proof. First, observe that elements of A x, G are limits (with respect to the operator norm
in £(L?(G; s*A))) of elements of the form 7;(a), with a € C.(G; s*.A).
Assume that (A, a) ~v) (B, B), where X has the involution k. Set:

(m1(a).§)(g) := a(g)¢(g) € s*Xg, and (5.13)
&.m(D)(g):=¢(g)b(g) € 5" Xg =Xy(g), (5.14)

formj(@) e Ax,G,m;(b)e Bx,G,{€T(9;s*X),and, g € §. And on the other hand, we set:

Ax, 648 m i=m(a€,m) €A%, G, and (5.15)
EMex,gi=m,mMa)eB G, (5.16)
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for every &,n € T'+(G; s*X), where

ASE M (8) = Ay, (€(8),1(8)) € As(g), and (¢, 5(8) = (¢(8),1(8)) By € Bsig) V8 ES.

It is not hard to verify, in a one hand, that (5.13) and (5.14) respectively define a contin-
uous Rg left A %, G-action and a continuous Rg right B x, G-action on the Rg algebra
(Cc(G;s*X), s*x) making it a Rg A % G-B x, §-bimodule; and on the other hand, that the
formulas (5.15) and (5.16) are respectively well defined continuous Rg A x, G-valued and
B X, G-valued full inner products on (C.(G;s*X),s*«x). Therefore, (C.(G;X), s*«x) imple-
ments a Rg A X, G-B x; G-imprimitivity bimodule. d

Alternatively, we will sometimes use another definition of the reduced norm, which is
a generalization of that of [83]. Suppose we are given a right Rg Fell system (G, &). Then,
for x € X, consider the inclusion iy : G — G. Then, as in [?, A.3], we define the (right)
graded Hilbert Ax-module L[%(G,; &) as the completion of C.(Gy;i; &) with respect to the
graded inner product (¢, n) 4, := fgxcf(g)*n(g)dux(g) (the right action being (- a) : G4 3
g ¢(g) - a€ &). Furthermore, the involution o on €.(G; &) induces a conjugate linear
isometry ox: L4, (L3S &) — L Az (L?(S3;&)) defined in the evident way. The following
lemma is very easy to prove.

Lemma 5.2.10. Let (G,&) be a Rg Fell system. Then for all x € X, left multiplication by
elements of C.(G; &) gives a graded * -representation ng : Ce(G; &) — L4, (L2(Gx; &), and
the following diagram commutes

73
Ce(G;6) —= L4, (L*(Gx:6))

al ) lax

Ce(G;8) — L4, (L2(G5:6))
Moreover, we have

1ENex gy := NNl = sug{nn%(au, VEER(S;E)
XE

5.3 Rg Fell pairs and equivalences

Definition 5.3.1 (Fell action). Let (G, p) be as usual, and let (Z,t) be a Real (right) principal
G-space. Suppose that p : (&,0) — (G, p) is a Rg Fell bundle, and thatn : (% ,x) — (Z,1)
is a Rg Banach bundle. Denoteby a : Z +G — Z the Real G-action on (Z, ), and endow the
topological space

Z xE:={(u,e)e X x& | (m(u),pe)) € Z G}
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with the ovious Real structure. AFell action of (£’,0) on (Z,x) consists of a continuous Rg
(right) G-action on (2 ,x) such that nt is G-equivariant, a continuous Real map X * & >
(u,e) — ueec a* 2 such that

(i) (bilinearity) forall(z,g) € Z* S, the induced map 2, x é”g — E&”Zg is bilinear,graded,
and is compatible with the scalar multiplication; i.e. (tu)e = u(te) = t(ue), V t €
C,(u,e) € Z,xEq;

(i) (associativity) for (z,g) € Z* G and (g, h) € G, one has

u(erez) = (uey)es, V(u, ey, ex) € 2, x & x &p;

i) lluell =llulllel,V(u,e) e Z; x &;
(iv) forall(u,g)e X =G, lu.gl = lull;

(v) (faithfullness) for all (z,g) € Z * G, the image of the induced map X, x &g — Z ¢
spans a graded dense subspace of 2 .

In this case we write (Z°,€) (or (Z,x),(&,0)) if there is a risk of confusion), and we say
that (Z',&) is a (right) Rg Fell G-pair over Z.

Remark 5.3.2.

1. In the same token, given a left Real G-space Z, one can define a left Fell action of (&', 0)
over (Z,x). In that case, we write (&, Z") to emphasize the left action.

2. Observe that since the projection n : 2 — Z is G-equivariant, there is an isomor-
phism 2,3 — Z over all (z,8) € Z * § given by u — ug~'. It then follows from
condition (i) in Definition 5.3.1 that for all (z,g) € Z « G, 2, admits a structure of
graded left &g -module.

Now, suppose Z :I' — §G is an isomorphism in R®. Recall (cf. Remark 2.4.2) that
Z~1:G — T is then an isomorphism in R®. We will need some notions from [69, § 6.1.6].

Definition 5.3.3. Define the (continuous) Real I'-valued inner product
r(): Zxx 271 —T,(2,b(2)) — r(z,2),
and the (continuous) Real G-valued inner product
(hg: Z7 xy Z—G,0(2),2") — (2,2)g

as follows:
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e for(z,b(z)) € Zxx Z7', 1(z,2') is the unique element of T such that z = r{z,2') - z;

e for b(2),2) € Z7  xy Z,(z,2')g is the unique element of G such that z' = z-(z,2')g.

Remark 5.3.4. It is routine to check that theI -valued inner product and the G-valued inner
product verify

z,2) =12, 2),V (z,b(2) € Zxx Z7}, and

(z,2)g" =(7,2)6,V (0(2),2) € Z7" xy Z.

Further, the following lemma shows that the two inner products are compatible with
the actions on Z.

Lemma5.3.5. Let Z:T — G be an isomorphism in‘R®. Then, theT -valued inner product
and the G-valued inner product are compatible with the RealT -action and the Real G-action
on Z; that is, that for all (z,7,z") € Z xx Z~1 xy Z, one has

z-(z,2"yg=1(2,2)-2". (5.17)

Proof. This comes from a very simple calculation (see for instance [69, Proposition 6.1.35]).
O

Proposition 5.3.6. Let(Z,1): (I',p) — (G, p) be an isomorphism in the categoryR®. Then,
any right Fell G-pair (%, &) over (Z, 1) gives rise to a left Fell G-pair (£,0), (?, X)) over the
inverse (Z71,7°) of (Z,1), where 2 is defined as the conjugate bundle of 2 . Similarly, any
left Fell T -pair over (Z,7) gives rise to a right Fell T -pair over (Z71,1°).

Proof. Of course it suffices to prove the proposition for a Fell §-pair.The bundle .2~ is
defined as follows: 2" is identified with .2~ as a topological space and if b : 2~ — 2~
is the identity map, the Real structure « : 2 — 2 is K (b(w)) := b(x(u)), the projection
i X — Z7Vis given by 7 (b(u)) := b(n(u)), and finally, the fibre ?b(z) is the conjugate
algebra of 27 (i.e. yb(z) = 2>). Next, (G, p) acts on the left on (27,%) by g-b(u) =b(ug™)
for (u, g_l) e 2" = G. Itis clear that the projection 7 is Real and §-equivariant. Denote by
a’:Gx Z71 — 771 the left Real G-action on (Z~!,7%). It is routine to show that the map

Ex 2 — (a@”)* 2, defined on the fibres by
Eg x X by 3 (,b()) — b(ue*) € Z ghz), (5.18)
provides a Fell left action of (£,0) on (2,&). O

Observe that, given a Morita equivalence (Z, 1) : (T', o) — (G, p), the Real space (Z x GO
Z~1,7 x 1°) is alocally compact Real groupoid over (Z, ) as follows: the product is

(z,b(2)) - (Z,b(z") = (2,b(2")),

the source and range maps are s(z,b(z')) = 2/, r(z,b(z")) = z respectively. Similarly, (Z ™! x )
7,7 x 7) is a Real groupoid over Zz7 1, 1.
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Definition 5.3.7. Let (Z,7) be as above. Then

* if(§,&) and (T,.7) are Rg Fell systems, we write (6%,0) for the Rg Fell bundle over
(Z7' xy Z,1° x 1) that consists of the pull-back of & — G along the G-valued inner
product (:,-)g.

By analogy, we write (#, <, <) for the graded Rg bundle over the Real groupoid (Z x x
Z~1,1 x 1°) given by the pull-back of (F,¢) alongr<-,-).

e if(Z,&) is a Fell pair, we define the topological spaces
X« X = bW e 2 xZ | (ww), bW e Zxx Z™,

D« X ={bw,u)e X x X | @bw),xw)) e Z  xy 2},

and we endow them with the obvious Real structures.

Definition 5.3.8. Let (G, &) be a Rg Fell system. Suppose (2, &) is a Fell pair over Z, where
(Z,1): (T, 0) — (G, p) is a Real Morita equivalence. ARg & -valued inner product on (X, k)
is a continuous Real map {-,-) & Y« Y — &g, (b(w), u') — (u,u'y e such that

(@) forall(b(2),z") € Z7\xy Z, the induced map (-, : 2 y(z)x Xzt —> E 2,1y i conjugate-
linear in the first variable, bilinear in the second variable, and is graded (i.e. it maps
%;(z) x %Zjl fo (’gDH—] >g for l’] € {Or 1});

<z,z'

(b) (& -linearity) over all 0(z),7',8) € Z~1 x Z % G, then the following diagram commutes:

yb(z) X ‘%/Z X gg - £<Z,Z’>9 X gg (5.19)
yb(z) X %z’.g £<z,z’>g.g

in other words, {(u,u'Yg-e={(u,u'-e)g in E<zti>g.g0

(c) (invariance) forall b(u),u’) € ?b(z) x Xy, (ug™t u'g) e = (u, u') s whenever(g,b(z)) €
SRV AR

(@) forall b(w),u') € Z iz x L, (U, uh, =, wein @“}Z,Zgél =& 2g)

(e) (positivity) forallz€ Z and u € 2, (u,u)e 2 0 in & 2y, = Esz); if (U, u)g = 0 then
u=0.

In an obvious way, defines a Rg .# -valued inner product over .2 if (#,X) is a left Fell
pair over (£, 1).
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Remark 5.3.9. Note that condition (d) of the definition implies that in particular,
(u-e,uye =(u,u)s-e",
whenever the multiplication and the inner product are defined.

Definition 5.3.10. An equivalence between (I',.%) and (G, &) consists of an isomorphism
(Z,1): T,0) — (G, p), aright Fell pair (£ ,x),(&,0)) and a left Fell pair (#,¢),(Z,x))
over (Z,7), a Rg & -valued inner product

(et X x X — Esg, bW),u) — (U, u) s,
and a Rg % -valued inner product

7 X X — T, b)) — 7 (u, u'y
on (Z,x) such that

(i) (equivariance) forall (y,z,g) €T x Z x G, the multiplication Fy x 27 x Eg — Xyzg is
associative; i.e. for all (f,u,e) € F, x 2, x &, one has f(ue) = (fu)e;

(i) (compatibility) if (z,0(2)),2") € Z xx Z~! xy Z, then the diagram

c%fz X yb(zl) X %’ZH ——— yr<z'zr> X ! (520)

| |

_—
Kz X @@<z’,z”>9 z.<z,2">g

commutes;i.e. z{u,u')-u" =u-(u',u"ye in <t 2> g V(u,b(u), u") € Zyx X X
%ZH;

(iii) (& -fullness) for all (b(z),z") € Z~! xy Z, the induced map ?b(z) X Xy — Eczrisg IS
full; that is, that its image spans a dense graded subspace of 6, P>

(iv) (Z -fullness) for all (z,b(z") € Z xx Z~1, the induced map 2, x ?b(zl) — Pz IS
full.

If such an equivalence exists, we write (I',0),(%#,¢)) ~(zn.2 x) (G p),(&,0)) (we will
write (T',.#) ~z,27) (G, &) when all of the structures are understood).

Remark5.3.11. In the diagram (5.20) we have used Lemma 5.3.5 to observethat X .« ;~.,n =

xz~<z’,z”>9 .



5.3. Rg Fell pairs and equivalences 123

Example 5.3.12. The most relevant example to our work is the case of graded Real Dixmier-
Douady bundles. Let then (B,c, ) € BtR(I), and (A,0,a) € BrR(9). If (s{B,1) ~2°,2)
(séA,S), then conditions (iii) and (iv) in Definition 5.3.10 imply that, in particular, for all
ze Z, Z, is graded Bz -Av(z) -imprimitivity bimodule. Combined with the other condi-
tions, " implements an equivalence of dynamical systems (B,T, ) ~ (B, G, a) in the sense
of Muhly and Williams (cf. [65, Definition 5.1]).

Remark 5.3.13. The above example shows that by forgetting the gradings and the Real struc-
tures, one can think of our definition of equivalences of Fell systems as a generalization of
that of [65].

Another important example is the following.

Example 5.3.14. Let (G,&) be a Rg Fell system. Then there is an equivalence (G, &) ~(,&)
(G, &) defined over the canonical Real Morita equivalence

r r
X~"—Zs—~=X,

where Zg := G, Zg_1 = {g_1 | g € G}, with the mapb : Zg — Z§1 being defined by the inver-
sion map, and (Zg, p) being equipped with the obvious Real left and right actions of (G, p).
We should mention that under these actions, we have the maps

Zgxx Z3' —G,(g,h"")— gh™, and

Zg' xx 75—, (g, — g 'h.

Note also that in this case, the Rg Banach bundle (&,5) over (Zg 1 p?) is given fibrewise by
gg—l = {e* | e€ &}. The left and right actions of (&,0) on itself over (Zg, p) come from the
definition of (&,0) as a Rg Fell bundle. Moreover, the Rg inner products are given by

EgxEp-13 (e1,e5) — e1e; € Egp1, and

—-1
&y xEp3 (e, e2) — eje.

It is strightforward to see that all of the conditions of Definition 5.3.10 are satisfied.

Proposition 5.3.15. Equivalence of Rg Fell systems is an equivalence relation.

Proof. 1. Reflexivity. The reflexivity of the relation is guaranteed by Example 5.3.14.

2. Symmetry. Suppose that (T, ), (:-#,¢)) ~zn.2 x) (&,0),(G,p)). Recall that we
have a Real Morita equivalence (Z 11):(G, p) — ([, p). Moreover, from Proposition 5.3.6,
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we obtain a left Fell pair (&, 0),(2,%)) and a right Fell pair (%), (F,¢) over (Z71,1).
Now, by replacing 2" by 2~ and vice versa in Definition 5.3.10, it is clear that

((9) p)) (éby U)) N((Z_I,Tb),(y,f()) ((F) Q)) (th) C))-

3. Transitivity. Assume that

((F,Q),(ﬁ,C)) ~(Z1,71),(21,x1)) ((9,,,0,), (5,,0,)) ~((Z2,72),(Z2,k2)) ((9,,0),(5, 0)).

Then the composition (Z; xg' Z»,T1 x T2) of (Z1,72) and (Z, T2) is an isomorphism (I', o) —
(G, p) in RS. Notice that from the §'-invariance of the norm (cf. Definition 5.3.1 (iv)) of 27
and 2> and from the compatibility of the §’-actions with the gradings and the Real struc-
tures, the quotient 3?{ := 27119 equipped with the Real involution x1 ([11]) := [x1(11)] and
the grading induced from that of 27 (resp. Lo 19 equipped with the Real involution
K2 ([uz]) := [k2(u2)] and the grading induced from that of .23) is a Rg Banach bundle over
(Z119',11) (resp. over (Z/9G',72)). The projections pry : Zy xg Zy — Z119/,[(21, 22)] —
[z1] and pry: Zy xg Zy — Z»19', [(21, 22)] — [22] are well defined and are clearly compat-
ible with the Real structures. Then we defined the graded Real tensor product of (27,x)
and (23,x>) over (', p) by

216 Xy := prl"%ézlxg,Zzpr;%, (5.21)

together with the Real structure denoted by x; &g« and defined obviously. Now, we define
the projection 7 : (218 Z2,k18k2) — (Z1 X' Z»,T1 X T2) by:

7 ([(z1, 22)], w1 ®uz) = [(71 (1), w2 (U2))]. (5.22)

The fibrer of 27&¢ 2> at a point [(z1, 22)] € Z; xg Z; is then identified with

(21)2,8(22) .,
g ’

where u;®uy ~ (11818 (g 1 uyp) in (21)2,8(22),. Thus, we well have built a graded Real
Banach bundle over (Z x¢ Z,71 x 72).

At this point, we have to verify the existence the left Real I'-action and the right Real G-
action on (278 Z>,k18k>). First, observe that setting

T g T = {(m, ) € Z3 x 27| [ma ), mo(up))| € Z1 x g1 o},
there is a well-defined continuous Real map

21 xg Lo — X1®g Lo, (lur), [ta]) — (11 (1), 72 (42))], (1] & ui2]). (5.23)
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e We set

Y- ([(21, 22)], (1] ®[ua]) := ([(y - 21, 22)], [y - 1] ®[u2)), (5.24)

fory e I and and elemantary tensor ([(z1, 22)], [u1]®[u2]) € Z1&g 2> such that (y, z;) €
[« Zyand (y,uy) €T * 2.

* Similarly, we set

([(z1,22)], [u118[ua]) - g := ([(21, 22 - )], [1 1 & [u2 - g1, (5.25)

for g € G and and an elementary tensor ([(z1, 22)], [t11®[uz]) € 218 2> such that
(z2,8) € Zp*Gand (up,8) € Z *G.

We need to show that (5.24) and (5.25) define the desired continuous actions. We only do
that for (5.24) since the same methods can be used to prove (5.25). Suppose that

(Yi) ([(Zl,ir ZZ,Z')]) ul)) - (’}/) ([(ZI,ZZ)], u)))

inT*(21&g 22). We want to verify thaty;-(([z1,i, 22,i], ui)) — y-([(21, 22)], w) in Z18¢ Z>.
Notice that the issue here is about the action on the tensor product; thus we only have to
show that y; - u; — v - u. Fixe > 0 and choose v = Z;.’:l[v{]é[vé] € (218 Z2) (21,2, Such
that |[u—v| < % For each j, we can find elements ([v{ i [vé D€ 3271 *g % such that
(0] 1, 1v] 1) — (v{], [v}]) in 21 *g Z3. Using the continuity of the map (5.23) that
w; = Z;’:l[v{,i]é[vé,i] — v; thus eventually |w; — v| < % Therefore,
Yi-wi=) [yi- v{,i]é[vii] — Yly-v1ewl =y,
J J

and then one has ||y;.w; —y-v| < % Therefore we eventually have

lyi-ui—y-ull<lyi-ui—=yi-wil+Illy;i-wi=y-vil+lly-v—y-ull
<luj—wil+llyi-wi—y-vil+lv—ul
<llui—ul+2llu-vi+llv-wil+lyi-wi—y-vl

<E€.

Moreover, it is not hard to check that for (y,[(z1,22)]) € T * (Z1 xg Z») and ([(z1,22)],8) €
(Z1 xg Zp) * G, from the obvious maps

Ty x (2186 22)((21,20)) — (Z1® L) ((y-21,2))» (5.26)
(%é’g’%)[(zl,zz)] X (gg — (%ég’%)[(zl,ZZ.g)]) (5.27)

given respectively for elementary tensors by

(f, [u1®[uz]) — [f - u11®[uy] and
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([]1®[uz], €) — [u1]1&[uy.el,

we obtain two Fell pairs ((#,¢), (Z18g Z2,k18k>2)) and ((Z1&g Z2,k18k2),(&£,0)) over
(Z1 xg Z»,7T1 % T2) which are equivariant in the sense of Definition 5.3.10 (one shows, for
instance, these maps are continuous by using Definition 5.3.1 (iii)). Now the rest of the
proofis routine; we may however note that the inner products are obtained from the maps

(218G 22) (21,201 X (X186 2262 p2p)) — Fr<zy 2> and

(2189 2 2) (b bz X (218G 22) (2,20 — E<zy 2y

5.4 The Linking Fell bundle

We begin this section by making slight adjustments of some settings in [69, chapter 6] and
[64, §.2] which are useful for our work.

Definition 5.4.1 (The linking Real groupoid). Suppose (Z,7): (T',p) — (G, p) is an isomor-
phism in RS. Let M be the locally compact Hausdorf{f space

M:=TuzZuz'ug,

and let M© :=T©@ 1, GO Define the source and range maps of M as

r sy +—s(p er®
Z 3z —5(2) e GO
‘M — MO ,
M Z7l 3b(z) —s0(@) =t(z) e€I'® (
§ 38 —s5(9 e GO
and
r 3y +—rr(y er©®
VA 32 — 1(2) er®
‘M — M@, >
M ) 77l 3bh(z) —P0(2) =5(z) €GO
G 38 —rgg e GO

Then define the product in M as

(y1,y2) €T®@: Y172 el
(7, 2) el'xZ: Y.2 e/
(z,b(2)) €Zxg0 Z v zb(Z):=1(z,2") €T
(z,8) €eZxG: z.g €eZ

M(Z) —>M,
< 02),2) €Z 'xr0wZ: b2).2:=(z,Z)g €

b(z),y) €Z71«T: b(z).y:=b(y lz) ez}
(g,b(z) €GxzZ71: gb(z):=b(zg™H) ez!
(g1,8) €G9@: 818 €g
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Notice that with these definitions,
MP =T@UT* ZUZxgo Z U Z*GuZ ' *TuZ  xpo ZUG* 27 LGP,

Proposition 5.4.2. (Compare [69, Proposition 6.2.2]). M is a locally compact Hausdorff
groupoid with open source and range maps. The inversion in M is the map

r sy —y! el
Z 3z —bz) ez}
Z7l 3bz) —z €Z
g 28 —g' €S
Moreover, M admits a Real structure py; given by

VA 3z — 1(2) eZ

Z7l 3b(z) —b(1(z) €z}
S g —p@ €5

pjy[:M—>M,

Now, suppose that (Z,7) : (T',p) — (G, p) is an isomorphism. Then, from a Real Haar
system (g on (G, p) and a Real Haar system ur on (I, o), we want to construct a Real Haar
system ¢ on the linking Real groupoid (V(, pyy).

Definition 5.4.3. (cf. [77, p.69] or [69, B.2.1]). Suppose that (Z,7) and (X, p) are locally
compact Hausdorff Real spaces, and thatn : (Z,1) — (X, p) is a continuous open Real map.
Recall that a rt-system on Z is a family uz = {1} xex of measures such that

(@ Vxe X,y isameasureon ™ (x),

(c) (conmtinuity) forallp € C.(2),

ptz(p): X —C, x»—>f1( )(p(z)du’é(z),

is an element of C.(X).

Is is called full if suppu7, = n~Y(x) forall x € X. Finally, we say that j1 is Real if the family

{,uﬁ}xex is Real; that is, ug(x) oT = ,ué, VxeX.

Lemma 5.4.4. Let (Z,7): ([,p) — (G, p) be an isomorphism inRS. There exists a full Real
t-system Uz = {,u%} yer© Of Radon measures on (Z,7) determined by

ué@k=LmﬂMv@m@@@L (5.28)
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forall y e T and ¢ € C.(Z), where z is some arbitrary element of the fibre Zy = ().
Furthermore, iz is a left Real Haar system on (Z,1) for the left Real action of (T, p); that is,
forallyeT and ¢ € C.(Z), we have

Zr(y)

d(2)du" (2) = fZ Py.2)du (2). (5.29)
s(y)

Proof. We refer to [69, Definition and Proposition 6.4.4]. O

Remark 5.4.5. Similarly, considering the inverse Z71,1% . (G, p) — ([, p), the Real Haar
system ur induces a left Real Haar system (1 ;-1 = {u’é_l} xeg on (Z ~1,1°) for left Real action
of (S, p). Notice that that we have suppu’,, = ()" (x) = Z;', and that for p € €.(Z™") and
b(z) € Z; 1, we have

X —_ -1 t(2)
ppa@r= [ g0 P m. (5.30

Proposition 5.4.6. (cf. [69, Proposition 6.4.5], or [83, Lemma 4]). Let (Z,7): (I',p) —
(S, p) be as previously. There is a left Real Haar system o = {3} yeno on the linking Real
groupoid (M, py¢) determined by

12 (Fr) + p% (F2), ifoeT®, and

. (5.31)
pY o (Fz-) + pg (Fg), ifo e,

iy (F) ::{

forallwe MO and F e C.(M).

Definition and Proposition 5.4.7 (The linking Rg Fell bundle). Let (Z,7): (I',p) — (G, p)
be an isomorphism in R®, and let (T, p),(:#,¢)) and (3, p), (&,0)) be two equivalent Rg
Fell systems with equivalence ((Z,7), (2 ,x)). Then we define a Rg Banach bundle (£, o%)
over the linking Real groupoid (M, py), where £ is the topological space

L=Fu2 U2 UE,

together with the obvious Real structure 0 : ¥ — & and the obvious grading; the pro-
jection is given by

F of —pZ(f) €T
2 >su — (1) ez (5.32)
2 sb(w) — b)) ez} '
&

Se —p®e) €9
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Moreover, pZ : (£,0%) — (M, pxo) is a Rg Fell bundle with respect to the multiplication
LR m* & and involution (*) : &£ — &£ respectively given by

Fy X Py, 3(fiuf) — At € Py, for (y1,82) €T?

Ty x X 3(f,w — fu € Xy for(y,2) €T+ Z

Lo * Loz 2WDW) — g V) € Frazy s for(21,0(22)) € Zxx Z7}
Ay x Eg 3 (u,e) —Uu-e € Zzg for(z,8) € Z+ G

27 (5.33)
Lo x Fy 30, f) —b(fru) €Ly, forb2),y) x Z7H«T
%b(zle %Zg E/ (b(u)y U) _ <ur v)f €g_<zl,22>9» for (b(zl))ZZ) € Z_l Xy V4
Egx Loy 2(ebw) —blu-e*) €2 ;g for(g,b(z)eG+ 2!
EgxCp 3 (e1,e2) +=—eje €3gh,f0r(g,h)€9(2)
and
Fy 3f —f" €eFp, foryeT
): L P, Z, SuU —bu) € Xy, forzeZ (5.34)

Do b)) — v € 2, forb(z)e Z7}
&g e —e" €&y, forge§

Proof. Tt is clear that p<Z : (Z,0%) — (M, pyp) is a graded Real Banach bundle. Next,
observe that all of the conditions of Definition 5.1.1 are verified by the operations (5.33)
and (5.34) by merely applying Definition 5.3.10 to the equivalences (Z, 2") and (Z 1L20).

O

At this point, we do integration on (M, py) with values on the linking Fell bundle .Z
with respect to the Real Haar system p. We then can form the convolution Rg *-algebra
(CcM;.2),0%). However, this *-algebra decomposes into direct sums of convolution *-
algebras as we see with the following simple lemma.

Lemma 5.4.8. As graded Real * -algebras, we have
CcOVGL) 2 (T 7) 8 Ce(Z; 2) 8 Ce(Z7H 2) 8 Ce(G;6).

Therefore, an element ¢ € C.(M;.Z) can be viewed as a matrix

[ 11 ¢z
gt_(521 22 )’

where &y =& € Co([3.7),E12:= E12 € Col(Z; X)), 601 1= & 71 € CL(Z™H 2), and éxp =g €
60(9;@0)-
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Remark 5.4.9. Note that if¢ € C.(M; Z), then for all z € Z, one has
$"(2) =E0(2)" =bE((2))) =b (621 (0(2)).

Thus, &5, := ({12)* =bo&yyob. In the same way, we show that &y, := ({21)* =boyz0b. It turns
out that the involution in (C.(M; L), o*) is given by

é*:(é; 6;‘1):(61‘1 bodaiob
6?2 6;2 boleOb 6;2

where (), and &, are the images of 11 and &»» under the standard involutions in C.(T'; %)
and C.(G;&).

Before closing this section, we are giving a construction inspired by that of [64, p.11].

Proposition 5.4.10. Let (Z,71): (I',p) — (G, p) be as above. Then (C.(Z; Z"),x) admits a
structure of a Rg C.(['; #)-C.(G; &) -bimodule under the operations defined as follows: for
é‘E Gc(r;y);n € ec(g;g); (p;'(// € GC(Z; %); Y € r} g € 91 andze Z}

& -P)(2):= frt(z){(ykp(y_l.z)du;m (y), and (5.35)

(B-m(2):= fg P g hdug (@) (5.36)

Moreover, the operations

.. 7) (P W) () :=f95(z)y<¢(z-g),w(7f_l-Z-g))dug(z)(g), wheret(z) =r(y),  (5.37)

and

t(z)

(P Yegie (8)= fr PO 2 @) dupT (), wheres(2) =1(g),  (5:38)

define respectively a Rg C.(T'; %)-valued pre-inner product and a Rg C.:(G;&)-valued
pre-inner product over (C.(Z; Z),«) with dense ranges. Furthermore, these pre-inner prod-
ucts are compatible with the the module structures (5.35) and (5.36) in the sense that

e, 7 D, W) W1 =P - (Y, Y1)e, e, YO, ¥, ¥ €Ce(Z; Z). (5.39)

Remark 5.4.11. We shall note that the sense of "pre-inner product" used here is that of [75,
p.15]; that is, the pairings ¢ ;7)) and {-,-)e ;&) are required to verify ¢ r,7){¢p, ) and
(P, P)e, (&) are positive in C* ([';.%) and in C*(G; &), respectively.

Notations 5.4.12.

1. For the sake of simplicity, we write (-,-) fore r,2)(,") and(-,-), for{,-)e.®)-
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2. Asin [83], if{ € Co(G;8),m € Co(T;. %), and P, v € C’C(Z_I;T), we writeé:¢p and ¢:n
for the left and right actions of C.(G; &) and Co(T;.F) on Co(Z~Y; X)), respectively, and
we write (¢, w) fore, g6 (b, w) and (b, p), for b, ¥)e ;)

In the proof of Proposition 5.4.10, we will use the two following straightforward lem-
mas.

Lemma 5.4.13. Suppose that p,y € C.(Z; Z7). Then
F:Z xgo Z '3 (z,2)— fgs(z) T (cb(zg),W(Z'g))dug(Z)(g) € Cc(Z xgo zh7.).

Lemma 5.4.14. Suppose we are given the above settings. Let ¢ € C.(T; %), ¢, w € Co(Z; Z7),
andn € C.(G;&). Thenbogpob, bowobe GC(Z‘l;y). Moreover, under the Notations 5.4.12,
we have

n:bodob)=(p-n*)*  (bodob,boyob)=(p,y),; (5.40)
(bogob):E=(E )"  (bopob,boyob), = (P, ). (5.41)

Proof of Proposition 5.4.10. First, notice that (&-¢)(z) € 2 since for each y € I'*?), &(y)p(y !
z) € Xyyy-1., = Xz. Thus the formula (5.35) defines a section of 2". Also, (¢-n)(2) € 2 for
all z € Z and then (5.36) defines a section of X as well. Since (¢ - ¢)(z) is nonzero only if
there exists y € I*® such that é(y) and ¢(y ! - z) are nonzero, we see that

supp(& - ¢p) < (suppé) - (supp¢p) := {yz| (y,2) € (suppé) * (suppp)};

hence ¢ - ¢ has compact support in Z. Similarly, we show that ¢ -n has compact support.
The continuity of ¢ - ¢» and ¢ - comes from the fact that yr and pg are Haar measures. We
then have shown that é-¢, ¢p-n € C.(Z; Z'). To see that the operation (5.35) is continuous,
assume that {; — ¢ with respect to the inductive limit topology in C.(I';.%#) and ¢; — ¢
with respect to the inductive limit topology in C.(Z; 2"). So, for all z € Z and y € "%,
Eii(ytz) — E(Y)p(y~'2) since the multiplication .7 x Zy-1, — 2 is continuous.
Hence, since pur is a Haar system, ¢; - ¢p; — ¢ - ¢p. With a similar reasonning one verifies
that (5.36) is continuous. The compatibility of these operations with the gradings and the
Real structures is however straightforward.

Let us now check that (5.37) and (5.38) defines elements in C.(I';.%#) and C,(G; &), re-
spectively. Since right Rg pair over (Z,7) induces a left Rg pair over the inverse (Z~1,77), it
will be enough to verify the assertion for, say, (5.37). The formula does not depend on the
choice of z; indeed, if t(z') = t(2) = r(y), then 2’ = z-(z, Z) . Hence,

Lo, y)(2) = /S;S(z,) F <(P(Z’g)»W(Y_1Zl'g)>du59(zl) (g



132 5. EQUIVALENCE THEOREM FOR REAL GRADED FELL SYSTEMS

s(<z,2'>g)

) «[9s(<z'zl>9) 7(Plz-<z,2'>g Qi tz<zz >q-8)) d“g €9
) fw 7 (e, vy~ 2g)) dug™ (g),

where the last equality is obtained from the left invariance of ug and by observing that
r(<z,z' >g) =s(2).

Suppose that y € supp( (¢, ¥)). Then for any fixed z € Z with t(z) = r(y), there exists
g € G°@ such that #(p(y'zg),w(zg)) #0. It follows that y ! zg € supp ¢ and zg € suppy;
thus y = r(y 'zg, zg) belongs to the image of (supp¢) x x (b(suppvy)) via the continuous
mapr{,: ZxxZ 1 —T.So

supp( (¢, ¥)) <1, -) ((supp ) x x b(suppy)))

is compact. Now we may use the same methods as in [64, p.11] to check the continuity
of (¢, y):if yy — yinT and v(z) = r(y), then since v and r are open maps, we can find
(zy)y in Z with z3 — z (passing to a subnet if necessary) so that t(z) = r(y,). Thus by
observing that (¢, y)(ya) = F(z,l,yilz;t), we get

fgsw 7 (09 vy z18) dug™ (8) — fgsm 7(Dy ' 2g) w(zg)) dug? (g).

It now remains to verify the algebraic properties of the bimodule structure and the
pre-inner products on (C.(Z; Z),x). Let

¢e ec(r;y);él € ec(r;y); ne Cc(G;8), MRS Cc(G;8), and by, yp; € Ce(Z; ).
Then,
e VYEeT, (§* (,yN() = fr BIORCS W) (h Yy du™ (w)

= |t fg vy 7Ol @y ez @)dpy™ @y (),
where for each h e I"", z;, € Z with t(zy) = s(h),

= f E(h) f 7@ 2wy zgndp? (@ dp” (),
rrw Gs(2

where t(z) = t(hzp,) = r(y), YVhe I"", and then s(2) = s(zp),
= fg 7 E Dy zg)dug”
= L&, vy (y); (5.42)

eVzeZ, (E*&1)-P)2) = fr “ fr oy S (W du® (hely 2 dpt?

i frrw s fry SO e Ddp” (W dp® )
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i[ ﬂﬂf &Py 2dw” (W dif® (y)

f ENE- P 2du? ()
= (&1-P)(2). (5.43)

Similarly, it is easy to check that (¢, v), *n)(g) = (¢, ¥ -m), (g) for all g € G, and that
(p-(m=*n1))(2) = ((¢p-n)-n1)(2) for all z € Z. Also, by routine computations, one verifies
easily that (¢, y)* = (v, $), and (¢, 1,(/) " =(y, ¢), . Furthermore, for all z € Z, we have

. -,y = f ), v, (¢ i (@)

:fgs(z)('b(zg) frr(Z’) w2 g )><5"dll;(2)()f)€lus(2)(g),
where z' is arbitrary such that s(z) = s(g),
fg . )qb( 8) f Wy 'zg),vi(y z)>gd,f<z) (Y)dus(z) (g)
where we have taken in particular z’' = zg,
fgsm fw) 7Pz, Wy 'z -y (y 2 dul? (y)d Mﬁg(z) (@)
= (o, w)-y1)(). 540

The rest of the proof depends on the existence of approximates identities for the two ac-
tions; so we will complete it in the last part of the next section. O

It can be useful to express the convolution in C.(M;.%) in terms of matrices. Specifi-
cally, if ¢,n € C.(M;.Z), then we want to describe the entries of the matrix

Ex*mu E*mi2 Cc(T; %) CoZ; X))
f*']]: €
(Exma1 (E*m)22 CeZ 1, 2 Cu(§;E)

First, notice that for y € Y and x € X, we have
MY =TVuZ, M, =T,uZz*', M*=Z;'ug", and My = Z, UG, (5.45)
Thus,

e forallyerT,

Cxmin= f Eu(hmu (™ ydug” (h) + f 5 (M2(2),b@21 0@ Y)dp,” (2)

Zry)

=(511*n11)()f)+f5( 5(€12(28),b 021 by~ 28 dpg” (8)

=€ * M)+ (12,150 ()
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e forallze Z,
Grma)= f Eu(mme(h™ 2)dpr (h) + f E12(2 22 (< 2,2 >3 dApd? (2')

= (11 7712)(Z)+f E12(2)n20(g Hdu (Z)(g)

= (¢11°M12)(2) + ($12 - M22) (2);

e forallb(z) e Z 71,

€+ b(2) = fZ e bENN I (<5(),b(2) >, P bz

P ((2)

+fb '522(8)7721(g_l.b(z))dutb(b(z))(g)
G0

:frs%( E10(2) - Py Hdps (b(z))(y)+(§22 1721)(0(2))

= (&21:m11) 0(2)) + (€22:1m21) 0(2))
=M}, -&5) 7 0(2) + 135, - E35)" 0(2);

e forallgeg,

€ *m(g) = fz L 0 b@N M0 - ghedu ) b(2)

r(g

f S22 (MN22(h~ g)dur(g)(h)
= fr €07 DMy 2 e duy? (1) + (€22 % 122 (8)
= (&30, Mm2), (8) + ($22 ¥ M22) (8).
We then have the following
Corollary 5.4.15. The convolution in C.(M;.Z) is given by

$11 S12 M1 M2 i1 xnu+ ,&12,m5) 11 niz+812-n2
* = .(5.46)

§21 S22 N21 1M22 M7 S5)" + M3, °65,)" (651, M2), + 822 % M2

5.5 Existence of approximate identities

We start this section with some more preliminaries on Rg C*-algebras.
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Definition 5.5.1. Let(A,0) be a Rg C* -algebra. An approximate identity{a;};e; for A is said
to be Real if there is a Real structure (") : I — I on the directed set I such that a; = o (a;) for
alliel.

Lemma 5.5.2. Any Rg C*-algebra (A, o) admits a Real approximate identity.

Proof. Take an approximate identity {a;}; <y, and define I := I x {0, 1}, then set (i’,0) :=
(@1, (@",1):=(',0), ag o) = ay, and ag 1y == o (ay). O

The following is an obvious modification of [83, Lemma 6.3]; we then omit the proof.

Lemma 5.5.3. Let (A,0) be a Rg C* -algebra. Suppose that (X,x) is a Rg Hilbert A-module.
Then, sums of the form

n
Y alxi, xi)
i=1

are dense in (A%, 0); where A% is the sub-C* -algebra of A consisting of the positive elements
which are homogeneous of degree 0.

Corollary 5.5.4. (Cf. [83, Corollary 6.5]) Set (B,¢) := (Co(Y;.%),¢6), (A,0) := (Co(X;E),0).
Suppose that b € B?L, thate >0, and that K cc Z. Then, there are ¢y, ...,pn € Co(Z; Z7) such
that

n

Ib(e(2) - Y #(pi(2),pi(2)] <€, VzeK. (5.47)

i=1
Similar statement holds for AY.

Proof. Notice that since .2, x fb(z) — Z(z) is full, we can view 27 as a full graded Hilbert
Z(»-module. It then follows from Lemma 5.5.3 that for all z € Z, there are y5,..., y;_€
Cs(Z;X) such thatforall z€ Z,

1z
Ib(e(2) — Y 5w (2), i ()l <e. (5.48)
i=1
But since the map |- ||: % — R, is continuous, we can find an open neighborhood V, of

z such that (5.48) holds for all z € V. Thus, there exists a finite open cover {Vj};": , of the
compact subset K, and sections 1//{, ...,1//{'1]. foreach j =1,...,m, such that Vj,
nj . .
Ib(2) - Y #(wi2),yl(2)] <€, Yze V. (5.49)

i=1

Now take a partition of unity {¢ ;} ;": , subordinate to the cover {V;} ;”: , with

m m
i €CD)4, suppp;cViVj, ) ¢jz)=1,VzeK,and0< ) ¢;(z)<1,Vze(Z-K).
j=1 j=1
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Then (5.49) gives

n

Ib((2) - Y. 9(2) 7wl (2,9 (@) = 1be@) - Y. #Wi(2),yi(@)l <e, VzeK,
=1

Jj= i=1

where v;(z) := ;.":1 \ /(pj(z)q/{(z) forallze K,and n:= ZT:I n;. O
The next lemma is an obvious modification of [83, Lemma 6.1]; then we omit the proof.

Lemma 5.5.5. The graded Real C* -algebra (B, ¢) acts on (C.(Z; Z),x) in the natural way:
(b-d)(2) :=b(x(2).0(z) e X, VDEB,peC(Z; X),z€ Z.

If{b;}ic1 is a Real approximate identity for (B,¢), then for all ¢ € C.(Z; Z'), bi.p — ¢ in
the inductive limit topology.

Definition 5.5.6. A subset U c G is called conditionally compact (or r-relatively compact
asin [77, p.56]) if U n GX is relatively compact in G for every compact K cc X.

Thanks to the proof of [77, Theorem 2.1.9], since X is paracompact, it has a fundamen-
tal system of conditionally compact neighborhoods in §. Observe that since, as a subset
of G, X is invariant under p, then if U is a conditionally compact neighborhood of X, p(U)
is a conditionally compact neighborhood of X as well.

The next result is a generalisation of [66, Proposition 6.10] and [65, Proposition 6.8] (of
course, once we forget the Real structures).

Proposition 5.5.7. Assume one is given the aforementioned settings. Then, there is a net
{fhren in Co(T;.7)° of elements of the form

ny
=Y @F ¢h,
i=1

with each (b? € C.(Z; X)), which is a Real approximate identity with respect to the inductive
limit topology for both the left Real action of (C.(T;.#),¢) on itself and on (C.(Z; Z),x).
Similar statement holds for (G, &).

Proof. Inview of Example 5.3.14, it suffices to treat just the case of the Rgaction of (C.(T'; %))
on C.(Z; Z"). To do so, we we may use the same method as [66, Proposition 6.10]. How-
ever, some minor adaptations have to be done for our needs. A first step of the proof
consists of providing for any given pair (i, F), where i € I with {b;};c; a Real approximate
identity for the Rg C*-algebra (B,¢), and F c C.(Z; Z') is a finite subset, a net {f(; ry)} <
C.(I;.%), such that as U increases along the directed family of conditionally compact
neighborhood of Y in I" contained in a fixed conditionally compact neighborhood U,
of Y inT, and as € > 0 increases, f(; ru.e ¢ — b;-¢ in the inductive limit topology for
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each ¢ € F. To come to this end, one should use Corollary 5.5.4 and Lemma 5.5.5. Next,
consider the family A consisting of 4-tuples (i, F, U,€) (as above) directed by increasing
i and F and decreasing F and €. This family is endowed by the Real structure given by
A=(i,FU,e) := (i,x(F),p(U),e), where

K(F):={x(): Z3z2— Kk (p(1(2)) € Z7(z) | p € F}.

This Real structure on A is well defined, thanks to the discussion preceding the proposi-
tion. Then we put fj := ¢o f) forall A € A. The second step is to check thatfor ¢ € C.(Z; Z),
fary — v in C.(Z; Z7) for the inductive limit topology (see the last part of the proof of [66,
Proposition 6.10]). O

An immediate consequence of Proposition 5.5.7, is Proposition 5.1.12:

Proof of Proposition 5.1.12. Given a graded Real Fell system (G, &), we have already seen
that (G, &) simg £ (G, &), where the Morita equivalence (G, p) : (G, p) — (G, p) is canoni-
cally defined by the source and range map X <—— G —— X . Now from Proposition 5.5.7,
there is a Real approximate identity {f3} for the left Real action of C.(G; &) on itself, with f)
of the form

ny
fi= Z st b, where ¢ € C.(G;6).

=1
But, using the right Real action of C.(G; &) on itself and the fact that f/{" = fforall 1 € A,
it follows from Lemma 5.4.14 that {f}}1ex is also a Real approximate identity for the right
Real action of T';(G; &) on itself, and this completes the proof. O

End of the proof of proposition 5.4.10. In the proof of the proposition, we have only left to
verify

(1) the positivity of the inner products, and
(2) the density of the range of the inner products.

By symmetry, it suffices to show for instance that (v, ¥) = 0,Vy € C.(Z; Z") to prove (1).
Letey = Z?jl <¢;1> € C.(G; &) be a Real approcimate identity for the right action of C.(G; &)
onitself and on C.(Z; Z") as in Proposition 5.5.7. Then

L) — (v, w)
with respect to the inductive limit topology. But
Sveen vy =Y w9l o, v,
1

=2 o o7 )
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=Y (pFy)* x (bF,w)=0in C* (I3 P);
i

hence ,(y,y) = 0 as the limit of a positive net in C* (I'; ).

Let us check (2). Again by symmetry, it it suffices to check, for instance, that (-, -), spans a
dense range in C.(G; &). If { € C.(G; &), then from Proposition 5.5.7, ey * & — £ in C.(G; &)
with respect to the inductive limit topology. But

ny ny
erxE=Y (ph, ph, xE=) (@} ¢t O, €(CUZ; X, CZ; X)),
i=1 i=1

which completes the proof. O

5.6 The Equivalence Theorem

We start this section by the following observations. Let ((G, p), (£,0)) be a Rg Fell sys-
tem and let A:= Cy(X; &) be as usual. Suppose we are given a bounded continuous section
[ €Cp(X;&). Then, for & € Cc(G; &), we define the element L& =: f¢ € C.(5; &) by setting:

LS(g):=f(r(g)é(g)e &y, forall ge . (5.50)
Also, we define the element ¢ f € C.(G; &) by

G23g—{f(g):=¢(g)f(s(g) € &. (5.51)

Notice that C,(X;E) is a C*-algebra under pointwise operations and the sup-norm
(cf. [3, Lemma 3.2]). Furthermore, it admits the Z,-grading and the Real structure defined
by e(f)(x) := e(f (%)), and o (f)(x) := o (f (p(x))).

Lemma 5.6.1. Forall f € C,(X;&), we have Ly € L(I%(S;&)), where Ly is the element de-
fined by (5.50). Moreover, themap L:C,(X;&) 3 f— Ly € L 4(I%(G; &) isa* -homomorphism
which is Real and graded.

Proof. Ly is clearly continuous; also itis bounded since f is abounded section (it is straight-
forward that | L¢llop < Il fIl, where || - [|,p is the operator norm in L([%(G;&))). If &ne
C.(G;&) and x € X, then

ACLFS,m) (%) :fngfff(g_l)*n(g‘l)dug(g)

:fgx«f*(g)f(r(g‘l))*n(g‘l)dpg(g)
= Al Lym) (x);

hence, L is adjointable with adjoint L}’l := L¢+. Moreover, Ly, ,(§) = L7, (L, (§)),VE € Cc(G;6);
thus L, = LiLp, VY fi, f2 € Cp(X;&). Finally, it is obvious that L is compatible with the
gradings and the Real structures of C.(X; &) and £ (L2(G; &)). O



5.6. The Equivalence Theorem 139

Proposition 5.6.2. Every element of C,(X; &) may be identified with an operator in £ (L?(G; €))
centralizing C; (G; &); therefore, C(X; &) is a Rg sub-C* -algebra of M(C; (G; &)).

Proof. If (&) € Cf(G;&) and f € Cp(X; &), we put

L&) :=m(Leé) =m(fE), and Ry (m;8) := m;(E ). (5.52)
We verify that with these formulas, we obtain a double centralizer (L¢, Rf) € M (Cr(G;8).
To see that the assertion is true, observe that for ¢,n € C;(§; &) and g € G, one has
(FE*m)(@) = fr(g) fg o S 9 dug® (h)
= f FarmEmnth™ @dug® (i
gr[g)

= | ot g i
Gr(g)
=foxm;

and similarly one shows that (¢ * ) f = ¢ * nf. Moreover, we have

Cf=m(g) = fg o E(h) f(s(hm(h™ @dug® ()
= | ewfrn omh gdul® h
gr(g) S

=|  em T dul® (i
Ggr® g
=(* fn)(g);

so that Ry (m;(§))7;(n) = m;(§) L (7, (1)), and by continuity, for every f € C,(X; &), the pair
(Lr, Ry) verifies Rp(a)b = aL¢(b) for all a,b € C; (G;&8); i.e. (Ly,Ry) € M(C;(G;&)). Now,
since the *-homomorphism C,(X;&) 3 f— L rel (L2(G; &)) is Real and graded, the map
Cp(X;&8) 3 f— (Lf,Ry) € M(C[(G;£)) is a Rg *-homomorphism. O

Remark 5.6.3. In what follows, we identify the double centralizer (L¢, Ry), and hence the
element f € C,(X;&), with Ly € L(I2(S;&)), by considering Ly as a multiplier of C; (G; &)
under the formulas: Lym(§) :=mw(L¢S) =mi(fE), and i (§)Ly:= Re(m(8)) = w1 (S f).

Definition 5.6.4. Consider the Real field of graded C* -algebras

M) := ] M&),

xeX

equipped with the grading inherited from that of & and the Real structure induced by that
of X and &, over (X, p). Then, we denote by GZ”(X; M(&)) the unital C* -algebra consisting
of all the bounded strictly continuous sections of M(&’) over X (cf. [3, p.7]). Together with
the Real structure o and the obvious grading, (Gzt "(X; M(&)),0) is a graded Real unital C* -
algebra (under pointwise operations and the sup-norm).
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Notice that the unit 1 € C;'" (X; M (&) is the section given by
1: X3 x— (Idg,,Idg,) € M(&),

where Id, : & — & is the identity map. From Proposition 5.6.2 we obtain the following
corollary.

Corollary 5.6.5. Let (G,&) be a Rg Fell system. Then (GZ”(X; M(&)),0) is a Rg sub-C*-
algebra of (M(C; (G;&)),0).

Proof. The map C(X;&) > f — Ly € M(C;(5;&)) is non-degenerate; indeed, observe
that by considering the Rg left Fell pair ((&,0),(&’,0)) over (G, p) determined by the full
maps &g x 8, — Sgp, we see that for f € Cp(X;8) < A and ¢ € C.(G;&), the element
L¢¢ € C.(G; &) is nothing but the action of A on €.(5; &) defined in Lemma 5.5.5. It fol-
lows that if {a;};c; is an approximate identity of C,(X;&), then for all ¢ € C.(G; &) we
have Ly7;($) = mi(a; - §) — m;(&) thanks to Lemma 5.5.5. Whence, L(C(X;&))C/ (G; &)
is dense in C;(G;&). Now, from [71, §.3.12.10 and §.3.12.12], the map L extends to a
unital strictly continuous *-homomorphism M (Cj(X;&)) — M(C; (G; £)); this map, also
denoted by L, is clearly graded and Real. Furthermore, from [3, Lemma 3.1], we have
MCy(X; &) = GZ”(X; M(&)), which settles the result. O

Proposition 5.6.6. Suppose that (I',.%) ~z 27y (§,&), and let (M,.Z) be the linking Rg
Fell system as in the previous sections. Let x, and y, be the characteristic functions of Y
and X, respectively. Then we get two elements y,1 and x,1 of (32” MO M(¥)), where
le G;}”(M(O); M(Z)) defined by scalar multiplication.
Now define

pri=Ly 1, and pg:= Lya€ M(C; M, 2)).
Then pr and pg are complementary full projections * which are homogeneous of degree 0
in M(C} (M;.%)); moreover, they are invariant under the Real structure.

Proof. That y,1, y,1€ GZ"(M(O);M(éO)) is trivial. Also, it is easy to check that p% =pp =
pr, and that pé = pg = pg, so that pr and pg are projections in M (C; (M;.£)). That pr and
pg are homogeneous of degree 0 and invariant under the Real structure is also straightfor-
ward. Let

il 12
{= e C.OM;.2).

$a1 $22

2Recall from [17] that a projection p € M(A) is said to be full if p Ap is not contained in any proper closed

two-sided ideal of A; that is, span{ApA} is dense in A (see for instance [18] or [75, p.50]). In this case, we
say that pAp is a full corner of A. Two projections p,q € M(A) are complementary if p + q = 1, in which
case pAq is a pAp-qAqg-imprimitivity bimodule; i.e. pAp and g Aq are Morita equivalent. Conversely, two
C*-algebras A and B are Morita equivalent if and only if there is a C*-algebra C with complementary full
corners isomorphic to A and B, respectively (cf. [18, Theorem 1.1], [75, Theorem 3.19]).
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Then

¢ S12 0 0
)¢ = ,and (y,1)¢ = .
(e ( 0 0 ) and (1 be ( &1 Co )

Thus, (pr+pg) (17" (&) = 1)1 (£), so that pr+pg = 1in M(C; V; £)). Now, leté,n € C.(M; 2).
Then

& pra)t () = 1) E * pry) = 1) (Epr x 1)

SN S110Mi2

_ .M
=

$o1:mr ($5p,M2),

So to check that pr is full, we just have to show that

span )" Sarx 511'7712 | &11 € Ce(T3.7),éa1 € Ce (27150,
Ea1:m11 {S5p,M12),

N2 € Ce(Z; 27),m11 € Ce(T;6)} (5.53)

is dense in C; (M;.Z’). But this is not hard to see by using the previous results. Indeed,
the existence of Real approximate identities in C.(I';.%) (cf. Proposition 5.5.7) for both
the left Real actions of C.(I';.%#) on itself and on C.(Z; Z") shows that elements of the
form &q7 * 111, for &11,m11 € C.(I';.%) span a dense Rg subspace of C.(I';.%) and that el-
ements of the form &1 - 112, for 112 € C.(Z; Z), span a dense Rg subspace of C.(Z; Z").
Also, that elements of the form &1 :711, where &;; € GC(Z‘l;y),nu € C.(T;.%), span a
dense Rg subspace of C.(Z~; 2") follows from the existence of a Real approximate iden-
tity in C.(T'; F) for the right Rg action of C.([';.%) on GC(Z_I;?). Finally, thanks to Propo-
sition 5.4.10, the image of (-, -), is a dense Rg subspace of C.(9;&). Whence, we have
shown that C; (M;.Z) prC; (M;.Z) is dense in C; (M;.%). In a similar fashion, we get that
C;(M; L) pgCr(M; L) is dense in C; (M;.Z), which completes the proof. O

The main result of the chapter is the following theorem.

Theorem 5.6.7 (The Renault’s Equivalence). Let (I',p) and (G, p) be second countable lo-
cally compact Hausdorff Real groupoids. Suppose that

(T,0),(F,9) ~zn,2 ) (5 0),(&,0)

are equivalent Rg Fell systems. Then the isomorphisms of Rg convolution algebras
. ¢in 0 )
Ce(M;F) 3¢ — 0o o€ prC.NV; L) pr, (5.54)

and

0

0
Ce(G;8) 3n2— (
0 m2

) € psCcM; L) pg (5.55)
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extend to two isomorphisms of Rg C* -algebras
C; (T #) — prC; M; L) pr, and C; (G;&) — pgCr(M; 2L) pg. (5.56)

In particular, (C;(;.%#),¢) and (C;(G;&),0) are Morita equivalent with Rg imprimitivity
bimodule (prC; (M; L) pg, o) which is isometrically isomorphic to the completion (X,,«)
of (Cc(Z; X),x) in the norm

Iplls == 16, P), Nl giguey for P € Ce(Z; 20).

In order to proof Theorem 5.6.7, we need some more constructions.

Suppose (I',.%) ~z 27 (§,&). For x € X, we also denote by 2~ — Z, the pull-back
of 2~ — Z along the inclusion Z; — Z. Then we define L?(Z,; 2") as the completion of
Cce(Zy; &) with respect to the graded Ay-valued inner product (¢, y) L) = frt(z) ((/)()f‘l .
z),w(}/‘l . z))gd,u?Z) (y), where s(z) = x, and the right A,-action (¢ - a)(z) := ¢(z)a, for ¢ €
Ce(Zy; Z),ac€ Ay. Thus, I?(Z,; ) is a graded Hilbert A,-module. Similarly, forall ye Y,
one can form the graded Hilbert By -module [2z;1 ;?)_ Note the involutions « of 2 and
7 of Z induce an obvious conjugate-linear graded isometry 7, : C.(Zy; Z°) — Co(Zz; 2
defined by 7,(¢)(z) := xx(¢p(7(2))). What's more, we have 7,(¢ - a) = 7,(¢p) - o(a). Hence,
there is an induced conjugate-linear graded *-isomorphism

Tt La (L3(Z; X)) — L (L*(Zz; 20)).

Proposition 5.6.8. Suppose (I',. %) ~ 7.2 (G,&). For x € X, the left action of C.(I';.%) on
Cc(Zy; X)) induces a graded * -representation R : C.(T;.F) — L 4 (1*(Zy; Z)) that factors
through the Rg C* -algebra C; (I'; %) such that the following diagram commutes

g
C:(G;é) S Lo (L3(Z; X)) (5.57)

al ) l

Cr (G &6) — > L, (LX(Z5; X))

Similarly, for all y € Y, we get a representation RJS, :Cr (G E) — L, (Lz(Zy‘l;y)), together
with a similar commutative diagram.

Proof. Let ¢ € C.(T';.%); then for ¢, w € C.(Zy; Z7), simple calculations give (¢ - ¢, v), (x) =
(p,¢* -y, (x). It follows that the Ay-linear operator Cc(Zy; 27) 3 ¢ — &+ € Co(Z; X)
is adjointable, and then bounded with respect to the norm | - || ;2(z . 2-), which gives the
*-representation RL : C.(T;.%) — L4 (I*(Zy; 2)),& — (RL(&) : p— & - ).

Now, let zy € Zy, and let y :=t(zp). Then, to complete the proof it suffices to check that
for all ¢ € C.(T;.7), IR, (Il < I, (&), where 7, : Co(T; F) — L, (L*(T ;%)) is the repre-
sentation defined in Lemma 5.2.10.



5.6. The Equivalence Theorem 143

Consider the (left) Hilbert By,-module Xz, and form the interior tensor product LT % F)® By
2z, which is a right graded Hilbert A-module under the operations defined on simple
tensors by: ((® u)-a:=¢®(ua),and @ u,ne V) := (U, ({,n)By * V) 4,. Then, the map

Uy LTy F) 05, Xzy — L2 (Zs ), P §i® ui— ) &1 Ui, (5.58)
1 l

where for ¢ € Cc(I'y;.%) and u € Xy, (§-u)(2) :=&(r < 2,20 >) - U € 2 <z,z9>2, IS aN iSOMOI-
phism of graded Hilbert Ax-modules. The map (5.58) is clearly A,-linear and injective. To
see that it is surjective, first notice that the well defined map Zx > z+— r < z,z9 >€ Ty,
is a homeomorphism of I'-spaces (its inverse being I'y 3 y — 7y - z9 € Zy). Next, for all
z € Zy, the linear span of the image of J <, ;o> x 22, 3 (f, ) — f-u € X <z z >z i dense
in 2} <z 2>z by definition of a Fell pair; so that, using the Stone-Weierstrass theorem,

span{n-u:Zy3z—1(r <2,20>) - UE Xi<zz9>2 | ME Cc(Cy; F),ue 2z}

is dense in C.(Zy; Z) in the inductive limit topology. It follows that any ¢ € C.(Z; X) is
the inductive limit of some Y ;n; - u; = u,,(3_;n; ® u;). We then have an isomorphism of
C*-algebras

iz 1 L, (LA(T ;. F) ®p, Z2) — La (L*(Z; 2))

such that 1, (T) (X;&; - ui) := ug (T (Xiéi®u;)), forall T € L4 (L*(Ty; %) ®p, 2z,). Fur-
thermore, the following diagram is commutative

T
X

Ce(T;.7) La L Zs2))

Lp,(L*(Ty;.7) —= L4, (L*(Ty;.7) ®p, Xzp)

where the lower horizontal arrow is the map T — T ®Id (cf. for instance [50, p.50]). In-
deed, let £ € C.(T';.%), and ¢ € C.(Zy; Z7). Without loss of generality, we can suppose that
¢ =n-u; then,

i1z, (1, () ®1d)p = (1, (O 8Id) @ w) = (1, (M eu = (Exn)-u=&0-u) = R Mew) = R, ()¢,

which completes the proof since 1, is an isomorphism and IIng,(f) ®Id| = ||7'£§,(f) I (see [50,
p.50]). O

Proof of Theorem 5.6.7. That the maps defined by (5.54) and (5.55) are isomorphisms of
convolutions *-algebras is obvious.
As previously, let us put B := Cy(Y;.#) and A:= Cy(X;&). Then

CoM®; AY=Ba A,
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as Rg C*-algebras. Now, with respect to this decomposition, simple calculations show that

Boal&,m) = (BCE1L,MD) + (&1, 1o y) @ (12, M2, 1 x + al€22,122)) (5.59)

for all { = Su oz and n = e in C.(M;.%). In particular, suppose that ¢ =
§21 €22 M21 M22

én 0 ) € prC.M; Z) pr, then
0 0
i 0 i 0\ _
B®A<(O 0),(0 0)>—B<511,511>®0,
so that

= ISl 2,2y (5.60)
L2(M;.%)

i1 0
0 0

thus, (5.54) extends to an isometric B-linear map ur of B-modules

ur : L*(0;.%) — prL*(M; L) pr,

where prL?(M; L) pr is the completion of prC.(M; .£) pr with respect to the norm of L2V D).
Similarly, for £», € C.(G; &), we get

00 00 N\ e et
BoA 0 622 ’ 0 {_,22 - ANG22,622/)
( 00 )

0 622

so that (5.55) extends to an isometric A-linear map ug of A-modules

and hence

= S22l 12 (g:¢s (5.61)
22M.2)

ug: L*(G; &) — pgL*(M;.2) ps.

Furthermore, since ur and ug are surjective, then from [?, Theorem 3.5], they are uni-
taries in LB(LZ(F;ﬂ),prLZ(M;X)pF) and LA(LZ(S;éa),ngZ(M;Z)pg), respectively; in
other words,

L*(I;7) = prL*(W.2) pr

as Hilbert B-modules, and
L*(S;8) = pg L*(V;; L) pg
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nn

as Hilbert A-modules, here the sign "=" stands for unitarily equivalent. Moreover, it is very
easy to see that the following diagrams commute:

Ce(;. %) prC.(V; L) pr Ce(G;8) psCcOV; L)pg  (5.62)

T M g M
i”z l”z T l J{”z

L(L2(T;.9)) —= (prL*(V; L) pr) L (1% &) — L (pgL>W; L) pg)

0 00
It then only remains to check that for = ( f)u 0 andn = 0 ), we have [€llcx v, 2) =

122
111 llcx o, 2) and Inllc: ovi,.2) = IM221l¢# (g;6) which will lead to the desired isomorphisms of

C*-algebras (5.56) since pr and pg are complementary (cf. Proposition 5.6.6). However,
by symmetry it suffices to check one of the latter equalities. To this end, we will use the
constructions of Lemma 5.2.10.

Note that we have

C(ly; F)@Ce(Z; 5 2), ifw=yeY;

C.My; ) =
eMoi ) {Gc(Zx;%)GBGc(Sx;é"), ifo=xeX

N1
n21
Ce(Ty;#) and ny; € C.(Z71: Z), while elements of C,(My;.%), for x € X, are of the form

(0 12

0
In other words, elements of C.(M,;.%), for y € Y, are of the form ( 0 ) with 17, €

0 722
one has

)withmg € Ce(Zy; ) andnz € Co(Gy; &). Then, forally € Y, andn,{ € C.(M; .2),

.0, :.[r 7711(7/)*(11(Y)*d(,ur)y(}/)+fZ_1 7(N210(2), 21 0(2))d(p z-1)y (b(2),
y y

where (uz-1), is the Radon measure on Z ~1 with support z, 1, which is the image of u on
Z under the "inversion" Z~! — Z,b(z) — z; it is then given by

( 1)()=f
Hz-1)y(P o

So, byusingNotati(ES 5.4.12, we get (¢, m) g, = (N11,¢11) B, +€N21, {210, (¥); hence L*M,;.%) =
[2(T; 7)o L2(Z;Y; 2)). In the same way, we verify that LPMy; L) = L2(Zy; ) @ L?(S; &).
Thus, for all ¢ € C.(M;.Z), we have

g b@)dp " (g), for p € CZ 7).

P 0(2)

IElcr o) = maX{SUpIIﬂJyVE(cf) I, supllmy @) }
yey xeX

0
In particular, if £ = ( g” 0 ) €CcM;.2),and ye Y, then njy“(f) = n§(611) ® 0, so that

ISlc: v = max{ IS11llcr o), supllz) (&) } (5.63)
xeX
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Now, let x € X, and suppose 1 € C.(My;.Z) is such that Inllzov,.c) <1 ie

maX{||7712 I 220 ||7722||L2(9;g)} <1

Then, from a simple calculation we obtain
@O, M A, = E11 Mz, En “M2), (%) = (RL(E1DN12, Re(E1)M12), (X);

hence, by applying Proposition 5.6.8, we get ||7T¥[('f)77||L2(Mx;L) = |RL(E11)n12 lr2(z:2) <
IS11llcy r;.2)- Therefore, from (5.63), we get

ISlc: o) = IS11lic: @y 2)-
O

Corollary 5.6.9. Assume that (A,o0,a) € W(E}). If (Z,7): T,0) — (G, p) is an isomor-
phism in‘R® then
(A, S, 550) ~Morita (A% %, T, sfo?).

Proof. Recall that the graded Real Dixmier-Douady bundle (A%, 0%, a%) over (T, o) is de-
fined as A“ := s*A/G. Observe that for y € T, the fibre (s;.A%), = ASZF(Y) is identified with
Zsr(y) Xgo AlG. Consider the graded Real C*-bundle (s*A,s"0) over (Z, 7). Then, the Fell
system ((SFAZ, sl’faz), (T',p)) actson ((s*A,s*0), (Z, 1)) on the left via

Zsr(y) X g(0) A
S

where (y,z) € I' * Z. Also, we have a right Fell pair ((sgﬂ, 9),(s*A, Z)) determined by the
right action

X Aﬁ(z) 3 ([z,al, l’)) —abe As()/z) = Aﬁ(z), (5.64)

As(e) X Asgg) 3 (@, b) — ag (@b € Ag(zg) = Asg g)- (5.65)
Next, define the inner products in the obvious way: if (z,b(z)) € Z x g0 Z ~1 we set

ZSr(r<Z,Z’>) X 9(0) 'A

As(z) X As(z) 3 (@,b(D)) — [z,a*b] € (5p.A) <z pr> = 5 ,

(5.66)

and if (b(2),z) € Z~! x 0 Z, we put
‘As(z) X ‘AE(Z,) el (b(d), b) L (X;;Z,>S (d)*b € (SE‘A)<Z,Z,>9 = A59(<Z,Z/>9) = ‘Aﬁ(z/). (5.67)

It is now straightforward that the settings ( 5.64), ( 5.65), ( 5.66), and ( 5.67) give an equiv-
alence of graded Real Fell systems (sl’fAZ )~ 4,2) (séA, 9). We thus complete the proof
by applying Theorem 5.6.7. O
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5.7 The reduced C*-algebra of an element of ExtR(G,S")

In this section we are following [90, §3.1] to construct the reduced C*-algebra associated
to a graded Real S'-central extension. We begin with the following simple lemma which
provides another example of graded Real Fell bundles having direct bearing on our work.

Lemma 5.7.1. LetE = (S! ——=T —">T,8,P) be a graded Real S'-central extension of
(S, p). Consider the associated line bundle L :=T x 1 C of theS' -principal bundlen : T — T,
where

['xg C:=T x Cl g9~ 2)-
Define the gradinge and the Real structureo on L bye([y, z]) = [V,2.0(w(¥)], and o ([y, z]) :=
[0(7), z], respectively. Then

(i) the projection (L,0) — (I',0),(8, t] — n(y) defines a graded Real line bundle over
the Real groupoid (T, p);

(ii) equipped with the product and the * -involution given respectively by

- Ly, x Ly, 3 ([¥1, 21, [¥2, 22]) — (7172, 2122] € Ly, y,, for (y1, &) €T'®, and

- Ly3[f,2— [y 2l € Ly,
(L,v) is a graded Real Fell bundle over (G, p).

Definition 5.7.2. (c¢f. [90, Definition 3.1]). Let E be given as above. Then, the graded
Real reduced C* -algebra (C; (I'; L), 0) of (L,0) is called the reduced C*-algebra of E, and is
denoted by (C; (E),0).

Theorem 5.7.3. Suppose that [E;] = [E;] in Eﬁz(g,gl). Then as Rg C* -algebras,
(C; (E1),01) ~Morita (C; (E2),02).

Proof. SupposeE; = (S! ——=T; BN I;,0i,P;),and L;:= I, xg1C. Letp;:Li —T;, i=
1,2 be the Real projections. Set ker p; := Li|r(0> = pi_l (1“5.0)), where as usual, FEO) is identified

with its image in I'; by the identity map Fg.o) — I';. Observe that ker p; = kerm; xg1 C, where
kerm; := fi‘r(m =T EO) x S is the restriction of the Real S!-principal bundle 7; : I[;—T;to

Fg.o) c I';. Moreover, together with the trivial grading on the fibers and the Real structure
defined as the restriction of o, ker p; — FE.O), i =1,2,is a graded Real line bundle. Now let
(Z,7) : (T1,01) — (T'2,02) be a Real S'-equivariant Morita equivalent implementing the
equivalence E; ~ E; in g(\tR(S, S1). Recall from Definition 2.6.4 that we have a Real Morita

equivalence (Z/S!, 1) : (T'1p1) — (I'2,02). Define
X:=(Z/S! x

rokerp;) ® (ISt x o ker pa), (5.68)
1 2
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together with the Real structure x given by the unique extension of the involution

(ZIS! xpo kerp)) x (ZIS! xpokerpy) — (Z/S! xpo kerpi) @ (Z/S! x;0 kerpg)(S 69)
(([z1], u1), ([z2], up)) — ([t(zD],01(u1)) ® ([T(22)],02(u2)) '

Then, (X, %) is a Real line bundle over (Z/S!, 1), and thenis a graded Real Fell bundle (with
the trivial grading). Furthermore, it is not hard to verify that ((X,«), (Z/S!, 1)) implements
an equivalence of graded Real Fell systems ((L;,0), (T'1,01)) ~ ((L2,02), T2, 02)). Therefore,
our assertion follows from Theorem 5.6.7. O

There is another picture of the reduced Rg C*-algebra of a Rg S'-central extension. In-
deed, letE = (S! —=T —~=T,§, P) be as previously. Consider the trivial Rg Fell bundle
(1,0) — (T, p), where 1:=T x C, together with the grading 5 and Real structure  respec-
tively given by:

6(7,2) = (7,2.8(}), and §(¥,2) = (§(}), 2), V(},2) € L.

Note that the *-involution on the fibers of (1, ) is the complex conjugation. We will write
C.(D) (resp. c* (D), Cr @) for I',(T;1) (resp. for C*(T;1), Cr (T;1)). The reason why we use
these notations is that a compacty supported continuous section of (1,9) can be seen as
a compacty supported complex valued function on I'. Notice that our definitions of the
C*-algebras C *T) and Cr (T) does not differ from that given by Renault in [76]. How-
ever, the convolution algebra C,(T) is equipped with the grading & — & (&), with 6(&)(}) :=

E().6(() for 7 € T, and the Real structure ¢ given by p(&)(7) = £(§(})) € 155 =C.

Definition 5.7.4. LetE=(S! ——T —2>T,5,P) bea Rg S!-central extension of (G,p).
Then we put
~ 1 ~ ~
C.D® :={teCDIEtp =11, VteS yeT}.

Lemma5.7.5. LetE=(S! ——T —">T,8,P) beas above. Then, endowed with the grad-
ing 6 and the Real structure p induced from that of C.(I), (Cc(f)gl,@) is a Rg convolution
subalgebra of (C.(I), p).

Proof. If ¢ € C, (f)gl, thenforally € I'and t€ S!, one has

OO (tP) = EUPS (1) = tHEPS (7)), and

@O (t7) = E@) = E(Fp(P) = £ E(P(P);

hence §¢,pé € C.(D)S',Vé e C(D)S'.
Now, suppose that &1 € Co([)S'. Then, forall fe T and r€ S,

Exn(tp) = ff B pdp” ()
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=1 f & paul” (i
Irm

=t @

and &*(17) = E( 17 ) = t6(F 1) = £ 1EFY) = 1% (F). Thus, C.(D)®' is closed under
both the convolution and the involution in C,(I). O

Definition 5.7.6 (The reduced S' -equivariant C*-algebra). The (Rg)reduced st -equivariant
C*-algebra (C* (D)%, 9) of E is defined by setting

C: D) = m(C.DSH) = CF (T 1.

Example 5.7.7. Let the Real groupoid (S',) be equipped with the Real normalized Haar
system dt := %. Thenall f € G’C(Sl)§1 is completely determined by its value at 1 € S'; for if
t,t' €S, then f(tt) = t71 f(¢)), and in particular,

VteS!, f(n=t1fQ).
This yields to an isomorphism of Real algebras
C(SHS' 5 f— f(1) eC.
Moreover, a simple calculation gives

so that C; shHs' =c.

Our purpose now is to connect (C; (E),0) to (C; (f)gl,@), since this latter seems to be
likely an easy picture for us to work with.

Remark 5.7.8. Note that C; (D)S' can also be seen as the closure of C. S in Cr(T;1) with
respect to the operator norm (see [90, p.865]).

Lemma 5.7.9. Given¢ € Gc(f)§l, setforallyeT:
E) =1, @ €Ty xg1 C. (5.70)

Then this formula provides a section & € C.(I'; L). Moreover, it defines an isometric isomor-
phism of Rg convolution algebras (C‘EC(FI:)S1 ,0) — (C.(T; L), 0).

Proof. 1f 7,7 € fy, then there exists a unique t € S' such that ¥ = t¥; so [(},E(J))] =
[(tF, £7YE@)] = [(F,EF)] = E(y). This shows that the section ¢ : T — L is well-defined,
for all ¢ € Gc(f“)gl. Since ¢ and 7 are continuous, so is . Moreover, supp¢ is compact,
for if y € suppé, then 1:), = 771(y) < supp¢ and this means that suppé c n(suppé). It is
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immediate that if {; — ¢ in Gc(f“)§1 with respect to the inductive limit topology, then
& — &in C(T; L) with respect to the inductive limit topology. We then have a continuous

map (‘3(;(’1:)Sl — C.(I;L),é — &. To see that this map respects the gradings and the Real
structures, observe that

e@ ) = e(lF, €N = [(7,EP).6(YN] = [(F, 6&) (7))] = FEXY),

and

a&)) =0y =a(@F),E@PND = [T, E@FPN] = (7,6 TN = C 9.
Nowlet ¢,n € e.(MS'. Then

E+My) = frrwl [(fl,f(il))] . [fl_lff,n(fflff)] dul{(}’)(fl)
= fr @ Edn T p)du ™ ()
= [(Y f ~ E(fz)n(ffl?)dufm(fz))]
rry
= [F E*mE)] = € *m(y), VyeT.

Also, ©* () =& ™D = [ LEFE N = [F EGN = [(7,E* ()] = (€%)(y). We then have
shown that the map defined by ( 5.70) is a homomorphism of Rg convolution algebras.
The remaining of the proof is obvious. O

Proposition 5.7.10. LetE=(S' —— r—2~T1,6,P) be czRgS1 -central extension of (G, p).
Then, as Rg C* -algebras,

2, 1S <y ~ *
(CrD®,0) = (C}D),0).
Proof. Inview of Lemma 5.7.9, it suffices to show that for ¢ € Gc(f)§l, we have
1€l e @ = IS er s =2 IS er @

where é’ € C.(T; L) is the element defined by ( 5.70). We refer to [90, pp.865-866] for the
proof of this equality. O

Corollary 5.7.11. Let (G, p) be as usual, and let the Real groupoid (SY,7) be equipped with
the Real Haar system dt as in Example 5.7.7. We endow (G x S' —= X, p x 7) with the
Real Haar system define as the product u x dt; that is,

(Lxdn*(f) :=f flf(g, Ddtdu*(g), VfeCu(GxS), andxe X. (5.71)
EARYS
Then, we have a Morita equivalence of Rg C* -algebras (with trivial gradings):

C*(S) ~Morita CF(GxSHS'.
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Proof. Consider the trivial Rg S!-central extension
Eo=(S'—GxS!'—=G,0,9)
of (G, p). Then, the map

(GxSYHxg1C3a((g,1),2]— (g,t2) € GxC

defines an isomorphism of Real line bundles L —= GxC =:1over (G,p). Hence, by ap-
plying Proposition 5.7.10 and Theorem 5.6.7, we get

CrGxSHS = C; (Eo) := C; (G5 L) ~morita C7 (5 1) =: C{(9).
O

Remark 5.7.12. Note that the last corollary could be proved directly by observing that the
well-defined map

Ce(§) > f— (F: (g ) — 17 () € Ce(G xSHT,

is an isomorphism of Real convolution algebras which is isometric with respect to the re-
duced norms.

At this point, since we have an isomorphism of Abelian groups BrRo(9) = ExtR(S, SY),
we may study the relation between the two definitions of the Rg reduced C*-algebra of an
element of EE{O(S) (cf. Definition 5.2.8 and that of an element of m(S, SY). (cf. Defini-
tion 5.7.2).

Theorem 5.7.13. LetE € ExtR(S,S"), and let (Ag, ag,oF) € BrRo(S) be its corresponding Rg
DD-bundle of type 0. Then, as Rg C* -algebras, we have

A X G ~Morita C: (E™).

Proof. Write E=(S! —=T —T,8, Z), where (Z,7) : (G, p) — (T, p) is a Morita equiv-
alence. Recall (see the previous chapter) that Ag := A%, where (A, a,0) € Eﬁ%o (T') is given
by A := X (HD), where HT := [], .p0 L2([*,%,)S". Then, from Corollary 5.6.9, we have

A %r G ~morita A X, T = C: (I’ S*J%(Hr))
Thus, we only have to show that
CH(T;5* A) ~pMorita CH(T; L) =: CF(E), where L:=T xg1 C, (5.72)

and then we will apply Proposition 5.7.10. However, again in view of the Renault’s equiva-
lence Theorem 5.6.7, it suffices to built an equivalence between the Rg Fell systems ((S*A, s*o), (T, p))
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and ((L,p x ), T, ).

Consider the Rg Banach bundle X := s* HT over (T, o) defined as the pull-back of the Rg
Hilbert I-bundle H — T'© through the source map of I'. We claim that X implements
the desired equivalence over (T, p); that is, that

(s*A,I) ~n (LT). (5.73)
First, recall that the Real ['-action on H is given by the graded unitaries
LA, H)S 58— (y&:T7W 5 o EF 1 R) € Ho) € L2TD, H)S,

where ¥ is any lift of y along the projection 77 : ' — I'. We then have a Rg left (resp. right)
action of s* A, s*o (resp. of L)on X from the well-defined maps

J/E(Lz(fs(ﬁ),f}fo)gl)xLZ(fS(YZ),fHO)SI . LZ(fS(Yle),g{O)§1

. (5.74)
(T » é) — T'fIZYg T(Y2€))

and

L2502, 30)S" x (T, xg1 C) —  L2(T50219), )’
€ , [{AD — &7, Ali=y3AE

The maps (5.74) and (5.75) are continuous since the I'-actions are continuous. Also, they

(5.75)

are full and graded since the actions are, in fact, graded isomorphisms.

We now construct the s*A-valued and L-valued inner products X * X — s*A . and X x
X — L, respectively. Observe that, as in Example 5.3.14, T"! = {y ! | y € T}, if (y,b(y)) €
I'xpro 7! (in other words, s(y) = s(y")), thent <7,y >=yy'" "}, andif b(y),y") e T xpo T

(.e. 7(y) = r(y"), then <y',y" >r=y'"!y". We then define these inner products as
Y Y YY Y Y

Xy x iy"l — Asyy-y = KALETT, Ho)S'

(5.76)
(fyb(n)) — S*.A(f»ﬂ) = By’f,y’n
where for {,{’ € L2(T*,3,)S', 0; ¢ € K(LA (T, H,))S' is the rank one operator
2T, H0)S 3" — (¢ € 2T, Hp)S, xeT O
and
DCYH X fx)," — LY/—IY" = FY/—IY" xg1 C 5.77)

b(&),n) — (&)= [f’_lif", Y'EY" D gy

where y’ and 7" are any lifts of ¥’ and y", respectively. Recall (see the last chapter) that for
x €Y, the scalar product (-,-)x on Hg = X, is defined as

& omx = fr &), m(m)cdpz(h € C.
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The algebraic properties of these maps are easy to check. The map (5.76) is full, for
1o 125" st
span {0 1,0 € 27D, ) }
is the ideal of finite-rank operators on L? T, U{O)SI and the graded map
L0, 39)S — 2T, 3

given by the I'-action is an isomorphism of Hilbert spaces. The map (5.77) is clearly sur-
jective (then full, of course). It remains only to verify that the compatibility condition (cf.
Definition 5.3.10 (ii)) holds; that is, for any triple (y,y' !, y") € T xpo I ! xpo0 T,

E (€M = alE &) &, V(EDE,E € Xy x Xyt x Xy (5.78)

One has

EEEML=E 7T Y E Y E ]
= Y”_l)’, . ((Y,‘fl» Y"(f")r(y’))g
=y (YN ()

Y Opeye (r'EY

A8 ED &,

and the proof is completed. O
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First notions of Twisted K R-Theory

B

6.1 Definitions and basic properties

In this section, we introduce twisted Real K-theory of locally compact Hausdorff Real
groupoids in an operator theoretic point of view, using Kasparov’s Real KK-theory devel-
opped in [46].

Recall that for any fixed difference p — g mod 8, there is a covariant functor KR,
from the category of Real graded C*-algebras from the category 2(b of abelian groups de-
fined by

KRp_4(A):= KKR(Clp 4,A) = KKR(C, A&Cl ).

where C is equipped with the complex conjugation as Real structure, and as in Appendix
A, Cly; is the complex Clifford algebra endowed with the the Real structure clj; such that
(Clk,)r = Cl, 1.

Definition 6.1.1. Let G be a locally compact Hausdorff, second countable Real groupoid
with Real Haar system. Let a = (t,8,¢) € HR(G.,InvR) x HR'(S.,Z5) x HR*(S.,S"Y), and
let [A] € BRR(S) be such that DD(A) = a. We define the twisted Real K-theory of G by

KRI (G =KR] (S :=KRp_4(Ax, 9.
We will often write KRy (G*) instead ofKRg(S’).

Remark 6.1.2. It is clear from Theorem 5.6.7 that, up to isomorphisms, K R;j (G*) depends
only on the class of A in ErT%(S), and hence on the class of a. In particular, if a = (0,0,0),

then A x, G is Morita equivalent to C; (G); so that KR(_O{O 0 (§°) =KR;(C;(9)).

1As in [90], we have used the notation G* to specify that we are working with the groupoid § —== X,
S

not the space G.

155
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Definition 6.1.3. Ler G i>s’—> X bea Real groupoid. Define the Real K-theory groups KR/ (3°*)
to be the twisted KR-theory of G i>s—> X when the twisting « is the trivial class (0,0,0) €

HR°(S.,InvR) x HR'(S.,Z5) x HR%(S.,S"1); i.e.,

KR™(G") = KRy}, () = KR;(C} (9)).

When § is just a Real space X, our definition of the groups KR~/ (X) obviously coin-
cides with the one given by Atiyah in [6].

The following result is immediately deduced from Definition 6.1.1 and from Theo-
rem 5.7.13.

Proposition6.1.4. Let G i>;—> X bea Real groupoid. Suppose thata = (0,6,c¢) € HRY(S.,Z,) %

HR*(S.,8") and A is a Real graded D-D bundle of type 0 over § realizing a in BrRy(9).
Then,
KR,'(G") = KR;(C}ED),VjeZ,

where as usual, E 4 is the Real graded S"" -central extension of G realizing [A] in ExtR(G,S"1).
We will need the following definition in the sequel.

Definition 6.1.5. Let G i? X and T i?’ Y be Real groupoids with Real Haar systems
ug and pur, respectively. A strict Real homomorphism f : T — G is said to be compatible
with the Haar systems if

f P dpl” (g) = f LN D), VPeCe(S), yeY.
f(r)f(y) |4

Now from the theory of Real graded D-D bundles and of Kasparov’s KK R-theory, we
deduce the following properties.

Theorem 6.1.6. Ler G i? X, a, and A be as above. Then,
1. (Formal Bott periodicity). For all j € Z, we have
KRGV = KR (S
2. (Bott periodicity). Forall p,q €N, j € Z, we have
KRG ZKR,] (GxRPI)",
where A, 4 is the Real graded D-D bundle over the Real groupoid
G x RP9 —= X x RP1

obtained by pulling back A — X through the Real groupoid morphism G xRP9 — G
given by the canonical projection into the first factor; the involution of G x R”9 is the
product one, and RP9 is viewed as a Real space (i.e., we forget its group structure).
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3. (Functoriality in BrR(G)). Let§ bea fixed Real groupoid with Real Haar system .
Let A, B be Real graded D-D bundles over G. Then if

¢ B
X

is a morphism of Real graded D-D bundles (see Chapter??? ), there is a canonical

A

homomorphism of abelian groups

¢« : KR, (5% — KRy (9"). (6.1)

Proof. 1) This is a consequence of [46, Theorem 5.5].
2) Thanks to the Bott periodicity theorem in KK R-theory ( [46, Theorem 7.5]), one has

KR"7P(§") = KKR;(C,Co®RP", A %, §)).

Therefore, the only thing to do is to verify that there is an isomorphism of Real graded
C*-algebras
CoRPT, A X, G) = Apg X (G xRPY), (6.2)

which is simple. Indeed, every ¢ € C.(G x R”7; s* A x RP9) is of the form &(g, 1) = (f(g, 1), 1)
forall (g,1) € G x RP9, where f; := f(-, 1) € Cc(G;s*A). The map C.(G x RP9;s* A x RP9) 3
E— RPI35 t— f(-,1) € Cc(G;5*A)) € Co(RPT;C.(G;s*A)) is an isomorphism of Real
graded convolution algebras whose inverse is given by G x RP9 3 (g, 1) — (f(£)(g), 1) €

As(g)xRP 9 for f € Co(RP9;Cc(G; s*A)). Moreover, C(GxRP7; s* AxRP9) = C(RP)OC(G; s* A).
Hence, since A, 43 (GxRP9) = C; (GxRP9; s* AxRP7) and Cy(RP7;A %, G) = Co(RP)SC (G; 57 A),

we get (6.2) by passing to the completion of the Real graded subalgebra
77 (CoRPNDOC(G; 5" A)) = 11 (CoRP )M (Ce(Gs 5" A)) @ LG x RPY, 5 A x RP ).
3) The map ¢ induces a homomorphism of Real graded convolution algebras

@+ :C(G5 s A) — Cc(G; 5™ B)

by setting (¢.¢)(g) 1= @s(g) (£(g)) for £ € C.(G; 5" A), g € G. Moreover, for all ¢, € C.(G; s*A)
and x € X, we have

(@&, M3, =f9 Px () px(n(g)dpx(g)

s ( fg £ (@) dpx(g)

=S, Ma);
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so that ||<P*‘5||L2(9x;s*3) < @l - ”fHLZ(Sx;s*A)' Hence we have

l@«¢llBw,g =sup sup 1(@S) * Nl 12(g: 5+ )
x€X||nll<1,nel?(G;s*B)

<sup sup | (€ * ()”LZ(S;s*B)
xeX||nll<1,eL?(G;s*A)

<lell-sup sup IS * Cllr2gsvay = ll@ll - 1€l x, G-
XX |{|I<1,eL2(G;s* A)

Therefore, ¢. extends to a homomorphism of Real graded C*-algebras ¢, : A %, § —
G x; B, which yields the homomorphism ¢, : KR} (§°) — KR (5). Moreover it is easy to

check that if A — B -2 € are two homomorphismsin BrR(G), then (Wo@), =W.op,. O

Definition 6.1.7. For a Real graded D-D bundle A over G i>s’—> X , we define the gauge

group Autg(A) of A to be the set of automorphisms ¢ : A — A in the category BrR(),
where the group operation is composition of automorphisms.

An immediate consequence of property 3 of the Theorem 6.1.6 is the following:

Corollary6.1.8. Let A€ BrR(G). The group KR;Lj (G°) has the structure of Autg(A) -module
via the map
Autg(A) x KR, (§") — KR, (S"), (@, X) — . x.

Notice that our theory is a generalization of the twisted KO-theory of locally compact
spaces developped successively by Donovan-Karoubi [28], ]. Rosenberg [78], and Mathai-
Murray-Stevenson [58]. Indeed, when the Real structure of G # X is trivial, we have

already seen that @(9) = B/rb(S) via the homomorphism [A] — [Ag], where Ag is the
real graded D-D bundle whose fibre (Ag) is the subalgebra (A, )g of the fixed points of A
under the involution (cf. Chapter ??2?).

Proposition 6.1.9. Assume the Real structure of the groupoid G i>;—> X is trivial. Then,

forall[A] € BrR(S), there is a canonical isomorphism
KR;lj(S') =KOjAr %, 9) = KKO;[R,Ag % 9).

Proof. First, note that if A and B are Real graded C*-algebras, there is a canonical isomor-
phism
KKR(A,B) — KKO(Ag, Br), (6.3)

given as follows. If (E, @, F) € ER(A, B) (see [46] for the definitions), then define the "re-
alification" (E, ¢, F)r of (E, @, F) as (Er, g, Fr), where Ep is the Real part of E, ¢ is the
restriction of the homomorphism of Real graded C*-algebras ¢ : A — Lg(E) to Ag, and
Fg is the restrction of the degree 1 operator F: E — E € Lg(E)R to the real graded Hilbert
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Br-module Er. The triple (Eg,@gr, Fr) obviously belongs to EO(Ag, Br). It is clear that
(Er, R, Fr) is degenerate if (E, ¢, F) is. Furthermore, using the same construction, we see
thatif (E, ¢, F) is a homotopy between (Ey, ¢, Fy) and (E1, @1, F1) in ER(A, B), then the "re-
alification” of (E, ¢, F) connects homotopically ((Ep)r, (¢o)r, (Fo)r) to ((EDRr, (@1)r, (F1)R)
in EO(Ag, Bg). We then get a map KKR(A, B) — KKO(Ag, Bg) which, by construction, is
a homomorphism. Conversely, we obtain a homomorphism in the other way by sending
every (E, @, F) € EO(Ag, Br) to its "complexification" (E, ¢, F)c := (E¢,@c, Fc) € ER(A,B)
defined in the following way: Ec = E+iE is the usual complexification of E (see Appendix
A); pc: A= Agr+iAr — Lp(Ec) is pc(a+ib) := ¢(a) + ip(b), and F¢ : Ec — Ec is given
by Fc:=F+iF € LBRHBR(EHE)I. Observe that ((E, @, F)c)r = (E, @, F) for all (E,,F) €
EO(Ag, Br), and ((E, ¢, F)r)c = (E, @, F) for all (E, ¢, F) € ER(A, B); hence, we have proved
the isomorphism 6.3.

Now, to prove the proposition, it suffices to show that if the Real structure of G is trivial
€ — Gis a Real graded Fell bundle, we have an isomorphism of real graded C*-algebras

Cr (G Or=CL(GER), (6.4)

where Ep — G is the "realification" of £. To see this, observe first that ¢ € C.(9; E)p is
and only if -f_(g) = (f(_g) = ¢(g) for all g € G; hence, the real graded algebra C(G; &)g iden-
tifies to C.(G; Er), so that C.(G; &) is a complexification of C.(G; Er). Moreover, since the
norm of L?(G; &) is the one induced from that of L?(G; &) = L?(G; &)g+iL%(G; &), the real
graded Hilbert Cy(X; EOp-modules L2(S; &)g and L3(S; Eg) are isomorphic. Notice also
that Cy(X; Vg = GO(C;S(O)) as real graded C*-algebras. Now let T € Leo(x;g(m)(Lz(S;E)).
Then, T is Real if and only if T &) = Té) for all & € L%(S; &), if and only if there exists a
unique Tk € LGO(X;EO)R(LZ(S;g)[R) = L@O(X;gg))(LZ(S;SR)) such that T'(¢) = Tr(¢1) + i Tr(S2)
forall & =& + i, € L2(G;€). The map

Leyxieon LG R T Tr € L 00 (L*(G; ER))

is actually an isomorphism of real graded C*-algebras. To complete the proof of 6.4, we
just have to check that via this isomorphism, (77;(C.(G; E))r = 7;(C(G; Er)), which is straight-
forward. O

Definition 6.1.10. Let G i? X be given the trivial Real structure. Let [A] € BrO(S) and

[Ac] € BAR(S) its complexification. We define the twisted orthogonal K-theory of G by
“Jey.— rrJ(ce
KO, (§°):= KRA¢(9 ).

Example 6.1.11. Suppose X is a locally compact space equipped with the trivial Real struc-
ture. We have BIR(X) = BrO(X) = H°(X, Zg) x H'(X,Z5) x H2(X,Z5). Then, ifa € BrO(X),
we have

KR,/ (X*) = KR, (X) = KKO; R, € (X, A)),
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where A € BrO(X) is any real graded D-D bundle over X realizing a. In particular, if A is
of type 0 and trivially graded (i.e., a = (0,0, c)), then we recover Mathai-Murray-Stevenson's
and Rosenberg’s twisted KO-theory (see [58] and [78, §$3]):

KRy (X) = KO,/ (X) = KO; (o (X, A)).

As for twisted K-theory of topological spaces, there is an extension map in twisted
Real K-theory of Real groupoids. Recall (cf. [90, p.868]) that a subgroupoid T’ i? Y of

g i>S—> X is said to be saturated if Y is an invariant subset of X (i.e. 9§ =Gy =GY) such

that T = G7.

Proposition 6.1.12 (Extension map). Let [A] € BrR(S). Suppose that T i? Y isanopen

saturated Real subgroupoid of G i? X (i.e. yeI',VyeT). Then, the inclusioni:I'— G

induces a canonical map
i.: KR} (T") — KR;(S").

Another way to formulate Proposition 6.1.12 is as follows.
Let G i>s—> X be a Real groupoid with Real Haar system. Suppose that U c X is a

Real G-invariant open subset of X. Then for A € M(S), the inclusion map iy : Gy — §
induces an extension homomorphism

(i)« : KRy (Su)") — KR, (57). (6.5)

Proof. The proof is almost the same as the one of [90, Proposition 3.8]: we show that
Ay %, T is aReal graded ideal of A <, G. Recall (cf. Chapter ??) that supp(¢ * 1)) < (supp¢) -
(suppn), and supp&* = (suppé)~L. Thus, C.(T;s*Ajy) < C.(G;s*A) is stable under the
convolution and the adjoint. Further, since I’ is saturated, we have supp(¢ *n) < I', and
supp(n’ * &) cT forall &,& € C.(T;s* Ajy),n,n € Cc(G; s* A). Now, using again the fact that
r i? Y is saturated, we have

”6”/{\1*)%1" =Ssup sup ”5 * TI||L2(Fy;s*A|r)
YEY Inl<1,neLl?(Ty;s* Ar)

=sup sup 1€ % Cllz2(g 50 )
YEY IClI<1,¢eL?(Gy;s* A)

=sup||z{ @)
xeX

=11¢llax, g

and thus Ay %, I"is asub-C*-algebra of A x,G. Moreover, C.(IT’; s*A,y) is obviously stable
under the grading of C.(G;s*A), and since T is invariant under the Real structure of G,
suppé = {y;y € supppé} T, so that & € C,(T; s*Ajy),forall¢ € C.(T; s*Ajy). Hence, Ay xT
is a Real graded ideal of A %, G. O
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Corollary 6.1.13. Let G i>s—> X be an étale Real groupoid. Then for A € BrR(G), there is

an extension homomorphism
KR} (X) — KR, (5",
induced by the canonical Real inclusion X — G, where in the left hand side A is considered

as a Real graded D-D bundle over the Real groupoid X —= X (i.e., we just forget the G-
action).

Proof. Recall [76] that a groupoid G i? X is called étale (or r-discrete) if the unit space

X is an open subset of G. We then apply the above propositionto X —= X . O

Proposition 6.1.14. (Compare with [90, Proposition 3.10]). Let [A] € Eﬁa(g). Assume T i>;—> Y

is a closed saturated Real subgroupoid of G i? X . Then the Real inclusionT" — G induces

a canonical extension map

i*:KR3(S") — KR} (T).

Proof. The restriction map C.(G; s*A) — C.(I'; s*Ay) is evidently Real and graded, and
is surjective since I' is closed. It is moreover a *-homomorphism of convolution algebras,
and by using the factI'y, = G, for all y € Y, we have

1Tl s,r < 16lA%, g, V& € Ce(Gs 5™ A);

i.e. we have a sujective homomorphism of Real graded C*-algebras A x G — Ay T,
from which the result follows. O

To end this section, recall that if A € M(S) and B € @{(1‘) are such that the Fell
systems (G, s*A) and (T, s* B) are Morita equivalent, then the Real graded C*-algebras A X,
G and B x, I" are Morita equivalent. We thus have

Proposition 6.1.15. Assume that (G, séfl) and (T, sl"iB) are Morita equivalent Real graded
Fell systems, where A € W(Q) andB € W(F). Then,

KRZ(S') = KRy ().

In particular, twisted K R-theory is invariant under Morita equivalences; i.e. if Z:T — G is
a Real Morita equivalence, then

KR} (§) = KR, (D).
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6.2 Relative twisted K R-groups

In this section we define the relative twisted KR-groups and establish some related
exact sequences.

Definition 6.2.1 (The relative twisted KR-group). Consider a pair (G,T') consisting of a
Real groupoid § i>s’—> X and a closed saturated Real subgroupoid T i>;—> Y. For A e
BrR(G), we define therelative twisted KR-groups of the (G,T") by

KR, (G, T*):= KRA|X\Y((9 \)*).

Given such a pair (G,T'), we have that G\I' —= X\ Y is an open saturated Real sub-
groupoid of G i>s—> X . Denoteby i: G\T'— Gand j:T — § the inclusions. Then for

A e BrR(), itis straightforward to check that the sequence
CHG\T,s* Apxvy) == G} (G5 8" A) = CF (T 5" Ayy)
is exact in the middle. Hence we have
Proposition 6.2.2. Let (G,T) be as above, and let A € @(9). Then the Real inclusions
i:9\I'—=Gand j:T — G induces an exact sequence
* . . l* * . J* * °
KR;(§",T") == KR} (§") — KR} (T"). (6.6)
Corollary 6.2.3. Let G i>s’—> X be a Real groupoid, and let U be an open Real G-invariant
subset of X. The for all A € BrR(G) there is an exact sequence
-j . ~J e -j .

KRAW((9U) ) — KR,'(§ )—>KRA|F((9F) ), (6.7)

where F c X is the complement of U.

Remark 6.2.4. From a result of ]. Renault recorded as Proposition I1.4.5 in [76], the se-
quence (6.7) can be written in terms of C* -algebraic KR -theory as

KR;(I(U)) — KRj(A %, G) — KR;((A %, 9/I)),
where I(U) is the closure of the subspace {¢ € C.(G;s*A) | {(g) =0if g ¢ Gy} < C.(G;s*A)
with respect to the reduced norm.
Lemma 6.2.5. Let G i? X be a Real groupoid such that the Real part "G —="X is

non-empty and saturated. Then for all A € BIR(S), the inclusion map j:"G — G induces an
exact sequence

* Joey bx * o J" * .
KRy, ('§") "= KR{(G) == KOy, ,, (5.

Proof. The open Real subgroupoid 7G—=7X of G is saturated. The result is then an
immediate consequence of Proposition 6.1.9 and the exact sequence (6.7). O
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6.3 Mayer-Vietoris exact sequence

In this section we establish the long exact sequence on twisted KR-theory associated
with two open saturated Real subgroupoids of G i? X . More specifically, we prove the

following theorem (compare with [90, Proposition 3.9] in the ungraded complex case).

Theorem 6.3.1. Suppose that G; —= X; ,i = 1,2 are open saturated Real subgroupoid of
G i>s”—> X suchthatG=G,U9,. Let G12:= 91N Gy, and for [A] € ErT((S), let [A1],[Az], and
[A12] be the classes of the obvious restrictions of A. Then we have a 8-periodic long exact

sequence of groups
0 —j=1,00 y J —j-1 00 —j=1,0ey i
. _._ . a _. . s
— KRS = KR, (G .. 6.8)

In view of the 8-periodicity of twisted K R-theory, the exact sequence (6.8) can be rep-
resented by the following 24-terms exact sequence

KR, (S5,) KRG} @ KR (S3) — KRG (6.9)
ia

i A
KR® (51

KR5(G) =~ KR 5(S}) @ KR 5(G3)

: la

!

KRY, (S}

J

KRY (S ’ KR) (G @ KR (S5)
In order to prove this theorem, we shall first give the "Real graded" analog of the long
exact sequence of K-theory established in [35, p.90].

Lemma 6.3.2. Let A be a Real graded C* -algebra. Assume that I, and I, are two closed Real
graded (two-sided) ideals of A such that A = I, + I,. Then there is a 8-periodic long exact
sequence
a ' j
.~ KRy_ g1 (1 N o) = KRp_ g1 (1) ® KRp_ g1 (I2) —
, 5 .
KRy gs1(A) -5 KRy g(hn L) L~ ..  (6.10)

Our proof is essentially an adaptation of the one of N. Higson, J. Roe, and G. Yu in the

aforementioned refence.
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Proof. Let the C*-algebra A[-1,1] := C([-1,1], A) be equipped with the obvious grading
and the Real involution given by f(¢) := f(—1). Next, form the graded sub-C*-algebras of
A

C:={feAl-1,1]| f(-1) e I, f(1) € I},
Cli={feAl-1,1]1| f(-1) € I, fQ) € I},
S:={feAl-1,1]| f(-1)= f(1) =0

The map sending f € C to the function f*:[-1,1] 3 t — f(—1) € Ais an isomorphism of
graded C*-algebras C = C~!, and that C is not stable under the Real structure of A[-1,1].
However, since f € C ! and f» € C for all f € C, the "diagonal" of C® C~! defined as

AC:={(f,f"eCaC™l},

is a Real graded C*-algebra under the involution given by W := (f°r, ). Notice that
S is stable under the Real structure and the grading; it is in fact a Real graded ideal of
AC by identifying each f € S with the pair (f, f**) € AC. Denote by [(f, )] the class of
(f, f») € AC in the quotient space. Now consider the short exact sequence of Real graded
C*-algebras

0— S—AC L ACIS— 0. (6.11)

Then we claim that the projection 7 admits a cross-section which is a homomorphism
of Real graded *-algebras. To see this, observe first that AC/S = I @ I, as Real graded
C*-algebras, via the map [(f, f*)] — (f(-1), f(1)), whose inverse is given by (a, b) —
[(Ya,b,YZb)], where y, p € C is given by

1-t 1+t
Yap(t):=——a+——bel,+ L, = A.
’ 2 2
Then the map s: I ® I, — AC given by s(a,b) := (ya,5,7;, ) is easily seen to be a Real
graded *-homomorphism which, via the identification AC/S = I; & I, verifies mo s = Id. It
then turns out that the sequence (6.11) satisfies to the conditions of Corollary 2.4 of [24] 2
so that we have a long exact sequence on KR-theory

‘* * 5 .*
o= KRp—g11(AC) 5 KRy g41(I1 ® I) —— KRp—(S) == KRp_4(AC) — ...  (6.12)

(we refer to [84] for the details about the construction of the connecting map 6). Further-
more, we have KR;(I; ® I,) = KR;(I;) ® KR;(I5) (cf. [46, Corollary 4.1]), and S = S"0A =
Co(R"%; A) so that KRy—4(S) = KRp—g+1(A). We thus deduce (6.10) by realizing that the
obvious Real graded inclusion (I; N [»)[-1,1] — AC induces an isomorphism on the KR-
theorylevel, and by defining the connecting 0 to be the map i, : KR, 5+1(A) — KRj,_4(I1N
L) in (6.12). O

2As mentioned by the authors, this result holds also in the real case, and therefore it does hold in the Real
case (thanks to the isomorphism (6.3) established in the proof of Proposition 6.1.9).
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Proof of Theorem 6.3.1. The open subgroupoid G;» —= Xj, , with Xj2 := X] N X», is ob-
viously saturated and Real since §; and G, are. Furthermore, as we have already seen in
the proof of Lemma 6.1.12, I; := A; %, G; and L := A, %, G, are Real graded closed ide-
als of A %, §. Now in view of the long exact sequence (6.10), it thus suffices to show that
Ax,G=0L+1and I NI, = A2 X G12; but this is just an easy adaptation of the arguments
used in the proof of Proposition 3.9 in [90]. O

6.4 Comparison with complex twisted K-theory

In this section we are comparing our Real twisted K-theory with the complex one
(cf. [28, 30, 87]). Recall that for a complex graded Dixmier-Douady bundle A over a groupoid
G, J.-L. Tu [87] has defined the complex twisted K-theory K;Lj (G°) to be the Kasparov com-
plex KK-theory group KK, (C, A x, G) (see also [43, §3] for a similar definition in term of
the K-theory of graded Banach algebras). Now since an element A € @(9) cal also be
viewed as a complex graded D-D bundle by forgetting the Real structures of A and G, we
can define complex twisted K-theory K7 (5°) by Real graded twistings. It is then natural to
compare the groups KR;(5%) with K, (G*). We will prove for instance the following theo-
rem.

Theorem 6.4.1. Let G i>s—> X be a locally compact second countable Real groupoid with
Real Haar system. Then for A € BrR(S), Real and complex (graded) twisted K -theories are

related by the following isomorphism

S PUCREYABE (KR;lj(S') ® KRJ}LJ'+2(9')) & Z[1/2]

In order to prove this, we start with some observations about complex KK-theory of
Rg C*-algebras.
Let B be a Rg C*-algebra, and denote as usual its Real structure by 7. There is an obvi-
ous homomorphism
c:KKR(C,B) — KK(C,B) (6.13)

that consists of "forgetting the Real structures” (c is not injective nor surjective). Con-
versely, we want to construct a homomorphism R : KK(C, B) — KKR(C, B).
Recall that 7 induces an isomorphism of complex graded C*-algebras

7”:B— B,b— 1(b)’,
where B is the conjugate algebra of B. Hence we have an isomorphism

7’ : KK(C,B) — KK(C, B)
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by cofunctoriality ( [9, 46]). On the other hand, if E is a complex graded Hilbert A-module,
its conjugate algebra E is clearly a complex graded Hilbert A-module, and if F € £ 3(E),
then F € Lp(E), where F is defined by F(¢) := (F(&))” for all & € E, where b : E — E
is the canonical map. Further, if ¢ : C — L3(E), then we define ¢ : C — £ g(E) by
PAE = (p(N)E)P. Tt is straightforward that (E, ¢, F) € E(C,B) if (E,¢,F) € E(C,B) and
that this process respect homotopy and degeneracy. In other words, the canonical map
b: B — B naturally induces a map

KK(C,B) — KK(C,B),y—j.
Then we have

Lemma 6.4.2. The mapst’: B — B andb: B — B induce an involution on the Abelian
group KK (C, B), that we also denote by t;i.e. for x = (E, ¢, F) € E(C, B), we have

1(x) = (©2E, %0, T2 F).

Now if x = (E, ¢, F) is a complex graded Kasparov module over the complex graded
C*-algebra B, we get a Real graded graded Kasparov module R(x) € ER(C, B) by setting

R(x):=x+1(x). (6.14)
Lemma 6.4.3. The formula (6.14) defines a homomorphism
R:KK(C,B) — KKR(C,B).

Proof. The only thing that needs to be checked is that R(x) admits a Real structure com-
patible with 7 so that R(x) € ER(C, B). Note that TZE = E& 4B, so that T2E = E@BB as
complex graded Hilbert B-modules (where the action of B on B is by the inverse of the
automorphism 7*). It then follows that E @ 7% E is isomorphic to its complex conjugate

Ee71,E = Ee1)E via the map (£,X.1)&3b;) — (&, X m&pb’), which gives us the Real
structure on the complex graded Hilbert A-module E & 7, E. The compatibility of this in-
volution with 7 and the inner product is easy to check. O

Definition 6.4.4. For a Real graded C* -algebra B, and ¢ € {+,—}, we denote by KK(C, B)¢
the subgroup of KK (C, B) consisting of all elements x of KK (C, B) such thatt(x) = €x, where
7:KK(C,B) — KKI(C, B) is the involution defined in Lemma 6.4.2.

Proposition 6.4.5. Let B be a Rg C* -algebra. Then the map R induces an isomorphism
KK(C,B)" ®Z[1/2]) = KKR(C,B) ® Z[1/2],

whose inverse is given by c.
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In fact, in the special case where A is the trivially graded Real C*-algebra Cy(X), where
X is alocally compact space endowed with the trivial involution, this result is just Karoubi’s [42,
Corollary 2.9] since KKR(C, Cy(X)) = KR(X) = KO(X).

Proof. We have Imc < KKR(C, B)". Indeed, if x = (E, ¢, F) € ER(C, B), then the Real struc-
ture of E induces an isomorphism of graded C-algebras E = E. Moreover, since E is a Real
graded Hilbert B-module, then from the isomorphism 7° : B— B we get

Iy

E.

oo
112

T2E=(bo1),E=1.(E&zB) = (E&;B)®3B = E&B

It follows that TZc(x) = 1(c(x)) = c(x) € KK(C,B)" for all x € KKR(C,B). Henceforth,
R(c(x)) = c(x) + 1(c(x)) = 2¢c(x) for all x € KKR(C, B); and for any y € KK(C,B)", one
has y = 7(y), so that 2y = y+ 7(y) = R(y) € ImR. Denoting by R’ the restriction of R on
KK(C,B)* < KK(C, B), we get c(R'(y)) = 2y, hence if dividing by 2 in the groups involved
is allowed, the maps R’ : KK(C,B)" — KKR(C,B) and ¢ : KKR(C,B) — KK(C,B)" are
inverse of each other; and this completes the proof. O

Lemma 6.4.6. Let B and D be Real graded C* -algebras. Then the Kasparov product in
complex KK -theory KK (C, B) ® KK(C, D) — KK(C, B&D) induces a bilinear map

KK(C,B)® KK(C,D)" — KK(C,B&D)", (6.15)
where by convention (+)(+) = (+), (+) (=) = (=) (+) = (=), () (=) = (+).

Proof. Recall that the Real structure on the graded tensor product B&D is given on ele-
mentary tensors by bé&d = b&d. Hence, denoting by 78,7” ,and 78D the involutions on
KK(C,B), KK(C, D) and KK (C, B& D), respectively, we see that T58° (x&¢ y) = 18 (x)&c 1P ()
for all x € KK(C, B), y € KK(C, D); so that 758D (x&¢ y) = (en) (x&c ), where 75 (x) = ex and

™2 () =ny. 0
Proposition 6.4.7. The Kasparov product with the complex Bott element
B2 € K(€oR*?) = KK(C,Cy(R*?))
induces an isomorphism
Be: KK(C,B)¥ — KK(C, B(R"?))e,

Proof. Recall ( [46, p.546]) that the Bott element f, € KK(C, Co(R%2)) is defined as the Kas-
parov module (Cy(R*?),C -1Id, F), where C-Id — £(Cy(R%?)) is given by scalar multipli-
cation, and F € £(Cy(R"?)) = M(C(R*?)) = C,(R>?) is defined to be the function F(x) =
x(1+ ||x||2)_%. Since F(x) € R,Vx € R%2, we have TZF(x) = F(—x) = —F(x), from which we
deduce that 7(8,) = — B, € KK(C, Cy(R*?))~. However, the Kasparov product with B, in-
duces an isomorphism &¢ S, : KK(C, B) — KK(C, B(R%?)) ( [46, Theorem 4.7]). We thus
obtained the desired isomorphism by applying Lemma 6.4.6 to B and D = Cy(R*?). O
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We now return to our story of twisted K-theory.

Proof of Theorem 6.4.1. Put B := (A X 9) ® Co(R”7) with its usual Real structure. By in-

verting by 2, the involution 7 of KK(C, B) yields the decomposition KK(C,B) ® Z[%] =

(KK(C,B)*®KK(C, B)_)®Z[%]. Now we conclude by Proposition 6.4.5 and Proposition 6.4.7.
O

Proposition 6.4.8. Assume § i>s’—> X is a Real groupoid with Real Haar system which

is the disjoint union of two locally compact Hausdorff groupoids G, and G, such that the
involutiont : G — §G consists of exchanging G, with G,;i.e. g1 =1(g1) €S2 and g, =1(g) €
Gy forallg, €S, and g, € SG,. Then forall A e ErT{(S), we have

KR}(S) @ Z[1/2] = K}, (§}) ® Z[1/2] = K} (S3) ® Z[V/2],

where A;,1 =1,2 is the restriction of A on X;, and where the complex twisted K -theory used
here is the graded one.

Proof. Denote by 7; the restriction of T on §;,i = 1,2. Then under the decomposition C*-
algebra A x, G =A; x; G & Az X, Gs, the Real structure of A x, G is given by the matrix

0 T2
T= ,
T1 0

where the maps 77 : C;(G1; 8" A1) — Cc(G2;5%*A»), and 15 : Co(G2; s* Az) — Cc(Gy1; 5% Aq)
are the conjugate-linear homomorphism of graded convolution algebras given by (7,¢1)(g2) :=
61(—g"2) for g» e supp ¢y, and (12€2)(g1) := gfz(—gl) for g; € supp ¢, respectively. Notice that 7,
and 1, are inverse of each other. Let B; := A; x,G;,i =1,2. Then ‘L'bl : B| — By, by — 171(b)°
and rg : By — By, by — 72(b,)” are isomorphisms of complex graded C*-algebras. Now

in the level of complex KK-theory, it turns out that via the isomorphism KK(C, A %, §) =
KK(C,B))®KK(C, By) (19,8§17.7], [46, Corollary 1,§4]), the involution 7 : KK(C,Ax,;3G) —
KK(C,A x;9) (cf. Lemma 6.4.2) is given by

7= (0 t2 (6.16)

71 0

where 7, : KK(C,B;) — KK(C, By) and T, : KK(C, B) — KK(C, By) are the isomorphism
induced by the composites

b
KK(C,By) % KK(C, B,) — KK(C, B,), and

b

KK(C, B,) — KK(C, B)) — KK(C, By),
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respectively. Therefore,

KK(C,Ax;9)" ={x€ KK(C,Ax;9)|7(x) = x}
={(x1,T1(x1)); x1 € KK(C, B1)} = {(T2(x2), X2); x2 € KK(C, B2)}
=KK(C,B;) = KK(C, By).

The desired isomorphisms then result from Proposition 6.4.5. O

Remark 6.4.9. Although we have the decomposition K;L (G = K;‘h 97 @K;lz (G5) incomplex
twisted K -theory, this is not true for twisted KR; indeed, the graded C* -algebras B, and B;
are not invariant under the Real structure of A X G as we have seen in the proof above.

We close this section with the following result whose proof can be copied from the one
of Schick [80, Theorem 2.1] (see also Boersema [11]).

Proposition 6.4.10. Let G i>;—> X be a locally compact second-countable Hausdorff Real

groupoid with Real Haar system. Let A € BrR(S). Then there is a long exact sequence relying
complex twisted (graded) K -theory and Real twisted K -theory

—j+l . pen X p—Jroen € 1-J ;o0 O p—i4+2,0cey X
- — KRG KR (§") — K} (G") = KRT**(G") = - (6.17)

where y is Kasparov product with the Bott element 1 o € KR(R'?) = 7,, ¢ is the map defined
by (6.13), and 0 is the composite

KK(C,B) P2 kK€, BR*?) 2 KKR(C, BR"),

where B = (A X, 9) ® Co(RP') with p—q = j, and R is the homomorphism defined by (6.14).
6.5 4-periodicity theorem

Although twisted KR-theory is of period 8 (cf. Theorem 6.1.6(1)), we prove in this sec-
tion that up to tensoring by Q, the twisted K R-groups are 4-periodic.

Theorem6.5.1. Let G i? X bea Real groupoid with Real Haar system. Suppose T i? Y

is a closed saturated Real subgroupoid of G. Then for A € BrR(S), there is a canonical iso-
morphism
KR,/ (ST ezZ[1/21 =KR, (G, ") ® Z[1/2].
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Proof. 1t suffices to show the result for j = 0. For a Real graded C*-algebra B, Proposi-
tion 6.4.7 applied to the Real graded C*-algebras B and B(R"?) gives us two isomorphisms

KK(C,B)" b, KK(C,BR"*)~ LR KK(C,BR)",

which yields the isomorphism
(B_®1)o(By ®1): KKR(C,B) ® Z[1/2] — KKR(C, BR"*)) ® Z[1/2],

via the identifications (cf. Proposition 6.4.5)

KK(C,B)*®Z[l/2) = KKR(C,B)®Z[l2],
KK(C,BR*)"®Z[l/2] = KKR(C,BR")).

Now it suffices to take B = A;x\y x, (G\I). O

6.6 Computation of twisted K R-groups of S”7

We start this section by the following simple examples.

Example 6.6.1 (KRgl,,,q (p1)). Anelementofne ErT?{(*) = Zg is determined by a Rg elemen-
tary C* -algebra of type K. Ifp, g e N is such that p—q =n mod 8, then the Rg D-D bundle
J/%n — - is Morita equivalent to Cl, ; — -. Recall that (Cl, 4)r = Clp,4, the latter being the
real Clifford algebra (see Example A.5.6) It follows that

KRy (*) = KR¢; (%) =KOg; (x)=KOP ().

Example 6.6.2 (KR’ (S""). Let n € BIR(S®") = Z, (cf. Example 4.3.3). Then by Proposi-
tion 6.4.8,
Z, if—j-n=0 mod2

KR, 8" =¢ KT ({pt}) =
(57 % (P {o, if —j—n=1 mod2

The last example allows us to compute the twisted K R-theory o the Real space $>9, for
any g € N. Indeed, we have the following.

Proposition 6.6.3. Let g € N*. We have BrR(S*9) = Zg .

Proof. We shall prove the isomorphism by induction with respect to q. For g = 1, this is
already done in Example 4.3.3. For g = 2, let

S2 = {(x1,x2) € S%% | x> 0}, S :={(x1,x2) | X2 < 0}
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be the upper and the lower hemispheres. Let S? = S US?. Then S? = 8% is invariant under
the Real structure, and the induced involution consists of switching S2 with $2. Moreover,
we have clearly $%2 = $211S%!. It rurns out that BrR(S%?) = BrR(S?) @ BrR(S*'). But from
Proposition 4.3.1 and from the fact Si is contractible, we get ﬁ{(sz) = E}(Si) = E}({p =
Z,. Therefore,

BrR(8%?) = 7, & Z».

Now assume the result is true for any r < g — 1, so that B/rT{(SO’q = Zg -1 Then, in the
arguments above, by replacing S”! by $7-1, 2 and S? by the contractible spaces

SZ ={(x1,.., X2) | x4 >0}, and S§9 .= {(X1, .., Xg) | x4 <O},
respectively, we obtain the result for g. O

Now in view of Example 6.6.2 we have:

Proposition 6.6.4. Suppose a Rg D-D bundleA overS* is represented by the q-tuple (e1, ..., €q) €
BR(S*9). Then
-J 0 T ~J Q0,1 N e
KR, . 6% =g @ KR/ (™) = @K/ (ipr).
k=1 k=1
Corollary 6.6.5. Let g € N*, and let A be a Rg D-D bundle represented by (€1, ...,€4) €
BrR(S*9). Then for j € Z, the twisted complex K -theory of the space S* is given by

. q 2
K, (8" z@( K‘J‘Ek({pt})) :

k=1

Proof. This an immediate application of Theorem 6.4.1 to the Real space S*9, and the
above proposition plus the fact that K—/=27¢ = K=/ =€k, O
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Fredholm picture of twisted K R-theory

3

7.1 Preliminaries: Fredholm picture of KR, (B)

It is known ( [9, 17.5.4], [93, Proposition 17.3.5] ) that for a trivially graded C*-algebra
B, the group K;(B) = KK'(C, B) is isomorphic to the group g (3"11;) of homotopy classes of
elements of the space J 1]9 defined as

3"% :={T € L(Hp) | T is invertible modulo Kz},

where Hg = H ® B, and Kz = X(Hp), and 3'"; is the subspace of those elements of 3"%
which are self-adjoint. In this section, we give an analogous "Fredholm" interpretation of
the groups KR,,_;(B) = KKR7P(C, B) = KR(B(RP'?)) for a Real graded C* -algebra B.

Let (5 = H&B be endowed with its standard grading and Real structure (cf. Appendix
A). Note that (J:CB)i,i = 0,1 are Real Hilbert B°-modules. Moreover, a Real operator F €
L(Hp) of degree 1 can be written as
0 S
F = ,
T 0

where T : (Hp)° — (Fp)! and S: (Fp)! — (F(5)° are bounded Real B°-linear operators

(i.e., compatible with the induced Real structures).

Definition 7.1.1. A generalized Fredholm operator on B is a operator F € £ (Hp) of degree
1 such that

ST-1eXK(FHp)2, TS-1e K(Fp)h), and S—T*eKW(FHp)', FpO. (7.1)

We denote by Fp the setall generalized Fredholm operators on B.

173
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Alternatively, we may define Fp as the set of pairs
(S, T) € L((FHp), (Hp)®) x L(HB), (Hp))

such that relations (7.1) hold. We specifically use this picture to define the topology of Fs
as the one induced by the embedding

S, T)— (S, T,ST-1,TS-1,S-T") (7.2)

of 55 in L(Hp)", (Hp)") x L(Hp)®, (Fp) ) xK(FHp) ) xK(Hp) ) xK(Hp)', (Hp)?), where

L((Hp)', (Hp)°) and L(FHp)°, (Fp)!) are equipped with the compact-open topology ( in

the metrizable case, this is equivalent to *-strong operator topology as mentioned in [8,

p.5]), while K((F)2), K(F )Y, and K((Fp)?, (Fp)°) are equipped with the norm-topology.
We now define the spaces F g’q as follows.

Definition 7.1.2. Letp,q €N, and letey, ..., ep, €1, ...,€4 be a family of operators of degree 1
onHg subject to the conditions

) e? = l,e;‘ =e;i=e;i= 1,...,p,£§ = —1,8; =Ej=-€j,j=1,..q,
(i) ee' =—e'e,Ve#e €ley,..,ep,€1,....€4};

(iii) (uniqueness) ife;,i = 1,...,p, 8,].,j =1,...,,q is another family of operators of degree 1
on¥ g satisfying (i) and (ii), then there exists a Real graded unitary u on F g such that
e;=ueju*,i=1,..,p, ands’j =ueju*,j=1,..,q.

ByF g'q we denote the subspace of ¥z consisting of those F such that
Fe=eF, for e=g¢,..,£4,€1,..,€p. (7.3)
F g’q is equipped with topology induced from Fs.
We should make some remarks about this definition.

Remark 7.1.3. Observe that such a family always exists. Indeed, take for any p, q € N a Real
graded * -representation Y, 4 : Clp g — L(H) with the property that if Cly, 4 is not simple
(so that it is the direct sum of two simple * -algebras) then each summand is represented
with infinite multiplicity on H, so that Wp,q IS unique up to unitary equivalence L. Then,
put e; :=yp 4(€;)®1 € L(Fp),i= L..p, andej:=vy,,E)®l€ L(U:CB),f =1,...,q, where
é;, & are the standard generators of Cl,, 4, and where the graded tensor product is given by
the Real graded embedding £ () — L(FH&B).

'From a basic fact of representation theory of *-algebras, if Clp,q is simple (i.e. is isomorphic to K (H),
with H finite dimensional), then v p,q is unitarily equivalent to a multiple of the identity representation, and
then is unique up to equivalence



7.2. The C*-algebra of a Rg Fell bundle over a Real proper groupoid 175

Remark 7.1.4. In fact, the family ey,...,ep, €1,...,€; makes J:CB into a Real graded Cly, 4-
module. Moreover, it is easy to verify (by using the properties of the Clifford algebras) that
the space F B’f’q depends only on the difference p—q;i.e., ifp—q = p'—q', then the topological
spaces f;"g’q and F Z,’q/ are homeomorphic. We thus denote f;"g_q =F g’q. Observe also that
F9 = Fp.

Remark 7.1.5. For our convenience, we will usually suppose the family ey, ...,ep, €1, ...,€4
arises from the way described in Remark 7.1.3;1.e. it comes from a* -representationCly, ; —
L (J:C) (satisfying some conditions). Henceforth, the family ey, ..., ep, €1, ..., €4 are considered
as degree 1 operators on H, and F g_q is viewed as the space of F € L(B &) such that

e Fisofdegreel;

F(1&e) = (1&e)FVe=ey,...,ep,€1,...,£4; and
« F isessentially an involution, i.e., F>—1¢€ K(B&H) = B@J/%O,
* F isessentially self-adjoint, i.e., F— F* € Béﬂ%o.

Notice that F g_q is not stable under composition of operators; for, if F, F' € F g—q, then
condition (7.3) does not hold for the product FF'. We then give the following definition.

Definition 7.1.6. The sum in F g_q is defined the following way: from the stabilization the-
orem, there exists an isometric isomorphism of Real graded Cl, ;-modules u : FpoHp—
H B, we then set

F+F:=uFeF)u'eFt " for EFeFh 1

We will often omit the isometry u and denote this sum simply by F& F'.
Proposition 7.1.7. Let B be a Rg C* -algebra. Then
KRy_4(B)={[F]| Fe 5 %,

where ¥ B,r denotes the invariant subspace 0f§" Z_q of Real elements off}r g_q, and [F] denotes
the homotopy class of F in F g;q.

Proof. This comes from the very definition of KK R-theory, the stabilization theorem and [46,
Remark 4.2]. O

7.2 The C*-algebra of a Rg Fell bundle over a Real proper
groupoid
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In this section we apply the result of the previous section to the reduced C*-algebra
C; (G;&) of aRgu.s.c Fell bundle & = [[4¢g &g over the Real groupoid G i>s—> X with Real
Haar system. For this, we follow [90, §4].

Recall that L2(G; &) is a Rg Hilbert &©’-module bundle under the canonical projection

[1%Ss 6 — X,

xeX

where we have written & for 1€ — G, (14 : Gx — G being the identity map), and where
&0 .= &x. Now, consider the Rg C*-bundles

LG8 =[] £a,(L* (G 6) — X, and
xeX

KUL*(G;8)) = || KL (G 6) — X.
xeX
They are in fact Rg C*-G-bundles under the continuous Real G-action defined in the fol-
lowing way. Forevery g € G, let Rg-1: G5(g) 3 h— hg ' €§,g,andlet&” := (Rg—1)*(tf(g)éa);
ie. é";l = Epg1 = éahéAs[g) &g-1. Then, [2(G; &) = L2(9x;éa)®As(g) L%(Gy; €¢-1), and hence the
map

L(L*(Ss(g); €)) 3 T— T8 € L(L*(G(g); )

is an isomorphism of graded C*-algebras. But L?(Gs);&”) = L*(Sr(g); &) under the map
& — g& for & € L?(G5(5); "), where (g6)(h) := E(hg) € é“‘,’lg = &Epgg-1 = &p- Thus, we obtain
an isomorphism of graded C*-algebras

ag: LIL*(Gs(g); ) — LL*(Gr(g); E))

Moreover, it is not hard to see from this construction that @ = (@) geg satisfies ag(T) =
m € L(L*(Gr(g; &) for all T € L(L*(Ss(g);&)), and that K(L(G;€)) is stable under a.
Denote by £ (L2(G; &)Y the subspace of £ (L2(G; &) consisting of all G-invariant operators;
ie.
LIPS =T = (T xex € LIS | ag(Tsig) = Trg), Vg € G}
Let ¢ : X — R, be a cutoff function for G(cf. ?2). Forevery T € L(L[%(S;&)), we define
an element TY € £(L%(G; &) by setting

TJ := fgx ag(Tyg)c(s(g)du*(g), forall xe X; (7.4)

and hence a Rg projection £(L2(3;&)) 3 T — T9 € L(L2(;&))9.

Definition 7.2.1. We define the Rg C* -algebra Xq (L2(G;&)) to be the image offK(L2 (G; &)
under the projection £ (L2(G; &) — L(L2(G; &))9 defined above; i.e.,

Kg(L2(GEN ={T%1 T e KUA(G 4N}
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Theorem 7.2.2. (Compare [90, Theorem 4.6]). IfG is a Real proper groupoid with Real Haar
system and & — G is a Rg u.s.c. Fell bundle, then

KRy 4(C (€)= {IF1| Fe F771(G, ).},
where @P—Q(g,@@), is the set consisting of all F € L(L2(G; &)®FH)Y such that
* F(1&e) = (18e)F, Ve=¢;,ej,i=1,..,p,j=1,..,q;
o F2—1,F-F* € Kg(L*(S; &)&F).

Proof. From slight modifications of [90, Proposition 4.3], the Real graded C*-algebras C; (G; &)
and Kg(L?(G; &) are seen to be isomorphic. Therefore, from Proposition 7.1.7, we have

KR;(C;(GE) ZEmo (ét(;CQ(LZ(&é"))J)'

Moreover, the arguments used to prove [90, Corollary 4.5] are easily seen to also be valid in
the Real graded case, specifically, the Rg C*-algebras M (K (L*(G; &) &F0)) and £ (L2(G; &) & )9
are isomorphic. Thus, the result follows from the above group isomorphism and the iso-
morphism of Rg C*-algebras fK(ng(LZ(S; ENSF) = Kq (L2(S; £)&F0). O

7.3 Twisted Real Fredholm operators

Our goal in this section is to give a give a Fredholm interpretation of the twisted KR-
groups of a Real proper groupoid G with Real Haar system, when the twisting is of type 0.
Our result will be the analog of [90, Theorem 3.15].

Let A € BrRo(9) and let E = (T, T8, Z) € ExtR(G,S") such that DD(A) = —dd(E) = a,
where T i? Y is proper. Let L =T xg1 C be the Rg Fell bundle over I' associated to E.
Consider again the Rg Hilbert bundle %Zf — Y defined by (4.28), whose grading and

Real structure are given by formulas (4.27) and (4.29), respectively. Recall that the Rg field
92(%%) =yey JAC(e%”ﬁy) — Y is a Rg D-D bundle over the Real groupoid T i?’ Y.

Definition 7.3.1. (Compare [90, p.872]). Denote by Kr (%Zf) the Rg space of norm-continuous
I'-invariant sections{, | y€ Y} ofﬂ?(%;{:) — Y satisfying the boundary condition || || — 0
wheny —ooinY/T.

Now consider the Real field of Z,-graded C*-algebras over Y with Rg I'-action defined
by unitary conjugation:

L) =[]L06 ) — Y.
Y
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Then, by identifying £ (% ) with M (IJAC(%% /), form the Rg unital C*-algebra € YL (H2))
as in Definition 5.6.4. We will denote by €' (Y; £ (/)" the subspace of C5'" (Y; £(54))
consisting of I'-invariant sections.

Definition 7.3.2. Suppose we are given the above settings. An a-twisted Fredholm opera-
tors is a section F € (fz”(Y;ll(%zf))r such that

e forally €T, F, is of degree 1, Fy(IdLiéae) = (Idﬁiée)Fy, Ve=ejej,i=1,.,p,j=
1,...,q9;

* the maps y — F)Z, —1andy— F,—F, areelements in Kr(%zf).

The space F/re\dz_q of a-twisted Fredholm operators is endowed with the Real structure in-

duced from GZ” (v, C (ji;j:)). Let ﬁe\dz;q denote the subspace of Real elements of Fred A-

Theorem 7.3.3. Let G i? X be a Real proper groupoid, A € BrRo(S), and E = (T,T,6) €
ExtR(S,S") such that DD(A) = —~dd(E) = a € HR'(S.,Z,) x HR?(S.,S"). Then

KR’ (G") = mo(Fred), ,).

Proof. From the proof of Corollary 5.6.9 and the equivalence of Rg Fell systems (5.73) es-
tablished in the proof of Theorem 5.7.13, we have an equivalence of Rg Fell systems

(G, s"A) ~ (T, ).

Hence, the Rg C*-algebras A x, § = Kq(L?(G;s*A)) and C; (E) = Kr(L*(T; L)) are Morita
equivalent, so that KR;J(S') =T (§'“j (T'; L);), thanks to Theorem 7.2.2.

On the other hand, from the isometric isomorphism C.(['; L) = (Ec(f)Sl of Lemma 5.7.9
we deduce that the Rg Hilbert bundles %Zf — Y and m&% — Y are canonically
isomorphic. Moreover, the induced isomorphisms of Real fields of graded C*-algebras
L (C%Zf) =L (m ®ff€) and fJAC(J“iZf) =K (m éﬂ:C) are easily seen to be compatible with
the Rg I'-actions. Thus, we have isomorphisms of Rg C*-algebras

LUAT;D8F0) = C5r(V;LUAT;DSF0) = €57 (V;L(47), and
KUAT;0eF0) = Co(v;KIRT;DET0) = Co(Y; K ()

that are compatible with the Rg I'-actions. Therefore, there is isomorphisms of Rg C*-
algebras Kr (/%) = Xr(LA(I; L)#F0) and L(LA(;0)8F0T = €57 (Y;L(54))", and hence a

Real homeomorphism FI(T;L) = F/rali, which completes the proof. O
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7.4 Projective Real Fredholm operators

Let G i>s—> X be a Real proper groupoid, A, E, and a be as in the previous subsection.

For p,q € N, we define the Real subgroup ﬁf]p_q(J:C) of ISL\I(TJ:C) consisting of equiva-
lence classes of homogeneous unitaries u € U(U:C) commuting with the operators e;, ¢;,i =
1,..,p,j=1,..., q. Recall that we have a generalized Real homomorphism

P% :T — PUJ0),

defined by (4.30).
Then we obtain a generalized Real homomorphism

PP9:T — PU,_4(F0) (7.5)

by defining P”~4 to be the Real subspace of I]MZZf such that the fiber P p_qdi/},y over yeY
consists of equivalence classes of unitaries u € 02/}0, commuting with e;,&;,i =1,...,p, j =
1,..., g in the sense that

ue; =(1 s1®e)u, uej= (Id, 5 st ®eu,i=1,..,p,j=1,..,q.

L2
Notice that P = P%.

Definition 7.4.1. A continuous G-invariant functions F : PP~9 — FP=9 will be (abusively)
called a projective Fredholm operator over (G, A), where Fr-a .= ?g_q. Equivalently, a
projective Fredholm operator over (G,.A) is a continuous function F : PP~9/T — Fr-a.

Theorem 7.4.2. Let G i>s—> X be a Real proper groupoid. Let A € BrRy(S), and sup-

pose that E = (T,T,8,7) € ExtR(S,S") is such that DD(A) = —dd(E) = a € HR'(S.,Z,) x
HR?*(S.,S"). Then there is a bijection between elements of K R,"(G%) and homotopy classes
of Real PU,(F0) -equivariant projective Fredholm operators over (G, A); in particular, we

have .
-nicey ~ |mn an | PUROD
KRG = [P gn]
where the symbol |-, -]EU”(%) stands for homotopy classes of Real lsl\Jn(}AC)—equivariant con-

tinuous functions.
Proof. First of all notice that we have isomorphism of Rg C*-T'-bundles

L) = PU xgy50 LFH) — Y

KB = PU xsygoKo— Y
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induced by the map

P, % 5560 £ (FO 3 [, [u]), T — Ady(T) € L(H#7 ), (7.6)
foryey.
Let us consider the Real I'-equivariant bundle

F'(a):=P" X 50, (%0 Fn—y
with typical fibre ”. Then, using the map (7.6), it is straightforward to see that we may
identify F/re\dZ with the Real space Cp,(Y; 5" (a))" of norm-bounded continuous I'-invariant
sections{: Y3 y— ¢y € IPJ’} X 50, (50 " with the property that ' y— {f, -1, and
=& iy— &y - 5;‘, are in GO(Y;J/%(Q%;%)). Now for € F/r&lz, we define a projective Fred-
holm operator F over (G, A) in the following manner. For (y,[u]) € P", let F(y,[u]) be the
unique degree 1 element £ () such that

&y = [, [ul), F(y, ()] € Py x5 5 £(F0.

Then we clearly have F(y, [u]) € " thanks to the above interpretation of F/rglz, and Fisa
well-defined map from P” to " since ¢ depends only on y € Y. Notice that F is Real if ¢
is. To see that F is continuous, suppose (y;, [i;]) — (y,[u]) in P". Then from the definition
of the topology of P, yi—yinY and u4; — u in PU(H), and since ¢ is continuous,
{y; — ¢yin P”xﬁn(ﬂ)ﬁ(ﬁ), which shows that F(y;, [u;]) — F(y,[u]) in Fn. Fis T'-invariant;
indeed, the I'-invariance of ¢ implies that if ¢sy) = [(s(y), [ul), F(s(y), [u]))], then ¢y =
[((r(p), g - ul), F(s(y), [u]))], which shows that F(r(y),[y-ul) = F(s(y),[u]) forall y e T and
(3, [u]) € P" such that y = s(y). That F is PU, (ff{)—equivariant is trivial, by definition of the
“FU.007

Conversely, if F is a Real PU, (HH{)-equivariant projective Fredholm operator over (G, A),

quotient space P"

we evidently obtain an element ¢ € I@Z by setting ¢y, := [((y, [u]), F(y, [u]))]. This pro-
cess is easily seen to provide a homeomorphism between Fred, ; and the space of Real
ﬁ]n(ﬂtf)—equivariant projective Fredholm operators over (G,.A), and we are done. O

Example 7.4.3. Let (X, 1) be a locally compact Hausdorff Real space, and let A € Erﬁo (X).
There is a Rg bundle gerbe (T, X[U],8) over X with Dixmier-Douady class —DD(A), where
U = (Uy)jeg is a Real open cover of X. Then

PU,L (O

KR,"(X) = |P"/X U], T"
R

More concretely, P" is given by a Real cocycle p" : X[U] — PU,,(H). Hence, the right hand
side of the above equation is isomorphic to the set of Real homotopy classes of Real families
(Fi)ier of continuous maps F; : U — F1 with the property that Fi(x;) = p"(x;j)Fj(x;) for
x;=(i,x) €U, xj=(j,x) €Uj, and x;j = (i, x, j) € Ujj.
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Example 7.4.4. A particular case of the previous example is when t = id. In that case, A is
represented by a graded real bundle gerbe

Z,—>T——> Yl
0

2

as noted in Remark 2.8.5. Denote by PO,,(Hr) be the subgroup of Real elements of
lsfln(ﬂtf), where as usual f}A{R is the Real part offff. We define the PO, (ﬂ:CR) -principal bundle
P — Y as in the complex case, except that in the definition ofl]wl/} we replacef]:f by Fr, C
byR, andS' by Z,. Let 5’”&‘ be the subspace of Real operators of F". Thus

KR;l"(X) = KO;"(X) =

. 1PO,(HR)
NN

Moreover, notice thatP" | Y'?! identifies with a PO, (Hr) -principal bundle P" — X. There-
fore,

]Pon(ffm @)

KOZ"(X) = | P", 5}

Remark 7.4.5. We shall point out that the spaces CAT'“[g are the same as the spaces Fred,, used
by Mathai, Murray, and Stevenson in [58]. However, the Fredholm picture of twisted KO-
theory given in Section 7.1 of the just mentioned article seems to be wrong; for instance,
PO(H) does not act on Fred,,.

An immediate corollary of Theorem 7.4.2 is that in the proper case, the isomorphism
established in Proposition 6.4.8 holds without tensoring with Z[1/2]; in other words

Corollary 7.4.6. Suppose G = G, U S, where G1,5, are proper Real groupoids such that t
exchanges G, with G,. Then for A € §rT{0(9), we have

KRy (S%) = KR} (7).

7.5 The pairing KR," ® KRB”” — KR;f[;m

In this section we will construct a pairing

KR,"(G)® KRg™(G") — KR, (5™ (5"

a+p

for a Real proper groupoid.
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First of all, recall from [46, §1.16] that for any pairs (p, g), (k, I) € N?, the isomorphism
of Rg C*-algebras
Cly,g®Cli ) — Clyit gel
is induced from the identifications:
ei®l — e, i<p,
ei® — €;,j<gq,
léz:ei —— (il)quZp, i<k, 9
18e; — €jiqo 1=,
where we have denoted indistinctly e;,5,i = 1,...,p,j = 1,..,q, e;,€j,i = 1,..,k, j = 1,..., ],
and e;,e,i=1,...,p+k, j=1,..,q+1, the generators of Cl, 4, Cl,;, and Cl, .t 4+1, TESPEC-
tively. Using those identifications, we get a continuous bilinear paring

Gr=a 5 Fh-1 __,  Fp+b-(q+D
(Fy, F>) — FXE:=F&1+18F,.

Now let A, B € ﬁ{o(S), E; = (T1,T1,61),Ep = (T2, T5,89) € m(S,SI) = a be such that
DD(A) = —-dd(E,) and DD(B) = —dd(E;) = B. In view of Proposition 2.7.1, we may assume
that T'; =T, =T, where I is the Real Cech groupoid associated to some Real open cover of
X. Hence E = 18, = (T&T,,T,8; +§>) is such that DD(A +B) = —dd(E) = a + . We will
write IPf_q for IP”“WZfl, IP’ZC_Z for [P’k_MZZfz, and PP+ -+ for plp+k)-(q+) %ﬂ@fz'

We have already seen in the proof of Lemma 4.9.10 that elements of P% .z can be

ol
written as sum of elements of the form [(y, [v- (11 & uz)])], for u; € %fi.y’ i=1,2 1anc21 (v e
% () (cf. isomorphism (4.32)), where the unitary v- (u;®uy) is given by (4.33). Further-
more, from routine verifications using again the identifications (7.8), we see that if [(y, v -
(u16up))] € PPHO=a+D ‘then [(y, up)] € P~ 7 and [(y, up)] € P51 Therefore, from the pro-
jective Fredhom picture of twisted KR-theory given by Theorem 7.4.2, we deduce the fol-

lowing
Proposition 7.5.1. Let G i>s’—> X bea Real proper groupoid. Then for A, B € BrRy(S), there
is a bilinear pairing
KR,"(G") x KR3z™(S") — KR5"(G")
(LF1), [Fa]) —  [AKF)],
where if [F\1, [F2] are represented by a PU p—q 0 -equivariant projective Real Fredholm op-
erator F : P’f_q/l“ — FP=9, and a PU_;(F) -equivariant projective Real Fredholm oper-
ator F, : IF”ZC‘Z IT — F*=L, then the ISU(,7+ —(g+D) (F0)-equivariant projective Real Fredholm
operator FXF, : PP+0-@+D ., Fp+k-@a+D js defined by
(FIXE) ([(y, v (ur6up)))) = Fi (3, u) DEE ([, u2))).

In particular, KR;(S‘) has the structure 0fKR°(9') -modiule.



The torsion case

%\\\e

In this chapter we want to express twisted KR-theory by geometric objects. Roughly
speaking, we will see that as in the ungraded complex case, our twisted K R-theory groups
may be expressed in terms of twisted vector bundles when the twisting is a torsion element
of the Real graded Brauer group. We should point out that most of the constructions and
results of this section are adaptation of the exposition of [90, §5].

8.1 Rg twisted vector bundles

Let X be a locally compact Hausdorff Real space. By a Real graded hermitian vector
bundle over X we mean a Real vector bundle V — X together with a Z,-grading V = V% e
V! compatible with the Real structure (i.e. each of Vi — X,i = 0,1 is a Real vector bundle
under the involution induced from that of V) and a hermitian metric (-, : Vx V — R,
such that (9, w) = (v, w) for all v, w € V. Associated to such a V — X, there is a canonical
Real graded S!!-twist

sl -~ GL&" (V) - PGLE (V) ®.1)
J/deg
Zy

where the Real groupoids GLE" (V) —= X and PGL38" (V) —= X are defined as follows.
Fori=0,1,let

GL'(V):= [] Isom® (v, Vy),
x,y€X

where, as usual, we have denoted by Isom® (Vy, Vi) the set of all isomorphisms of degree
i mod 2 from VJ(,) ® VJ} to V2 @ V. Next, define GL8” (V) as the disjoint union

GLE" (V) := GLY(V) UGL (V).

183
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A morphism in GL&" (V) is then an ismorphism uy,, : V, — V, which is homogeneous
(i.e. of degree 0 or 1). Define the source and range maps by s(uy,,) = y, and r(uy,y) =
x, respectively. Two morphisms uy,, and u, ., are composable if and only if y = y/, in
which case the product is given by wuy, y - ty, 7 := Uy, 0 Uy, : V, — V,; the inverse of uy, , is
u;j, : Vx — V. The involution of GL&" (V) is given by Uy ,: V3 3 v +— m € Vi, for all
morphism u, . Notice that GL?(V) —= X is a full Real subgroupoid of GL8" (X) while
GL!(V) is not stable under the product. It is easy to verify that GL8" (V) —= X , given the
norm topology induced by the hermitian metric, is a locally compact Real groupoid. Now
the Real group S'!, identified with U(1) c C*, acts by scalar multiplication on GL8" (V),
and the action is compatible with the Real structures. Set

PGLE (V) := GLS" (V)/8"1.

Then P GLS" (V), equipped with the quotient topology and the involution [uy, ] := [y, ] is
clearly alocally compact Real groupoid with base space X. The projection pr : GL8" (V) —
PGLS" (V) is just the quotient map, and the grading of the twist deg : PGLE" (V) — Z; is
the degree map.

We will use the following notations.

Notations 8.1.1. Let C* = C* & C! be equipped with the grading (z, w) — (z,—w), and
its usual Real structure given by the complex conjugation. Then we write GL‘;’Zr ;(©) (resp.
PGLiil(C)) for GI8"(C") —=- (resp. PGL8"(C") —= - ), where we consider C"* — - as
a Rg hermitian vector bundle (under its standard hermitian metric) over the point.

Definition 8.1.2. Let (T',5) be a Real graded S'-groupoid over T i>s’—> Y . ByaRg ([T,6)-

module over T i? Y wemean atriple(V, h, p) consisting of a Rg hermitian vector bundle

V = V%@ V! — Y, a Real hermitian endomorphism h : V — V of degree 1, and a Real
groupoid morphism
p : f — GLgr(V),?'_’ ’0,)7,

such that
(i) degpy =06(n(),VyeT;
(i) pry=Apy, forallA e S'cC,andyeT;
(i) pyoh=hopy,VyeT.

Such settings will often be represented by pair (V,h), and we say that p is a Real (T',5)-
module structure on (V, h).

Lemma 8.1.3. Let (I',T,8) be a RgS'-twist. If there exists a Rg (T, 5)-module (V, h) of rank
1, then [T',6] = 0 in extR(T, S1).
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Proof. Since V — Y is aline bundle, the grading of V is trivial; i.e., V = V. It then follows
from (i) of Definition 8.1.2 that § = 0. Let PV := V/S! be endowed with the obvious Real
structure, where S! c C acts by scalar multiplication on the fibres. Denote by [v] the class
of v € V in PV. Using the hermitian metric of V, we put

S(PV):={[vle PV [llv] =1}

Then, the canonical projection S(PV) — Y defines a Real S$!-principal bundle. Moreover,
S(PV) defines an element of the Real Picard group PicR(I') under the Real I'-action given
by y-[v]:=[p7(v)], fory €T, v € PVyy), and ¥ any lift of y through the projection 7 : I—T.
It turns out that there is an isomorphism of Real S!-principal bundles

Tés* (S(PV)) — r*(S(PV))
given by 7 ® [v] — [p7(v)]. We thus have T,6) = (r*(S(PV)) ® s* (S(PV)), 0). O

Corollary 8.1.4. Assume there is a Rg (T, 8) -module of finite rank. Then [(T,)] is a torsion
element in extR(I',S"1).

Proof. Let (V,h,p) be a Rg (T, 5)-module of rank n. Then the determinant line bundle
A"V — Y, with the Real structure vy A ... A v, — U1 A ... A Uy, is a Real line bundle, and
the Real morphism p : ' — GL$" (V) induces a Real groupoid S"!-equivariant morphism

by setting:

p%r,l,lh...,,ln_l)(yl Ao ANUp)i=Ay- "An—lp)”f(vl) TARRA p)'/(Un)’

forall (y,A1,... Ap—1) € [x8" Ln-1=Tén and vy A...AV, € A" V(5. The result follows from
Lemma 8.1.3. O

Proposition 8.1.5. Let (I, T,8) be a RgS' -twist. Consider the following properties:
(i) there exists a rank n Rg (T',8)-module (V, h) overT;

(ii) thereexists a generalized morphism P : T,I,6) — (GLi: l(C),PGLii l(C), deg), where
k+l=nuwithk=dimV°®andl=dimV!;

(iii) the class of (T, 6) is a torsion element in extR(T,S') of degree n;

(iv) there exists a Real open cover U of Y and a Real groupoid morphism ¢ : T[U] — C*
such that (A7) = Ao (§) forall A e T[U] and ¥ € T[U];
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(v) there exists a Real open cover U of Y and a Real graded 7 ,,-central extension

Z, —T'[U —=T[U]

o

Zs

such thatT[U] =T"x 7,8V under an isomorphism compatible with the grading, where
Z,, is identified with the group of n—th roots of unity inS' c C equipped with the Real
structure given by complex conjugation.

Then (i) < (ii) = (iii) < (iv) = (V).
Proof. The proofis a slight modification of the one of [90, Proposition 5.5]. O
Remark 8.1.6. It will prove useful to describe how the morphism
(T gr gr
P:(T,T,6) — (GLY. (C), PGLE! (C), deg)

is constructed. In the (complex) ungraded case, P — Y is just the frame bundle of V— Y.
However, in our context we have to take into account the involutions involved. Spelled out,
P has fibre P, =TIsom @ (C**/, v ) uIsom™ (C¥*!, V) over y € Y, with the obvious GL§' (C)-
and S"! -actions (viewing S*' as a subset of C). The Real structure of P is given by f(z) :=
foe Vy, for f € Py,z€ Ck*!. TheT -action on P is defined as follows: fory €T, f € Pyy), the
isomorphismy - f € Py is given by (y - f)(2) := p3(f(2)). Now it is easy to check that as Rg

Ck+l

vector bundles over Y, V = P x GLE (©)

+

Definition 8.1.7. Let (V, hy) and (W, hy) be Rg (T, 8)-modules (of finite ranks). A morphism
from (V, hy) to (W, hy) is a morphism of Rg vector bundles ¢ : V — W such that

(i) @ is compatible with the hermitian metrics;
(i) pohy =hwoo;

(ii}) @) Op)‘; = p)[ﬁvocps(y),forallf/ €T, wherepV :T — GL8" (V) and p" :T — GL8" (W)
are the Real (T, 8)-module structures.

Definition 8.1.8. If(V, hy) and (W, hy) are Rg (T, 5)-modules over T, with hermitian met-
rics {-,-)v and {-,-)w, respectively, then the direct sum V & W of the Real hermitian vector
bundleV — Y and W — Y carries the hermitian metric -,-) := {-,)yv + {-,Yw, the Real
)‘;@W = p}f ® p%‘/, and the de-
gree 1 hermitian map hyew = hy ® hy. The Rg (I',0)-module (V& W, hyew) over I' thus

obtained is called the direct sum of (V, hy) and (W, hy).

(T, 8)-module structure pyew : T — GL8"(V & W) given by p
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Definition 8.1.9. Let (T, T,5) bea RgS' -twist. Bym(i & (I') we denote the Abelian monoid
consisting of all isomorphism classes of Real graded (T, §) -modules over T, in which the sum
of two classes [(V, hy)] and [(W, hy)] is

[(V, b))+ [(W, hw)] := [(V @ W, hyew)].

Lemma 8.1.10. The assignment (T',T,5) — l\m(m) (T') is a contravariant functor from
the category of Rg SU'! -twists Twisty to the category of Abelian monoids. In particular, if
(T'1,T1,81) and (T2,T2,8,) are Morita equivalent RgS"! -twists. Then

ModR: 5,(I'1) = ModR g, 5, (I2).

Proof. Let Z: (I'1,T',8,) — (I'2,T2,8,) be a morphism in Twistx. If (V, h) is a Rg (T2, 52)-
module over ', —= Y, , then by Proposition 8.1.5 (ii) there exists a morphism

Py: ([,T2,82) — (GLY, ,(©), PGL! | (C), deg),

and hence a morphism

Py :(T',T1,60) — (GLY (C), PGLY, (C),deg), where Py = Pyo Z.

We obtain the Rg (T'y,8;)-module (VZ, h%) by setting:

Z ._ k+1
Ve:=P XGLi:l(C)C ,

with the hermitian metric defined fiberwise as the standard metric of C”, and the Real

structure [p, z] — [p, z]. The hermitian map h? € End(V?) is defined fiberwise as the

hermitian matrix of degree 1 obtained from h € End(V)! via the isomorphism P; x ; &r ©
ky

ck+*! = v given by [py,z] — py(2) € V,. Suppose that f : (V,hy) — (W, hy) is an
isomorphism of Real graded (I's,52)-modules of rank n = k+ I. Then f induces a Real
g, GLi:l(C)—equivariant isomorphism f: P, =, Q-, where P, and Q; is the frame bundles
of V— Y, and W — Y,, respectively; hence f induces a 2-isomorphism

Py =Qy: ([5,12,8,) — (GLY (€©),PGLY (O), deg).

The map
ModR, 5,,(I2) — ModR ¢ 5, (1), [(V, B)] — [(VZ, h?)], 8.2)

is thus well defined. Observe that up to isomorphism, this map depends only on the 2-
isomorphism class of Z. Indeed, it is straightforward from the construction that if

ZI . (fl,rl,51) I (TZ,F2;62)

is another morphism in Ttoisty, then every 2-morphism f : Z — Z’ naturally induces
a morphism (V4 h%4) — (VZ,, hZ’) of Real graded (1~"1,51)-m0dules. In particular, if Z =
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Z', then (V4,h%) = (VZ h%). If Z is actually an isomorphism, then the map (8.2) is a
bijection whose inverse is given by [(V1, h;)] — [(Vlz_l, hlz_l)]. Now we verify that (8.2) is
a homomorphism of Abelian monoids. Let (V, hy), (W, hy), P2, and Q, be as above. Then

Z Z _ k+1 k+1
VieWw” = (Pl XGL‘,(’;:I(C)G: )QB (Ql *GL8 (©) ¢ )
k+1 k+1
=|Py x r C ) X ( X r C )
( 1 GL§+1(C) n (@ GLiH(C)
~ k+1
:(Plxyl Ql)xGLi:_lCC *

=(Ve W),

O

Definition 8.1.11. Let T i>s’—> Y be a Real groupoid. Then for [(T,8)] € ﬁ(l“,sl’l), we

define the K-theory of Rg (T', ) -modules over T to be the Grothendieck group ﬁ(f, & I*) of
ModR 7 5, (I).

In view of the preceding lemma we have
Lemma 8.1.12. (Compare with [90, Corollary 5.7]). The assignment
([,T,6) — KR(T,T,8) := KR 5 5, T"")

is a contravariant functor from the category %vistsy to the category 21b. In particular, if
([}, T1,61) = (T2,T2,82) then

KR, 5D = KR, 5, (I5).

Let T === Y be a Real groupoid. Let (T;,6:),i = 1,2 be Real graded S"'-groupoids
over I i? Y . Suppose that (V;, h;) isa Rg (I';,§;)-module over T i? Y , with module

structure p; : 1~",~ — GL8&"(V}),i = 1,2. Then the graded tensor product hermitian bundle
V1®V, — Y together with obvious Real structure and hermitian map h = h; ® hy, and
equipped with the (T18T,,8; ® §,)-module structure

p18p2 :T18T, — GLE" (V18V3), [(F1,72)] — (p1)7,®(p2)7,)

where ((p1)7,®(p2)7,) (V18 12) := (p1)7, (V1) &(p2)7,(v2) for v1®v, € V1& V5, is a Real graded
(T18T,,5; ® 55)-module over T i>s"—> Y . From this construction we easyli show the fol-

lowing.

Lemma8.1.13. Suppose(T';,8;),i = 1,2 are RgS'-groupoids over the Real groupoid T i? Y.
Then there is a homomorphism

KR(flr(sl) e KR(fzy(sz) ") — KR(f1,51)®(f2752)(r.)' (8.3)
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We now define Rg twisted vector bundles over a Real groupoid.

Definition 8.1.14. Let G i? X be a Real groupoid with Real Haar system, and let a €

HRY(S.,7Z,) x HR?(S.,8Y). By aRg a-twisted vector bundle we mean a Real graded T, 6)-
module (V, h) over a Real groupoid T i? Y Morita equivalent to G i>s’—> X such that

(T,T,6) is a Real graded S!-central extension over S whose Dixmier-Douady class is a.

Definition 8.1.15. Let § i>s’—> X be a Real groupoid with Real Haar system. Given a class
a € HRY(S.,Z,) x HR?(S.,8Y), we define the K -theory of Rg a -twisted vector bundles over G
by

KRy ,5(G%) :=KR(,T,8) = KR(E),

where the extension [E] = [(T,T,8)] € m(S,SI) is such that DD(E) = «.

Forgetting the Real structures, the following proposition generalizes the homomor-
phism in twisted complex K-theory of spaces KJ(C)L (X) — Pic(X) constructed in [55, §6].

Proposition 8.1.16. The assignment m(iﬁ) () > (V,h) — A"V € PicR(") induces a
group homomorphism
det: KRy ,p(3") — HR'(S.,Sh).

Proof. We showed in the proof of Lemma 8.1.3 that a Rg (', §)-module of rank 1 defines
an element of the Real Picard group of I'. Further, we saw in Corollary 8.1.4 that the de-
terminant line bundle A"V of a Rg (T, 5)-module (V, h) was a Rg (T, 5)-module of rank 1,
and hence an element of PicR(I') = HR' (', S!). It moreover is straightforward to verify that
the hermitian line bundles over T i? Y associated to isomorphic Rg (T, 5)-modules are

isomorphic, and hence define the same class in PicR(I'). The assignment m@, PO
[(V,h)] — [A"V] € PicR(I") is a homomorphism of Abelian monoids from the proper-
ties of the functor A*. It then extends to a group homomorphism det : KRy ,,(5°) —
HR'(T.,$") = HR'(S.,S"). 0

Consider the Real groupoid G x SP9 —= X x §P9 . Then by cofunctoriality, the inclu-
sionmap ip+q: g x {pt} — G x SP9 induces a homomorphism of groups

i gt KRay,pob(G X SP9)") — KRq,up(S"),

where a4 := ig+q € HR((G x SP1),,Z,) x HR?((G x §P9),,S1).
Definition 8.1.17. We define the higher KR, ,1,-groups by

KRY (5% :=ker(i, ),

a,v

*

wherei,.

is the homomorphism defined above.
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Definition 8.1.18. Define the K R-theory of Real vector bundles over G $ X as

KR,’;;,(9') = KR[*I]yvb(S'),
where [1] is the trivial class (0,1) € HRY(S.,Z,) x HR%(G.,S%).

Note that if the Rg S!-central extension E = (I, T, 8) of G is such that DD(E) = a, then

DD[EPH =q where EP9 is the Rg S!-central extension of the Real groupoid

/
p+q’

9 X Rp!q — = X x Rprq

given by
S —— T xRPI 2 1y gra (8.4)
prrod
2y

where prr: T x RP9 — T is the canonical projection. Furthermore, it is not hard to prove
the

Lemma8.1.19. Leta € HR(S.,Z,)x HR%(G.,8Y), and letE € ExR(G,S") such thar DD(E) =
a. Then forallp,q €N,

KR(’;_UZ(Q') = KRy, op((Gx RP9)*) = KR(EPY).

Now as a consequence of Lemma 8.1.13 we get a multiplicative structure on K-theory
of Rg twisted vector bundles.

Proposition 8.1.20 (Multiplicative structure). Let a, 8 € HR'(S.,Z») x HR*(S.,8"). Then
there is a multiplicative structure

KR, (S @ KR!, (57 — KR\, (S").

Definition 8.1.21. (Compare [90, Definition 5.13]). Let F be a Real graded u.s.c Fell bun-
dle over a Real groupoid T i>s—> Y and let A= Cy(Y;E). AT, E)-equivariant Real graded

Hilbert A-module is a Real graded Hilbert A-module E together with isomorphisms of graded
Hilbert Asy)-modules
Er)®a,, €y — Esty)

such that

(i) overally €T the following diagram commutes

Erty®a,0, &y — Esp)

| |

Erp®a,q €7 — Esp

where the vertical arrows are induced by the Real structures;
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(i) overall (y1,y2) €T'? there is a commutative diagram

ET(YI) ®Ar(yl) 8Y1 ®As(yl) 8Y2 Er(Yl) ®Ar(yly2) EYIYZ

| |

Eryy) ®Aryry) 87’2 Es(y,)

The product is required to be continuous in the following sense: for all¢ € E andn € Cy(T'; €),
the functiony — &(r(y))n(y) belongs to s*E.

Remark 8.1.22. Recall that E can be canonically identified with Cy(Y; E) where

E:=]] E®aAy— Y
yeyY

is a Real field of graded Banach bundles such that each fibre Ey is a graded Hilbert Ay -
module. Hence E being (T, €)-equivariant means that (s*E,&) isa right Real graded Fell
I-pair over T (cf. Chapter 5).

Example 8.1.23. Let (T,T,5) be a Real graded S!-twist, and let L =T xg1 C — T be the
associated Real graded Fell bundle. Then by using the construction of the proof of Theo-
rem 5.7.13, we see that L2(T; L)&F = [2([T; 705 isa (T, L) -equivariant Real graded Hilbert
A-module, where A= Cy(Y;L).

Definition 8.1.24. Suppose that € — T is a Real graded u.s.c Fell bundle and E is a Real
graded Hilbert A-module, where as usual A:= Cy(Y;E). Then we set

CE):={TeL(E)|¢-TeX(E),Vpe Al

IfE is (T, &) -equivariant, le C(E)" denote the subspace of all T -invariant elements of C(E).
Then we define Xr(E) to be the Real graded C* -algebra

Kr(E):={T € C(E) | | Tx| — 0,x — o0, in Y/T}.

Example 8.1.25. Let T’ i>s—> Y be a Real proper groupoid with Real Haar system, and let
(T,T,0) be a Real graded S' -twist. As usual we denote by L:=T x<1 C the Real graded Fell
bundle over T associated to (T,T,5). Suppose (V, h) is a Real graded (T, 5)-module over
r i>s’—> Y with action p : T — GL8" (V). Then E" := Cy(Y;V) is a Real graded Hilbert
Co(Y)-module with respect to the inner product given by

(@, W) e, () =L, v (¥),
where (-,-) is the Hermitian metric of V, and the obvious Real Cy(Y)-action. It is clear that

EV is (T, L) -equivariant with respect to the ismorphisms

Vr(y)éeo(Y) (fy X gl C) — VS(Y)’ U@J[f’, t] — Py-1 (tv). (8.5)
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Note that the grading of EV is induced from that of V. Moreover, by [90, Lemma 5.22],
Idgv € C(EY), and it is easily seen to be I'-invariant. In particular, if Y /T is compact, then
Idgv € Kr(EY).

Definition 8.1.26. (Cf. [90, Definition 5.14 & Proposition 5.16]). Let € be a Real graded u.s.c
Fell bundle over a Real proper groupoid T i>;—> Y with Real Haar system, A = Cy(Y;E)

and E a (T, €)-equivariant Real graded Hilbert A-module. We say that E is approximately
finitely generated projective (AFGP) if (and only if) the Real graded C* -algebra Xr(E) has
an aproximate unit consisting of Real projections.

In the sequel we will use this

Definition 8.1.27. A Real graded C* -algebra A is said to be stably unital is the Real graded
C* -algebra A&K has an approximate unit (p;) consisting of Real projections (i.e. p; = p; =
p; = pi € (A8K0)°).

Lemma 8.1.28. (Compare [90, Corollary 5.17]). Let (T,T,5) be a Real graded S -twist
where T i>s'—> Y is a Real proper groupoid, and let L=T x 1 C — T be the associated Real

graded Fell bundle. Then the (T, L) -equivariant Real graded Hilbert A-module L*(T’; F0S' is
AFGP if and only if the Real graded C* -algebra C; (T'; L) is stably unital.

Proof. L*(T;F0)S" is AFGP ifand only if K (L2(T; 70)S"") has an approximate unit consisting
of Real projections. But one has

K (L5505 = K (L2 (0% 650 = K (LT 1)) 6 Ko,
and as we already pointed it out in the proof of Theorem 7.2.2, the isomorphism
Kr(L(T; 1)Ko = C; (I L) 8Ky
of [90, Proposition 4.3] is easily seen to respect the gradings and the Real structures. O

Corollary 8.1.29. Let T i? Y be a Real proper groupoid. Then L? (&K is AFGP ifand
only if the Real (trivially graded) C* -algebra C; (') is stably unital.

Proof. Consider the trivial Real twist (I' x S"'1,T',0). Then as a particular case of Exam-
ple 8.1.23, 2D ® His a (T',©)-equivariant Real graded Hilbert Cy(Y)-module, where the
grading is that of #(, and we have abusively denoted C for the trivial line bundle I'x C — C.
It then suffices to apply the previous lemma to L?(I') ® H. O
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8.2 Case of oriented twistings

Itis natural to expect the groups KR}, (G°) to be linked to KR, (G°). What we are doing
first is to construct a homomorphism from the K-theory groups of Real graded a-twisted
vector bundles over G i>s—> X to KR, (G°).

Let (T,T,5) be a Real graded SU1 twist and let L := T xg11 C — TI' be the associated
Real graded Fell bundle. Suppose that l\m(m) (I') is not the empty set. Let (V, h) be a
Real graded (I',6)-module over T’ i? Y . Then by (8.5), (s*V, L) is a Real graded (right)
Fell I'-pair over I' (where the latter is considered as a right Real I'-space) by setting for all
(Y1,72) €T®,

Vstyy % (f)q xs11C)  — Vi yy2)

- - (8.6)
(v, [72,t]) — VY2 t]i= pya (20).

These maps are clearly compatible with the gradings (since deg(py) = O(r(y)) forally e 1))
and the Real structures (since p is a Real homomorphism). Next, we define a Real graded
L-valued inner product on s*V (cf. Definition 5.3.8) by setting for all y;,y2 € I' such that
r(y)) =r(yz):

- " =
S*VYI ) VYZ — L<Y1:Y2>l“ = FYI—IYZ Xgl1 C

e 8.7)
W,w)  — W=7 T2 Py, (), w)]

It turns out that C.([; s* V) = Co(T; s* V) @ C(T; s* V1) is a Real graded pre-inner prod-
uct C.(I'; L)-module with respect to the Real graded C.(I'; L)-action and C.(I'; L)-valued
inner product (-, -), induced by (8.6) and (8.7) on C(I’; s* V) (cf. Proposition 5.4.10).

Definition 8.2.1. Let (I,T,8), L — T, and (V, h) be as above. Then by E(V) we denote the
Real graded Hilbert C; (I'; L) -module defined as the completion of C.(I'; s* V) with respect to
1

the norm |||« := (¢}, ‘p>*”§:(r;L) forp e C.(T';s*V).

Definition 8.2.2. If W — X is a Real graded vector bundle over the Real space X, then
for all Real graded homomorphism f: W — W, we define the Real graded linear operator
Fr:Co(X; W) — Co(X; W) by the formula

Fr()(x) = f(p(x)), VpeC(X;W), xe X,

Lemma 8.2.3. Let (I,T,6) be a Real graded SU_twist, L — T its associated Real graded
Fell bundle, and let (V, h) be a Real graded (T, 8)-module over T i>s’—> Y . Then the map
Fp,:C.([;s*V) — C.(T'; s* V) extends to a Real degree 1 bounded self-adjoint operator Fj, €
L(E(V)) verifying

Fr—1eXK(E(V)). (8.8)
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In other words, the triple (E(V),C-1d, Fy,) is a Real graded Kasparov C-C; (I'; L)-bimodule;
i.e. (E(V),C-1d, Fp) € ER(C,C; (I'; L)).

Proof. For (v,[72, t]) € Vseyyy x Ly,, we have h(v-[}2, 1]) = h(pygl (tv) = pya (th(v)) = h(v)-
[Y2, t], thanks to Definition 8.1.2 (iii). We hence may remark that the map # is invariant
with the respect to the L-action (8.6) on s* V. Thus, for all ¢ € C.(I';s* V), € C.(I'; L), we
have

Fp(p-&)(y) =h( fr . Oy -9)ég Hdu' (g)

:frsm h(p(y-g)ég Hdu' ™ (g)
=(Fp()-E(y), Vyerl;

which shows that Fj, is C.(I"; L)-linear.

To see that Fj, is adjointable, notice that for all W, w) € W)’l x s"‘Vy2 where r(y;) =
r(y2), one has (h(v), w); = (v, h* (w)) = (v, h(w)) since h is hermitian, where h* : V — V
is the adjoint of & with respect to the fibrewise the scalar product (:,-) of V. Now if ¢,y €
Cc(T;s*V), thenforall yeT:

Fnd, 92, (1) =frsm<h(</>(g‘1 N g N de’ ™ (g)

:frsm @y R wig A @)
=(¢p, Fpe ), (7).

Hence F;: = Fp+ = Fyp, so that Fj, is bounded and extends to a self-adjoint operator Fj, €

L(E(V)). Moreover, Fy, is Real and of degree 1 since £ is. Indeed, if writting & as a matrix
0 h

h= (h* 01), where h; : V! — V0 and h{: V9 — V1 is the (fibrewise) adjoint of h;, we
1

see that

0 Fp
F;:l 0

) (8.9)

0 F
Fh = ( n
Fp: 0

where Fj, : Co(T;s* V1) — Co(T;5*V9), Fy 1 Co(T;s* V9% — C.(T;s* V1) are the obvious
C.(T; L)O—linear operators.

Now to verify (8.8), since V is of finite rank n, we may, without loss of generality, assume
that V is trivial (and moreover I = T'xSY1). Then h expresses into a hermitian n x n-matrix,
and E(V) identifies to the Real (trivially graded) projective Hilbert (right) C; (I')-module
Cr ()" It turns out that £ (E(V)) consists of compact operators. O

Proposition 8.2.4. Let G i>s’—> X bea Real groupoid with Real Haar system. Leta € HR'(G., Z5) x
FR%(S.,8"), andE = (T, T,8) € ExtR(S,8"") such that DD(E) = a. Suppose thatModR . 5, (I)
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is not empty. Then the process consisting of associating to each Real graded (T',5)-module
(V, h) the Kasparov module (E(V),C-1d, Fy) induces a homomorphism of abelian groups

wq: KRy, (") — KRQ(S").

Proof. In view of Lemma 8.2.3, associated to every Real graded (T', 5)-module (V, ), there
is a Kasparov module (E(V),C-1d, Fp,) € ER(C, C; (I'; L)). Further, it is not hard to show that
every isomorphism of Real graded (T,8)-modules u: (Vy, h;) — (Vs, hy) over T i>s'—> Y

induces a unitary equivalence between
(E(V1),C-1d, Fp,) ~ (E(V3),C-1d, Fp,,)
in ER(C, C; (I'; L)). We then have a well defined map
®q :ModR 5 (1) — KKR(C,C} (T3 1) = KKR(C, C} (E)).

That @, is a homomorphism of abelian monoids is also obvious; for if (V, hY) and (W, hW)
are Real graded a-twisted vector bundles relative to (T,T,8), then C.([; s* (VoW)) = C.(T;s* V)&
C.(T; s* W) and with respect to this decomposition we have E(V & W) = E(V) @ E(W) are
Real graded Hilbert C; (I'; L)-module. Now from the universality of the Grothendieck group
(see [42, §1.1, Chap.II]), @, induces a homomorphism wy : Kngvb(S') — KR%(9"). O

Now we are concerned with proving the following result which is the "Real graded"
version of [90, Theorem 5.28].

Theorem 8.2.5. Let G i>s’—> X bealocally compact Hausdorf{f second-countable Real proper

groupoid such that X /G is compact. Let A be an oriented Real graded D-D bundle of type
0 over G with Dixmier-Douady class a = (0,¢) € HR'(G.,Z») x HR?(G.,S"!). LetE = (T,T,0)
be a Real (trivially graded) 8" -extension of G such that DD(E) = a. Suppose that

(@ L*(T)®H is AFGP;
(b) there is exists a Real graded a -twisted vector bundle (relative to E).
Then the map wg : KRSt vb(9') — KRg(S') is an isomorphism.

Remark 8.2.6. Let T i>s—> Y be a Real proper groupoid such that Y /T is compact. Then

C* (1) @ Ko = Kr(LAT) ® F) = Co(Y; K(L2(T) ® FO)T. It follows that the (T, C)-equivariant
Real graded Hilbert Cy(Y)-module L*(I) ® (. being AFGP means that there exists a sequence
(pn)n such that

(D) pn = (Pn(¥)yey is al -equivariant continuous section of the field of compact opera-
tors K(L2(T) ® F) — Y;
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(ii) foralln, y— p,(y) is Real; i.e. p,(y) = pn(y) forallyeY;
(iii) pn(y) is a finite rank projection forall ye Y,
(iv) foreveryé € GC(Y;E?(?)@J:C), (pné)(y) — &(y) uniformly on Y when n — oo.

In the proof of Theorem 8.2.5 we will use the following result which is in some sense a
generalisation of the well known Serre-Swan theorem.

Proposition 8.2.7. Assume (I,T,0) is a Real graded S -twist where T i>;—> Y is a Real

proper groupoid such that Y IT is compact. Let L:=T xg1 C — T be the associated Real
graded Fell bundle. Consider the category*B (I, L) of pairs (E, F) consistingofa (I', L)-equivariant
Real graded Hilbert Cy(Y)-modules E such that1dg € X (E) and a degree 1 self-adjoint Real
operator F € L(E). Then the functor from the category of Real graded (T, 5)-modules to the
category*B3(T', L) , defined by

®: (V,h)— (Co(Y; V), F),

where F () (y) := h(¢p(y)) forp € Co(Y; V), is an equivalence of categories. Therefore, K Rg (97
is isomorphic to the Grothendieck group of the category B (T, L).

Proof. Thisis but the Real graded analogue of Proposition 5.27 in [90]. We however should
show how the inverse functor is defined in our context. Suppose E is a (I', L)-equivariant
Real graded Hilbert Cy(Y)-module such that Idg € Kr(E), and F € L£(E)! is self-adjoint.
Consider the graded Hilbert space Vy := E®,,,C (whose grading is given by that of E), and
the continuous field of graded Hilbert spaces V := [[y V;, — Y equipped with the Real
structure V, — Vj induced by &, A — i3 ®eyy/1, where ¢ is the image of ¢ € E by the
Real structure of E. Then E = Cy(Y; V) as Real graded Hilbert Cy(Y)-module. Moreover,
by applying Swan theorem to E on each compact Real subspace K c Y, it is easy to see
that V — Y is in fact a Real graded hermitian vector bundle. Now we define the hermi-
tian degree 1 endomorphism h by setting for all y € Y, h, (& ®evyﬂt) =F ((f)@e,,y/l, so that
through the isomorphism E = Cy(Y; V), we have F(¢)(y) = hy(¢p(y)), for all ¢ € Co(Y; V).
The Real graded (T, )-module structure p : I — GL8" (V) over (V, h) is induced by the
isomorphisms Es(),)@(fy-l xg11 C) = Eyy); e forye T, we set

py(E®A) = (B[, 11)81,
for {®A € Vi) where y €T is such that 7 () = y. O

Proof of Theorem 8.2.5. Observe that since C; (I'; L) is trivially graded, then using the Fred-
holm picture of KRy(A X ,G) = KRy(C; (I'; L)), KRy (G") is isomorphic to the group of homo-

topy classe of degree 1 Real operators F =

S
0) e L(CH (I L)®H) suchthat ST-1,TS-1¢€
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K(C;(T; L) ® H), where the ungraded infinite dimensional Hilbert space I is equipped
with a Real structure of the type Jg (cf. Section ?2 in Appendix A). Hence since any approx-
imate unit (p,), consisting of Real projections of the Real graded C*-algebra C; (T'; L) &Ko
is in fact an approximate unit consisting of projections of the ungraded Real C*-algebra
C; ([; L) ® K(H), we obtain an inverse map

wy: KRa(§") — KR, (S

for w, from the same constructions as that of [46, p.556] and [90, p.888] (note that the
picture of K Rg ” b(S‘) used here is the one given by Proposition 8.2.7). O

8.3 Twisted equivariant K R-theory, and Twisted represen-

tation rings

In this section we focus on the study of the twisted KR,;-theory of transformation
Real groupoids. Recall that if G is a Real group acting (on the right, say) on a Real space
X, then the Real groupoid X x G —= X has unit Real space X, morphisms (x, g) € X x
G, source and range maps s(x, g) := xg,r(x, g) := x, inverse (x,g)"! := (xg, g~ 1), partial
product (x, 8§)(xg, h) := (x, gh), and Real structure @ = (X, 8).

Definition 8.3.1. Let G be a compact Real group acting on a locally compact Hausdor{f Real
spaceX. Leta € HR'(G.,Z,)x HR3(G.,Z""). Let@ € HR' (X% G).,Z2)x HR}((Xx G).,Z%")
be the pull-back of a along the projection ng : X X\ G — G. Then we define the twisted
equivariant KR-theory of X by

KR o(X):=KR} ,, (X X G)°).

Similarly, when G and X are equipped with the trivial involutions, one defines twisted
equivariant KO-theory KR, ,(X), for a € HR'(G., Z3) x HR?*(G.,Z5).

Notice that this definition is the Real version of Adem-Ruan’s twisted equivariant K-
theory (see [1, Section 7] or [2, §3.6]); it also agrees, in the complex case, with the Freed-
Hopkins-Teleman’s twisted form of equivariant K-theory (see [30, Examples 1.10, 1.12, &
1.13)).

Definition 8.3.2. (Compare [1, Definition 7.1]). A Real graded & -twisted vector bundle over
X X G—= X will be simply called an a-twisted Real G-bundle over X.

Remark 8.3.3. Suppose that a = 0. Then it is easy to see that there is bijection between a-
twisted Real G-bundles over X and Rg hermitian G-equivariant vector bundles over X. In
other words, KR,(X) := KR, ,(X) is the equivariant analog of Atiyah’s K R-theory.
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Definition 8.3.4. Let G be a compact Real group. Let a € HR'(G.,Z,) x HR3(G.,Z%"). We
define the a-twisted Real representation ring of G as

RR4(G) := KRg,oa({pt}).

Similarly, one defines RO, (G), when G is endowed with the trivial involution.
We will write RR(G) (resp. RO(G)) instead of RRy (G) (resp. RO, (G)) if a is trivial.

Remark 8.3.5. We shall remark that RR(G) is nothing but the subgroup of the represen-
tation ring R(G) consisting of isomorphism classes of graded complex G-modules M (with
G-invariant hermitian forms) that are the complexifications of graded real G-modules with
G-invariant metric. Hence, by [38, Theorem 11.4], we have RR(G) = RO(G).

The following is the analog of [1, Lemma 7.3] whose proof is almost the same as in the
untwisted complex case (see [82, Proposition 2.2]); we then omit the proof.

Proposition 8.3.6. . Suppose the compact Real group G acts trivially on the Real space X.
Then for a € HR'(G.,Z,) x HR3(G.,Z""), there is a natural isomorphism

RR4(G) ® KR(X) — KRg,q(X).
Corollary 8.3.7. We have KR, ,({pr}) = RRa(G) ® KR*({p1}).

Proof. Consider the Real space R”'7 acted upon by G by the trivial Real action. Then we
have KRg «(R”9) = RR,(G) ® KR(RPY), by Proposition 8.3.6. Note that KRg o ([RP9) =
K Rg;xq ({pt}), thanks to Lemma 8.1.19; we deduce the result from the fact that KR(RP9) =
KRP~9({pt}) by Bott periodicity in KR-theory. O
We are now going to study periodicity in twisted equivariant K R-theory.
Suppose that a corresponds to a Rg S!-central extension

S!' —=G*——=G
8
2
An a-twisted G-bundle V over X is in fact a Rg G*-equivariant hermitian vector bundle
over X, and hence defines an element in KRz (X). As in the complex case ( [30, Example
1.10], and [1, p.23]), KRG, (X) may then be seen as the subgroup of KRz (X) generated by

isomorphism classes of Rg G*-equivariant vector bundles that restrict to multiplication by
scalars on the center S' « G%. Thus,

Proposition 8.3.8 (Bott periodicity). Suppose X is a compact Real space acted upon by a
compact Real group G. Let a be as previously. Then

KR&Zx_g(X) = KR(_;,'ZX (X).
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Proof. The compact Real group G* acts on X through the projection G* — G (this does
make sense since S! acts trivially on X). Denote by I' the transformation Real groupoid
X xGY¥ —— X . Then L2 (F)éﬂ:f is AFGP thanks to [90, Corollary 5.21]. Thus, from The-
orem 8.2.5, we have KR, (X) = KR*(I'"). Therefore, KRE;B(X) = KR, (X). The result
then follows from the 8-periodicity of twisted groupoid K R-theory (cf. Chapter 6) and the
observations made just before the proposition. O
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Real KKg-theory via correspondences and
the Thom Isomorphism

A generalization of Le Gall’s groupoid equivariant KK-theory has arisen in [90] to the
larger framework of groupoid actions by Morita equivalences. This chapter is devoted to
the study of that theory in the category of Rg C*-algebras acted upon by Real groupoids.
Then we will establish the Thom isomorphism in groupoid twisted KR-theory.

9.1 C"-correspondences and generalized actions

This section is essentially an adaptation of [90, §6.2] to Real graded C*-algebras.

Definition 9.1.1. Let A and B be Real graded C* -algebras. A C*-correspondence from A
to B is a pair (€, @) where € is a Real graded Hilbert (right) B-module, and ¢ : A — L(&)
is a non-degenerate homomorphism of Real graded C* -algebras. We then view € as a Real
graded left A-module by a- e := ¢(a)e. When there is no risk of confusion we will write 4€p
for the C* -correspondence (&, ¢). We also say that € is a Real graded A, B-correspondence.

Definition 9.1.2. If (&, ¢) and (F,v) are C* -correspondences from A to B and from B to C,
respectively, we define the C* -correspondence (F,y) o (€,¢) from A to C by (E&yT,p&1);
this C* -correspondence is called the composition of (F, ) by (&, ¢).

Definition 9.1.3. An isomorphism of C* -correspondences from 4Cp to sFp is a Real degree
0 unitaryu e Lg(E,F) such that uope(a) = pg(a)ou forallac A.

Definition 9.1.4. Let G be a Real groupoid, and A a Real graded C* -algebra. A generalized
G-action on A consists of a Real graded u.s.c. Fell bundle o — G such that A= Cy(S?; .«),
where, as usual, we have denoted Cy(5”; «7) for Co(G?; #g0).

Example 9.1.5. IfA — G is a Real u.s.c. G-field of graded C*-algebras, then the Real
graded u.s.c. Fell bundle s* A — G is a generalized G-action on A = Co(GO: A4).

201
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Remark 9.1.6. As mentioned in [90, §6.2], a generalized action is in fact an action by Morita
equivalences, which justifies the terminology. Indeed, if </ is a generalized G-action on A,
then from the properties of Fell bundles we see that for g € G, g1 is a graded </5(g) -} (g)-
Morita equivalence.

Denote by i : § — G the inversion map. If A is a Real graded C*-algebra endowed
with a generalized G-action <7, we define JF(i*.</) as the Real graded Banach algebra of
norm-bounded continuous functions vanishing at infinity a’ : § 3 g — a(’g € o/g-1; the Real
structure is given by (a’) gi= (a_:é), and the gradingis inherited from that of <7. Observe that
Fp(i* /) is naturally a Real graded (right) Hilbert r* A-module under the module structure

(d-a)q:= a;, -ag, fora e Fp(i*a/),aer*A=Cy(G;r" (o)),
and the graded scalar product
(a,a"yg:= (aé)* a"g, d,a"eFpi* ).
Also, Fp(i*.o7) has the structure of Real graded s* A-module by setting
€-a)g:=¢g)- a;, forées*Aa € F(i*a/), and g€ G.
Moreover, we have the following straightforward lemma.

Lemma 9.1.7. Let (€, ¢) be a C* -correspondence from A to B, and let o/ and 9 be gener-
alized G-actions on the Real graded C* -algebras A and B, respectively. Then, we have two
C* -correspondences g« A(F,(i* )&+ aT*E) prp and ¢« A (s*EQ s+ T (i* AB)) 1+ g With respect to
the maps

[der*@:s*A— Lg(Fp(i* )& ar™E),

and
s*®Id:s*A— L +p(s"E@pTp(i* A)),

respectively.
We now give the definition of equivariant C*-correspondence.

Definition 9.1.8. Let A, B, o7, A, € be as above. AC* -correspondence 4€ p is said G-equivariant
if there is an isomorphism of C* -correspondences

WeL(s"ERypTy(i* RB), Fp(i* )&+ ar™E),

such that for every (g, h) € G®, the following diagram commutes
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Wi®B, Id@gq

sty ®Bn By ® B, ‘%)g"1 A1 ®Arn) 83(8) ® By ‘%)gl
\ .
< \ledhl ®Ar(g) Wg
€ s(gh) ® By Bn-1g-1 D18 A,y D18 4, Er(g)

WX

fQ{h*Ig*1®Ar(gh)8r(gh)
9.1
eQ{g—l = %h—lg—l and t%j;rl@]gs(g)@gfl = %h—lg—l come

where the isomorphisms 2/,-1®4,,

from the properties of Fell bundles.

Lemma 9.1.9. Let A, B, and C be Real graded C* -algebras endowed with generalized G-
actions </, B, and €, respectively. If 4€p, and gF ¢ are G-equivariant C* -correspondences,
their composition o€ is a G-equivariant Real graded A, C-correspondence. Therefore, there
is a category Covg whose objects are Real graded C* -algebras endowed with generalized G-
actions, and whose morphisms are isomorphism classes of equivariant correspondences.

Proof. Suppose W' e L,+p(s*E®+pTF(i*AB), Fp(i* & )&, 4r*E) is an isomorphism of Real
graded s* A, r* B-correspondences and W € L,+c(s*F &+ cFp(i*6), Fp(i* B)®,+pr*F) is
an isomorphism of s* B, r* C-correspondences implementing G-equivarience. We define
the isomorphism of Real graded s* A, r* C-correspondences

w: S*(géwff")@s*cﬁrb(i*%) — ffrb(i*,fa/)@rmr*(g@w?)
by setting W: = (W'®«gld,«5) o (Ids+¢ ® s+ g W), via the identification
ST(ESYT) =5 ERps™ T
r*(E&yF =1 E&pr T,

Now it is straightforward that commutativity of the diagram (9.1) holds for W.

9.2 The KK Rg-bifunctor

To define the equivariant KK R-groups, we also need some more notions (cf. [24, Ap-
pendix A], [90, Definition 6.5]). Let A, B be Real graded C*-algebras. Let £; be Real graded
Hilbert A-module, and €, a Real graded A, B-correspondence. Put £ = £1& 4E,. For £ € &4,
let T; € Lp(Ez, ) be given by T:(n) := {& 4n (with adjoint given by T? (&1®an) ==&, EDM).
Observe that Ty = Tg, so that T; is Real if and only if ¢ is.
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Definition 9.2.1. Let A, B, €1, and &, be as above. Let F»> € L(E,), and F € L(E). We say that
F is an F>-connection for &, if for every e &;:

TeFp — (~1)FMRIET € K (€5, 8),
Fy T — ()BT F e (€, €5).

Remark 9.2.2. [t is easy to check that F is an F,-connection for &, if and only if for every
6 € 81:
[0:, F® Fle K(E2@E),

0 T
where 0 := (T 5 ) € Lp(Er @ &) ([85, Definition 8]).
¢

Definition 9.2.3. Let A and B be Rg C* -algebras endowed with generalized Real G-actions.
A G-equivariant (or just equivariant if G is understood) Kasparov A, B-correspondence is a
pair (€, F) where € is a G-equivariant Rg A, B-correspondence, F is a Real operator of degree
1in L(E) such that forall ae A,

(i) a(F-F*)eX(&);
(i) a(F*-1)eK(E);
(iii) [a,F1e€X(E);
(iv) W(s*F&spld)W* € L(Fp(i* )&+ a1*E) is an r* F-connection for Fy,(i* 7).
We say that (€, F) is degenerate if the elements
a(F - F*),a(F*-1),[a,F], and [0, r*F & W (s* F& ¢ gId) W*]
are(Q forallac A, € Fp(i* ).

Remark 9.2.4. Suppose G acts on A and B by automorphisms and 4Ep is a G-equivariant
Rg A, B-correspondence. Then the isomorphism W induces a continuous family of graded
isomorphisms Wg : Es(g) — Er(g) Via the identifications

Esig)® By PBrig) = Es()® By Bsig) = Estgy and Ar(9)®.,,, Er(e) = Erg)-

Note that from the commutativity of (9.1), W verifies Wg), = Wy o W, for all (g, h) € §?;
so that W is a Rg G-action by automorphisms on . Moreover; it is straightforward to see
that the map ¢ : A — L(&) is G-equivariant; i.e. Wgcp(a) Wg* =¢(ag(a) forallg € G and
a € Asg). Now, if (E,F) is a G-equivariant Kasparov A, B-correspondence, then condition
(iv) of Definition 9.2.3 implies that Wng(g) W; —Frg) € XK(Er(g) forall g e G (take & = 0),
so that we recover Le Gall’s definition of an equivariant Kasparov bimodule ( [52, Definition
4.1.2]). We will then refer to condition (iv) as the condition of invariance modulo compacts.
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Definition 9.2.5. Two equivariant Kasparov A, B-correspondences (€, F;),i = 1,2 are uni-
tarily equivalent if there exists an isomorphism of Real graded A, B-correspondences u €
L(&€4,E») such that F» = uFyu*; in this case we write (€1, F1) ~,, (€2, F2). The set of unitarily
equivalence classes of equivariant Kasparov A, B-correspondences is denoted by ERg(A, B).

Let the C*-algebra A be endowed with a generalized G-action 27 Then the Real graded
C*-algebra A[0,1] := C([0,1], A) (with the gradding (A[0,1])! = A'[0,1],i = 0,1, and Real
structure f(£) := f(1), for f € A[0,1],¢ € [0,1]) is equipped with the generalized G-action
given by the Real graded u.s.c Fell bundle <7[0, 1] — G with (<70, 1])g = 270, 1].

Definition 9.2.6. Let A and B be Rg C* -algebras endowed with generalized Real G-actions.
A homotopy in ERg(A, B) is an element (E,F) € ERg(A, B[0,1]). Two elements (€;,F;),i =
0,1 of ERg (A, B) are said to be homotopically equivalent if there is a homotopy (€, F) such
that (E®,pyB, F&,y,Id) ~,, (E0, Fo), and (E®¢y, B, F&®,y,1d) ~,, (€1, Fy), where forall t € [0,1],
the evolution map ev; : B[0,1] — B is the sujective Rg * -homomorphism ev(f) := f(1).
The set of homotopy classes of elements of ERg(A, B) is denoted by KK Rg (A, B).

Example 9.2.7. Let A be a Rg C* -algebra equipped with a generalized Real G-action. Then
there is a canonical element 1 4 € KKRg(A, A) given by the class of the equivariant Kasparov
A, A-correspondence (A,0), where A is naturally viewed as a Rg A, A-correspondence via the
homomorphism A — L 4(A) = A defined by left multiplication by elements of A.

Definition 9.2.8. Given two elements x1,x; € KKRg(A, B), their sum is given by x1 ® X, =
(E10 &y, F1 & F,), where (€;,F;),i =1,2 is any representative of x;.

Let A, B, and D be Rg C*-algebras endowed with the generalized Real G-actions <7, %,
and 7, respectively. Then the Rg C*-algebras A&, x)D = Co(X; ./ ®x ) and B&¢,x)D =
Co(X; B®x D) are provided with the generalized Real G-actions given by the Rg u.s.c. Fell
bundles &7 ®q %7 — Gand A&3% — G. Nowif 4€p is a §-equivariant C*-correspondence
via the non-degenerate homomorphism ¢ : A — £(€), it is easy to see that E& 4 A&®¢, (x) D
is a §-equivariant A®¢,x)D, B&¢,(x)D-correspondence via the map

p&Ida®Idp : A&e,x)D — LB«é@O(X)D(E@’AA@Go(X)D)-
We therefore may give the same construction as in [52, Définition 4.2.1].
Definition 9.2.9. Let A, B, and D be as above. We define a group homomorphism
Tp: KKRg(A, B) — KKRg(A&¢,x)D, B&¢,x) D)
by setting

Tp([&, F]) = [(E® 4 AB¢,x) D, F&14&1p)], for [(€, F)] € KKRg(A, B).
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The following can be proven as in the standard case where no generalized actions are
involved (see [46, §4]).

Proposition 9.2.10. Under the operations of direct sum, KKRg(A, B) is an abelian group.
Moreover, the assignement (A, B) — KKRgq(A, B) is a bifunctor, covariant in B and con-
travariant in A, from the category Cotg fto the category2b of abelian groups

Note that the inverse of an element x € KKRg(A, B) is given by the class of (=&, -F),
where (&, F) is arepresentative of x, —€ is the Real graded A, B-correspondence given by €
with the opposite grading (i.e. (-€)" = €!7%,i = 0,1) and the same Real structure, and the
non-degenerate homomorphism of Real graded C*-algebras —¢ : A — £(—¢) defined by

0 1a

—p(a):= p(a), Vae A.
180 0

Also, as in the usual case, degenerate elements are homotopically equivalent to (0,0), so

that they represent the zero element of KKRg (A, B).

Remark 9.2.11. One recovers Kasparov’s KKR(A, B) of [46] by taking the Real groupoid G to
be the point. Indeed, in this case we may omit condition (iv) of Definition 9.2.3 since, thanks
to (9.1), the automorphism W : £ — € is in fact equal to the identity.

Higher KK Rg-groups are defined in an obvious way. Given a Rg C*-algebra A endowed
with a generalized §-action .« — G, the Rg u.s.c. Fell bundle

A &Cly q:= || H&Cly 4
ge9

over G is a generalized G-action on the the Rg C*-algebra

Definition 9.2.12. Let A, B be Rg C* -algebras endowed with generalized G-actions. Then,
the higher KK Rg-groups KKRg, j(A, B) are defined by

KKRg(Ajo,B) = KKRg(A, By,j), ifj=0

KKRg, ;(A,B) = KKR,' (A, B) := L
’ g KKRg(A_j0,B) = KKRg(A By _j), ifj<0

Let us outline the construction of the Kasparov product in groupoid equivariant KK R-
theory. To do this, we need the following

Theorem 9.2.13. (cf. [90, Theorem 6.9]). Let A,D and B be separable Rg C* -algebras en-
dowed with generalized Real G-actions. Let (€1, F;) € ERg(A, D), (€2, F») € ERg(D, B). De-
note by € the Rg G-equivariant A, B-correspondence & = £,8pE,. Then the set F1#F, of Real
operators F € L(E) such that
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* (&,F) €ERg(A, B);
* FisaF,-connection for €;;

e Yae A alF,®pl,Fla* =0 modulo X (&)
is non-empty.

Now from this theorem, the Kasparov product

& p: KKRg(A, D) ®p KKRg(D, B) — KKRg(A, B) 9.2)
of [(€1,F1)] € KKRg(A, D) and [(€2, F»)] € KKRg(D, B) is defined by
[(E1, F)1®D(E2, F2)] := (€, F)], 9.3)

where & := £,8€, and F € F\#F,. It is not hard to see that as in the complex case where
the C*-algebras are equipped with G-actions by automorphisms (see [52]), this product
is well-defined, bilinear, associative, homotopy-invariant, covariant with respect to B and
contravariant with respect to A.

More generally, we have

Theorem 9.2.14. Let Ay, A2 By, B2 and D be separable Rg C* -algebras endowed with gener-
alized Real G-actions. Then, the product (9.2) induces an associative product

KKRg,;(A1,B1®¢,x)D) ®p KKRg, j (D&, (x) A2, B2) — KKRg ;1 j(A1®¢,(x) A2, B1®¢,(x)B2).
Proof. The proofis almost the same as that of [46, Theorem 5.6]. O

Moreover, it is not hard to check that as the usual case ( [47]), there are descent mor-
phisms
jg:KKRg(A,B) — KKR(C*(G;9),C; (G A));
jo.rea: KKRg(A,B) — KKR(C;(§,9),Cr (S, A),

compatible with the Kasparov product.

9.3 Functoriality in the category ‘R &

Let f: T — G be a strict morphism of Real groupoids and A a Rg C*-algebra en-
dowed with the generalized Real G-action .« — G. Then the pull-back f*.«/ — T de-
fines a generalized Real I'-action on the Rg C*-algebra f*A = Cy(Y; f*.<7). Let B be an-
other Rg C*-algebra together with a generalized Real G-action . Suppose 4€p is a Rg
C*-correspondence. Then under the identifications

frA= Abe,x)Co(Y), f*B = Bée,x)Co(Y), and f*€ = E&e,x)Co(Y), 9.4)
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we see that f*EisaRg f* A, f*B-correspondence. Further, assume that o€ g is §G-equivariant
with respect to the isomorphism W : sé&@sEB?(ig B) = 9—';,(1'5 ;z{)éréAr; €. Then, by us-
ing the following identifications (compare with [52, p.65])

iF(f*ﬁf)=f*(i§£7), i;(f*%)=f*(i§%),

SE(f"A) = 55A8¢,)Co(T), 1 (f* A) = g ABey(g)Co(T) 9.5)

sp(frE) = r§‘8®@0(9)€0(1"), ri(f*&) = ré‘&@eo(g)(ﬁo(l"),

where the Real action of Cy(G) on Cy(I') is induced by f in an obvious way, we get an iso-
morphism

f*W . SF (f*8)®slff*3f‘fb(ilff*,@) e ?b(ili‘f*A)ér;f*Arf‘f*S,

making f*€ into a Rg G-equivariant f* A, f* B-correspondence. Hence equivariant KKR-
theory has a functorial property in the category R®;.

Definition and Lemma 9.3.1. Let f : ' — G be a strict morphism of Real groupoids. Let A
and B be Rg C* -algebras endowed with generalized Real G-actions. Then we define a group
homomorphism

f*:KKRg(A,B) — KKRr(f*A, f*B)

by assigning to a G-equivariant Kasparov A, B-correspondence (€, F) € ERg(A, B) the pair
[TEF):=(f"E fTF) €ERr(f7A, fB),

where under the identifications (9.4), we put f*F = F&g,x)Ide,(v)-
Moreover, the map f* is natural with respect to the Kasparov product (9.2) in the sense that
if D is another Rg C* -algebra equipped with a generalized Real G-action, then

f*(x)éf*Df*(y) = f*(x&py), Vxe€ KKRg(A,D),y € KKRg(D, B).
Proof. The proof is the same as those of Lemma 6.1.1 and Proposition 6.1.3 in [52]. O

More generally, in order to establish functoriality in the category R® we need the fol-
lowing proposition which is a generalisation of Le Gall’s [52, Proposition 3.1.3].

Proposition 9.3.2. Let G i>s—> X be a locally compact second-countable Real groupoid,
and let U = (Uj) jej a Real open cover of X. Denote by 1 : §[U] — § the canonical inclusion.
For all Rg Fell bundle (resp. u.s.c. Fell bundle) o7 — G[U], there exist a Rg Fell bundle (resp.
u.s.c. Fell bundle) wo/ — G and an isomorphism of Rg Fell bundles (resp. of u.s.c. Fell
bundles)

et ) — o

over (Ul —=[1e; Uj -
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Proof. We may suppose U is locally finite. We use the following notations: as usual, we
write gj, j; for (jo, g, j1) € (U], and x; for (j,x) € Hje/ Uj;letm: o/ — G[U] be the projec-
tion of the given Rg Fell bundle (resp. u.s.c. Fell bundle); an element a € 771 (g joj1) will be
written aj, j, .

For x € X we denote by I, the finite subset of j € J such that x € U}, and for g € G let I
the finite subset of pairs (jy, j1) € J x J/ such that g € 9%". Put

1

ndg:= P g i andthz?::]_[Lgd.

(Jo,j1)Elg g€§

Then n.o/ — Gisa Rg Banach bundle (resp. u.s.c. Banach bundle), with the projection
un defined by

ur (g, ajyji) o, joely) = §-

Moreover, for (g1, g2) € @, the pairing

Igles(gl)lgz - Iglgz
((o, j1)» (1, J2)) — (Jo, J2)

where Ig, %, , Ig, := {((jo, j1), (1, j2)) € Ig, % Ig,}, enables us to define a multiplication on
7

0y O,y 1T gy — L,

generated by a;,;, ®bj, j, — (ab) j,j,. One verifies easily that together with this multipli-
cation, 1./ — G is a Rg Fell bundle (resp. u.s.c Fell bundle) that satisfies to the desired
isomorphism. 0

Definition 9.3.3. Let G i>s”—> X andU be as above. Given a Rg C*-algebra A with a gen-

eralized Real G[U]-action <7, we denote by 1A the Rg C* -algebra Cy(X;1y<7) endowed with
the generalized Real G-action n.o/ — G.

Proposition 9.3.4. Let A, B be Rg C* -algebras endowed with generalized Real G[U]-actions
o/ and A, respectively. Assume € is a G[U]-equivariant Rg A, B-correspondence. Then
there exists a Rgu A, yB-correspondence 1€ and an isomorphism of Rg A, B-correspondences
FnE=E.

Proof. The map v : B— uB sending ¢ € 80(]_[]- U]-;@) to the function ¢ € Cy(X; uHA) de-
fined by

up(x) := (((J, X)) jer,

is a surjective Rg *-homomorphism. We then can define the pushout ¢, of the Rg Hilbert
B-module € via . Let us recall (see [39, §1.2.2.]) the definition of the Rg Hilbert 1y B-module
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u€. Let N, = {¢ € & 4((&, &) p) = 0}; denote by ¢ the image of ¢ € € in the quotient space
&/, the latter being a Rg 1B-module by setting

&-y(b) = 37), ée &/ N, u(b) € uB.

Then define the Rg Hilbert 1 B-module 1, as the completion of £/, with respect to the Rg
1y B-valued pre-inner product

EMup=ul&n)), &nek.

For T € £(€), let uT be the unique operator in £ (y€) making the following diagram com-
mute

& —— L]g

-l

& —— ng

where the horizontal arrows are the quotient map; i.e.,

uTE=TE), Eeut. 9.6)

Hence, the map ¢ : A — £(€) implementing the A, B-correspondence gives rise to a non-
degenerate *-homomorphism u¢ : yA — L(uE) such that

(wp)w(a) :=ulpla)), VaeA. 9.7)

Therefore, 1,€ is a Rg 1A, uB-correspondence. It is not hard to check that (€ is isomorphic
to Co(X; L!/Z"), where L!Ag — X is the unique Rg u.s.c. field of Banach algebras with fibre
L&), =P jely E®pB( jx (cf. Appendix C ?2?); indeed, since € is a Rg Hilbert B-module,
recall that there is a unique topology on the Rg u.s.c. field & = [(;,x) E®pByj,x) such that
& =Co(lI; Uj; &); so, by Proposition 9.3.2, we get the Rg u.s.c. field ig.

LetW:s*ERggFp(i* B) — Fp(i* /)&, 41*E be the isomorphism of C*-correspondences

implementing the §[U]-equivariance. Then from the trivial identifications

WA =u(s"A), 1WA =ur*A),
s*wB)=u(s*B), r*uB)=u(r*B),
) =u(i* ), i*WB) =uli*RB),
sS*WE) =u(s*8), r*wé)=u(r*é),

we get

1k

s WE)®s upyTp(i"A) = u(s"E&spTp(i”A)), and
Fp(@* WA N&payr™ WE) = u(Fp(i* )& ar™€).
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Thus, W induces an isomorphism of Rg s* (1 A), r* (4 B)-correspondences
uW:s* W8 &g (,py Fp(i™ WA) — Fp(i™ ()& ayr* WE),

defined in a similar fashion as (9.7); so that y W is compatible with the partial product of G
in the sense of the commutative diagram (9.1). That the §[U]-equivariant A, B-correspondences
€ and (" 1€ are isomorphic is a mere consequence of the construction of n€ and yW. 0O

Lemma 9.3.5. Suppose x = (€,F) € ERgp (A, B). Then ux := u€,uF) € ERg(1A,uB), where
the operator uF € L(u€) is given by (9.6).

Proof. Thisresults from very easy algebraic verifications. For instance, themap : £(€) —
L(uE) respects the degree and the Real structures. Moreover 1, sends K (€) onto X (1€) be-
cause i (0¢ ;) = 95'77 forallé,ne &, wWT)WT) =u(T1T2), and (4 T1,uTo] = ulTy, To],, V11, T €
L(€); thus conditions (i)-(iii) in Definition 9.2.3 are satisfied by the pair (4&,uF). To ver-
ify condition (iv), let us put &; = Fp(i*«7),E» = r*E, and € = £,®,+2E». Then K(1,E» &
u€) = Ku(&; @ €)), and we have seen in the proof of Proposition 9.3.2 that 1€; &, au€ =
1(E18,+4E). Tt follows that for ¢ € £ and n € €, , one has

u(Te) = Te() = E&p+ an = E® o aTh,

which means that (T;) = Té € L(u€z,ué), and hence u(0¢) = 95 (recall notations used in
Remark 9.2.2). Then,

[0 u(r*F) @ u(W(s" F&g pra) W] u([0g, 1" F@ W(s"F&s pra) W']

KwuEr@E)=KwmEr®ué);

m

therefore, y W (s* (uF)® ¢+, pId)uW* = 0i(W (s* F&®¢+g1q) W*) is an r*y F-connection for 4€; =
Fp(i* (). O

The following result can be proved with similar arguments as in [52, Théoréme 6.2.1],
so we omit the proof.

Theorem 9.3.6. Let G i>;—> X, U, A and B be as previously. Then the canonical Real in-

clusion G[U] — G induces a group isomorphism
1" : KKRg(4A,uB) — KKRgp (A, B),
whose inverse is
u:KKRgng(A,B) 3 [(E,F)] — [(m€,uF)] € KKRg(nA,uB).

Corollary9.3.7. ([52, Corollaire6.2.1]) The isomorphismu : KK Rgpy; (A, B) — KKRg (1A, uB)
is natural with respect to Kasparov product;i.e.,

ux®,phy =u(x&py),vx e KKRgp (A, D),y € KKRS[UI(D, B).
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Now Theorem 9.3.6 enables us to define the pull-back of a Rg C*-algebra endowed with
a generalized action via a morphism in ‘R®.

Definition 9.3.8. Let Z : ' — G be a generalized Real homomorphism, A and B be Rg
C* -algebras endowed with generalized Real G-actions. Let (U, f) be a representative of a
morphism inRBq realizing Z. Let1:T'[U] — T be the canonical Real inclusion. Define the
pull-back of A and B via Z by

Z*B:=uf*A, and Z*B:=uf"B.
Then we define the pull-back homomorphism
Z* :KKRg(A,B) — KKRr(Z*A,Z*B),
as the composite
KKRg(A, B) EAR KKRruy(f*A, f*B) = KKRr(uf* A, uf*B),

Once again, by using similar arguments as in [52] (Corollaire 3.2.1), one can see that
the definition of Z* does not depend on the choice of the pair [(U, f)], is functorial in RS
and natural with respect to Kasparov product ( [52, Théoreme 6.2.2]). In particular, if Z is
a Morita equivalence, then Z* is an isomorphism.

9.4 KKRg-equivalence

Definition 9.4.1. (Compare with [9, Definition 19.1.1]). Let G i>s’—> X , be a Real groupoid,

A and B be Rg C*-algebras endowed with generalized Real G-actions. An element x €
KKRg(A,B) is a KKRg-equivalence if there is y € KKRg(B, A) such that

x&gpy =14 and y&g sx=1p.
A and B are said KK Rg-equivalent if there exists a KK Rg -equivalence in KKRg(A, B).
As in the usual case ( [9, §19.1]), we have

Lemma9.4.2. Assumex € KKRg(A, B) isa KK Rg-equivalence. Then for any RgC* -algebra
D endowed with a generalized Real G-action, the maps

x&6 () : KKRg(B,D) — KKRg(A,D), and (1&g 4x: KKRg(D, A) — KKRg(D, B),

are isomorphisms which are natural in D by associativity.
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The proof is almost the same as that of [46, Theorem 4.6]. For instance, the map
KKRg(A, D) 3 z— y&g az € KKRg(B, D)
is an inverse of the first homomorphism.

Proposition 9.4.3. KKRg-equivalence is functorial in R® in the following sense: if Z :
I' — G is a generalized Real homomorphism, and if A and B are KK Rg-equivalent, then
Z* A and Z* B are KK Ry -equivalent.

Proof. By naturality of Z* with respect to Kasparov product, we have
17:a=2Z"(x&g ay) = Z* (X)®T, z: 4 Z*(¥),

and
17:=2"(y&g px) = Z" (y)®r, 2+ Z" (x);

therefore Z*(x) € KKRp(Z* A, Z* B) is a KK Rr-equivalence. O

9.5 Bott periodicity

Definition 9.5.1. Let G i? X bea Real groupoid. AReal Euclidean vector bundle of type

p—q over G i>s—> X isa Euclidean vector bundlen : E— X of rank p + q equipped with a
Real G-action (with respect to i) such that the Euclidean metric is G-invariant and the Real
space E is locally homeomorphic to RP9; that is to say, for every x € X, there is a Real open
neighborhood U of x and a Real homeomorphism hy : 1~ (U) — U x RP9, where U x RP+9
is provided with the Real structure (x,t) — (X, t). This is equivalent to the existence of a
Real open cover U = (Uj) je; and a family of homeomorphisms h; : n‘l(Uj) — Uj xRPTI
such that the following diagram commute

VU —e U x RPH 9.8)
J J .

Tl iTX(lp—lq)
h-

a1 (U;) —> U; x RP*4

For p, g e Nwith n = p+ g # 0, we define the Real group O(p + g) to be the orthogonal
group O(n) equipped with the involution induced from R”9 (we identify My 4(R) with
L (RP9),he latter is then a Real space). Similarly one defines the Real group SO(p + q)
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Definition 9.5.2. Associated to any Real Euclidean vector bundle E of type p — q over the
Real groupoid G i? X , there is a generalized Real homomorphism

F(E):S— O(p+q),
where[F(E) is the frame bundle of E — X.

Remark 9.5.3. The above definition does make sense, for the fibre of the O(p + q) -principal
bundleF(E) — X at a point x € X identifies to theR-linear spaceIlsom(RP*9, E,) isR-linear
isomorphisms; so that G acts onF(E) by g-(s(g),p) — (r(g), g-¢), for ¢ € Isom(RP*9, Esg),
where (g-¢) (1) := g- (1), t € RPY9. F(E) is equipped with the Real structure (x, ) — (X, @),

where @(t) := @(f), t € RPT9. It is clear that the actions by G and O(p + q) are compatible
with this involution.

Example 9.5.4. The trivial bundle = X x RP»9 — X is a Real Euclidean vector bundle of
type p — q over G i? X with respect to the Real G-action g - (s(g),t) — (r(g),t). The
associated generalized Real homomorphismF(X xRP9) from G i>s'—> X to O(p+q) —=-

is isomorphic to the trivial Real O(p + q) -principal G-bundle X x O(p + q) — X; we denote
itbyFp 4.

Recall that Cl,, ; := CI(RP9) := Cl, ;®rC = CI(RP7) ® C is the Real graded Clifford C*-
algebra, with the Real structure is x ®y 1 — X ®g A (see Appendix A), where the involution
"bar" in CI(RP9) is induced from R”9. The Real action of O(p + g) on R”’7 induces a Real
O(p + g)-action on Cl, 4.

Recall that Kasparov has defined in [46, §5] a KK Ro(p+4)-€quivalence

that define a KKRo(p+¢)-equivalence between.

These important elements enable us to establish Bott periodicity in "generalized" Real
groupoid KK-theory as well as the Thom isomorphism in twisted K R-theory which will be
discussed in the next section.

Theorem 9.5.5 (Bott periodicity). Let G i? X be a locally compact second-countable

Real groupoid, and let A and B be Rg C* -algebras endowed with generalized Real G-actions.
Then the Kasparov product with F, ,ap, € KKRg (Co(X) ® Co(RP9),Co(X)p,q) defines an
isomorphism

KKRgisp-q(AB) = KKRg;(ARPY),B), 9.9)

where ARP7) = Cy(RP9; A) = Co(RP9) ® A.
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Proof. First of all notice that the pullbacks F}, . (Co(RP)) and Fy, ,(Cl,,4) via the general-

ized Real homomorphism [, ;: § — O(p + q) are isomorphic to Co(X; Cy (RP9)) = Co(X) ®
Co(®RP9) and Cy(X) ® Cly 4 = Co(X)p,q, respectively. These are then Rg C*-algebras en-
dowed with generalized Real G-actions. Since &, ; € KKRo(p+q)(Co(RP9),Cly, 4) isa KKRo(p+q)-
equivalence, its pullbackF), ;a4 € KKRg(Cy (X)®Co(RP), Cy(X) p,q) isa KK Rg-equivalence,
thanks to Proposition 9.4.3. Hence, from Lemma 9.4.2, the Kasparov product

KKRg (Co(X)&Co(RP), Co(X) & Clp,q) ®eycxic, ) KKRg,i (Co(X) ®¢y(x) Clp,g® A, B)

. .
[Fp,q“p,q%,eo(x;clp,q)()

KKRg ; (ARP7), B&¢,x)Co(X))

is an isomorphism. We therefore have the desired isomorphism since Co(X)®¢,x)Clp ¢® A =
A&Cl,, 4. O

9.6 Multiplicative structure in twisted K R-theory

In this section we are using generalized Real groupoid equivariant KK-theory to dis-
play the pairing
il — e —i—] e
KR,'(§ )®KRﬁ G )—>KRa+ﬁ (G%), (9.10)
where § i>s—> X is a locally compact second-countable Real proper groupoid with Real
Haar system such that X/§, and a,f € HRY(S.,Z,) x HR?(S.,SY).

To do this, we need the following result which is an obvious adaptation of [90, Propo-
sition 6.11].

Proposition 9.6.1. Let G i>s—> X bealocally compact second-countable Real proper groupoid

with Real Haar system such that X /3 is compact. Let A be a Rg C* -algebra endowed with a
generalized Real S-action o/ — G. Then

KKRg ;(Co(X),A) = KKR;(C,C; (S &) = KKR;(C,Kg(L*(G; ).

Corollary 9.6.2. Let G i>s'—> X bealocally compact second-countable Real proper groupoid

with Real Haar system such that X/SG is compact. Let A € ErT{o(S), and [E] = [(T,T,8)] €
ExR(S,S") such that dd(E) = -DD(A). Let L=T x g1 C be the corresponding Rg Fell bundle
over the proper Real groupoid T i>s"—> Y . Then L — T defines a generalized Real G-action

on the Real (trivially graded) C* -algebra

Ag :=Co(Y; L) = Co(Y).
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Moreover, for alli € Z, we have
KR (§") = KKRg,;(Co(X), A) = KKRr,i(Cy(Y), Ap).

Proof. We have KRZ' (§°) = KKR;(C,Ax,9) = KKR;(C,C? (b)) (cf. Proposition 6.1.4). Then
we conclude by Proposition 9.6.1. O

We then define the pairing (9.10) by the Kasparov product: let A,B € BrRo(9) such
that DD(A) = @ and DD(B) = §; then DD(A + B) = DD(A® xB) = a + B; by the identifica-
tions A = A®¢,(x)Co(X) and B = B&¢,(x)Co(X), where A = Cy(X;A), B = Co(X; B), Kasparov
product gives the coupling

KKRg,; (Co(X), A) ®¢,x) KKRg,; (Co(X), B) — KKRg ;1 (Co(X), Abe,x) B);

and hence the map (9.10) since A&¢,(x)B = Co(X; A& xB).
9.7 Twistings by Real Clifford bundles, Stiefel-Whitney classes

Let n=p+qeN*. Recall ( [42, §IV.4]) that the group Pin(p + q) is defined as
Pin(p+q):={yeCl, 4l e(y)vy” eRP9, Vv eRP9, and yy" =1},
where ¢ is the canonical Z;-grading of CL, 4. It is known that
Pin(p+q)={y=x1--x€Clpq|x; €SP 1< k<2n}.

It is then a Real group with respect to the involution induced from $79; i.e., ¥ = X1 - - - X, for
y € Pin(p + q). Of course, this involution is equivalent to that induced from Cl, ;. More-
over, the surjective homomorphism 7 : Pin(p + q) — O(p + q),y — 7y, where 7, (v) :=
e(y)vy* for v € RP9, is clearly Real. Recall that kerm = {+1} = Z,. Hence, there is a Real
graded Z,-central extension of the Real groupoid O(p + q) —= -

Z, —=Pin(p+q) —= O(p+q)
ia
2

where the homomorphism 6 : O(p + q) — Z, is the map such that det A = (1% (com-
pare with [87, §2.5]). Let

Pin®(p + q) :=Pin(p + q) x+1; S',
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be endowed with the Real structure [(y, 1)] — [(¥, 1)], where as usual, the "bar" operation
in S! is the complex conjugation. Then the above Rg Z,-central extension induces Rg S'-
central extension T, 4

S! ——=Pin(p+4g) — O(p +q) 9.11)
la
Z;
of O(p+q) —=-.
Let V be a Real Euclidean vector bundle of type p — g over G i>s’—> X . Then there is a

Rg S'-central extension EV obtained by pulling back Tp,q via the generalized Real homo-
morphism F(V):§ — O(p + q).

Definition 9.7.1. Let V be a Real Euclidean vector bundle of type p — q over G i? X.
We define its associated Rg D-D bundle as the Rg D-D bundle Ay of type 0 over G i>s’—> X
whose image in ExtR(S,S") is [EV] via the isomorphism BrRo(G) — ExR(G,S).

Lemma 9.7.2. Let V and V' be Real Euclidean vector bundles of type p — q and p' — ¢,
respectively, over G i? X . Then the Rg D-D bundles Ay gy and Ay®x Ay are Morita

equivalent.

Proof. Considering the Real homomorphisms Pin¢(p+ q) x Pin‘(p’+ q') — Pin“((p+ p) +
(g+q))and O(p+q) x O(p'+q") — O((p+p') + (g + q") (cf. [46]) and a Real open cove
of X trivializing both V and V' (and hence the direct sum V & V'), one easily shows that
FEWV)* TpdOEV) Ty g) ~ EV VN Tpipy g O

Lemma 9.7.3. Let 179 be the trivial Real Euclidean vector bundle X x R”9 — X of type
p—q over G i>s’—> X , where the Real G-action is g- (s(g),t) = (r(g),t). Then Aypa =0 in
BrRy(9).

Proof. The generalized Real homomorphism F(179) : § — O(p + g) is nothing but the
generalized homomorphism induced by the strict Real homomorphism1: 93 g—1¢€
O(p + q). Hence "’ = (179)*T, 4, and since the kernel of the projection Pin‘(p + q) —
O(p+q)is st EY is isomorphic to the trivial extension (G x st G,0). O

On the other hand, the action of § on the complexified bundle V¢ := VerC — X
induces a Real G-action by graded automorphisms on the complex Clifford bundle

Cl(V):=Cl(Vg) — X,

making it a Rg D-D bundle of type g — p mod 8 over G $ X (recall Example A.5.6).
We want to compare the Rg D-D bundles Ay and CI(V). In particular, we want to show
the following.
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Theorem 9.7.4. LetV be a Real Euclidean vector bundle of type p— q over G i>s'—> X . Then
forall A e §rT{(9), we have

KRy 101G = KR;:A_VP(Q'),

We shall mention that this result is already known in the complex case ( [87, Proposi-
tion 2.5]). The approach we are using here to prove it is however very different from that
used in the just cited reference.

Our proof requires the notion of generalized Stiefel-Whitney classes of a Real vector
bundles over G i>;—> X . Recall that associated to any real vector bundle V over a locally

compact paracompact space X, there are cohomology classes w; (V) € H' (X, Z») called the
jth Stiefel-Whitney classes of V (see for instance [38, Chap.17 §2]). For instance w; (V) is
the constraint for V being oriented, and w, (V) is the constraint for V being Spin¢ (we will
say more about that later).

We have already seen that a Real Euclidean vector bundle V of type p — g gives rise to a
generalized Real homomorphism F(V): G — O(p + g). In fact, Real Euclidean vector bun-
dles arise this way: given P: § — O(p + q), V := P xg(p+4) RP7 — X is a Real Euclidean
vector bundle of type p—¢. There is then a bijection between the set Vect,,, 4(9) of isomor-
phism classes of Real Euclidean vector bundles of type p — g and the set Homgp¢ (G, O(p +
q)), and hence with HR'(S., O(p + q)).

Let ¢ be a Real O(p + gq)-valued 1-cocycle over G realizing [F(V). This can be considered

as a Real family of continuous maps ¢, j,) : U/

o) O(p + q) such that

Co,j1) (YD C(i1, j2) (V2) = (o, ) (Y1Y2), (Y1, 72) € U(zjo,jl,jz)’ (9.12)

where U = {U}} jes is a Real open cover of X (indeed, if f : §[U] — O(p + q) is a Real homo-
morphism realizing F(V), then one can take c(j,,j,) (8o, 1) := f(&joj1))- We may suppose
that the simplicial Real cover U. of G. is "small" enough so that we can pick a Real family

of continuous maps €, j,) : U}

o) Pin®(p + q) which are a Pin®(p + g)-lifting of (c(j,, j,))

through the Real projection 7 : Pin®(p + q) — O(p + q); i.e., w(C(joy, 1) (V) = €(jo,j» V), VY €
U(ljo, j,)- In view of equation (9.12), we have

€oo i) VDTG, 12) (V2) = O 1, 1) (VL YD e i) (1Y), Y (Y1, Y2 € UG iy iy (9.13)

for some w(jy,j,,/)(¥1,72) € S'. The elements w(j,, j,,j)(Y1,72) clearly define a Real family of

continuous functions wj, j,, ) : U, — S! which are easily checked to be an element

2
(jOrjl)jZ)
of ZR?,(U.,Sh.

Definition 9.7.5. Let V' be a Real Euclidean vector bundle of type p — q over G i>s'—> X . Let
¢ be the class of F(V) in HR(S., O(p+q)).



9.7. Twistings by Real Clifford bundles, Stiefel-Whitney classes 219

(a) The first generalized Stiefel-Whitney class w; (V) € HRY(S.,Z5) as wy (V) :=6oc,
whered : O(p + q) — Z is the homomorphism defined in (9.11).

(b) Thesecond generalized Stiefel-Whitney class w» (V) is the class in HR?(S.,SY) of the
Real 2-cocycle w uniquely determined by equation (9.13).

We define w(V) := (w1 (V), wo(V)) € HRY(S.,Z5) x HR?*(G.,S").

Remark 9.7.6. Note that w,(V) =0 implies that F(V) is actually a Real SO(p + q) -principal
bundle over G i? X , which means that V is oriented. Moreover, the Real family (v, j,))

is nothing but the obstruction for the Real O(p+ q)-valued 1-cocylec to lift to a Real Pin®(p+
q)-valued 1-cocylet; or in other words, it is the obstruction for F(V) to lift to a Real Pin“(p +
q)-principal bundle over G i>s—> X.

Example 9.7.7. Denote by 079 the trivial Euclidean vector bundleR"9 over O(p + q) —= - .
Then wy(0P9) = 6 and w»(0P9) = cp, 4 is the Real S!-valued 2-cocycle corresponding to the
Rg S'-central extension T, ;4 € ExtR(O(p + q),SY) of (9.11). Moreover, w(0”7) = dd(Tp,q).

Definition 9.7.8. A Real Euclidean vector bundle V of type p — q over G admits a Spin°-
structure if w(V) = 0; in this case we say that V is Spin®. We also say that V is KR-oriented
(following Hilsum-Skandalis terminology [36], see also H. Schrider [81]).

Taking the involution of G to be the trivial one, the next result is actually the groupoid

equivariant analogue of Plymen’s [74, Theorem 2.8].

Proposition 9.7.9. Let V be a Real Euclidean vector bundle of type p — q over G i>s'—> X.

1. We have DD(Avy) = w(V). Hence, V is KR-oriented if and only if Ay is trivial.

2. If p=qeN*, then DD(CL(V)) = DD(Avy) = w(V). Therefore, if p = q, the following
statements are equivalent:

(i) V is KR-oriented.
(ii) The Rg D-D bundle Cl(V) — X is trivial.
(iii) The Rg D-D bundle Ay — X is trivial.

Proof. 1. Since the map sending a Rg S!-central extension to its Dixmier-Douady class is
a natural isomorphism (Theorem ??), we have a commutative diagram

F(V)*

ExtR(O(p + ¢),S") ExtR(G,SY)

] ;ldd

HRY(O(p + q).,Z2) x HR2(O(p + q).,SY) ~ 2P [1R1(G., 7,) x HR2(G.,SY)
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Hence, if f: G[U] — O(p + q) is a Real homomorphism realizing F(V), then
DD(Ay) =dd(f*Tp,q) = (f*wr 0P, f*w2(677) = w(V),

where the first equality comes from the very definition of the Rg D-D bundle A, the sec-
ond one follows from Example 9.7.7, and the last one is a simple interpretation on the
construction of w; and ws.

2.1f p = g, then Cl,, , is the type 0 Rg elementary C*-algebra K (H), where
A=c?" e

Identifying the Real space R”"” with C” endowed with the coordinatewise complex conju-
gation, there is a degree conserving Real representation

A:Pin’(p+ p) — U(H),

induced by the Real map C” — L (A*CP) = L (H) given by exterior multiplication (cf. [46]).
This gives us a projective Real representation

Ady : O(p + p) — PU(H)

given by Ady (y)(T) := A7) TA(7) 7Y, for T € K(H), where ¥ € Pin®(2p) is an arbitrary lift of
Y € O(p + p), and where we have used the identification PU(A) = Aut® (K (A)). We thus
have commutative diagrams

S! ——=Pin‘(p+p) —= O(p+p)

N

A Ady Z,
s! 0 PU(H)

which yields to an equivalence of Rg S!-central extensions
(Adp) gy ~ Tp,p € EXR(O(p + 9),S) (9.14)

where Eqc i isthe Rg S!-central extension (U(H), d eg) of the Real groupoid 15[\1(19) p—
Now let (Uj, h;) be a Real trivialization of V, with transition functions a;; : U;; —
O(p + p). Then V is isomorphic to the Euclidean Real vector bundle over G

[JUixcPi.— X,
i
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where (x, 1); ~ (x, a;j(x)1) j, for x € U; j, endowed with the Real G-action

8- 1(s(8), N1, :=1(r(g),cijy,jo) (8 Dy, 8 € U(ljoyjl).

Here [(x, 1)]; denotes the class of (x,); € U; x CP in [[; U; x CP/ -.
Moreover, by universality of Clifford algebras (cf. [42, Chap.IV, §4]), the Real family of
homeomorphisms h; : Vjy, — U; x CP induces a Real family of homeomorphisms

CI(V)y, — Ui xCly,, = U; x K(H)

with transition functions Adya;;(-) : U;jj — ﬁ](ﬁ). Since the Real action of § on the Rg
D-D bundle C/(V) — X is induced from the Real action of G on V — X, it follows that
CI(V) is isomorphic to the Rg D-D bundle

[[U: x KD/ -
i

where the equivalence relation is (x, a); ~ (x, Ad) (a;j(x))a); for x € U;}, with the Real G-
action by graded automorphisms

g 1(s(g), @l :=1(r(g), Ady(c(jy, i) D]y, 8 € U(ljo,]-l).

Therefore, if P : G — PU(H) is the generalized classifying morphism for CI/(V), it corre-
sponds to the class of Ad¢in HR'(S.,PU(H)) (cf. Proposition 4.6.4). Putting this in terms
of generalized Real homomorphisms, there is a commutative diagram in the category ‘R ®

O(p+p)

g Ady

N

PU(A)
This combined with (9.14) implies
P g ~EV) Tpp-

Hence, DD(CI(V)) = dd([P*[EgC(g)]) =dd([F(V)*Tp,pl) = dd(Ay) = w(V), where the third
and fourth equalities come from the first statement of the proposition. O

To see how things work in the general case, observe first that if V;, V, are Real Euclidean
vector bundles of types p; — ¢, and p2 — g, respectively, then CI(V; & V) — X isaRgD-D
bundle of type (g1 + g2) — (p1 + p2) because CI(V} & V,) = CIL(V)® xCI(V>) (cf. [46, §2.15]).

The next definition is adapted from [4, §3.5].
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Definition 9.7.10. Let V be a Real Euclidean vector bundle of type p — q over G i>s'—> X.

Then we define V := V& 197, and CIl(V) € BrRy(9) as the Rg D-D bundle of type 0 defined
by
Cl(V):=Cl(V) — X,

with the obvious Real G-action.

Theorem 9.7.11. Let V be a Real Euclidean vector bundle of type p — q over G i>s”—> X.
Then

DDCIV)) = (g-p,wi(V), wz(V)). (9.15)

Proof. We have DD(CI(V)) = DD(Ay), thanks to Proposition 9.7.9 2). Applying Lemma9.7.2
and Lemma 9.7.3, we get DD(CI(V)) = DD(Ay). Furthermore, CI(V) is clearly Morita
equivalent to Cl (V)& xCIl(1P9). Therefore,

DD(CI(V)) = DD(CI(V)) + DD(CI(1P%)) = DD(Av) + (g - p,0,0).
We conclude by applying Proposition 9.7.9 1). O

By using the fact DD is a group homomorphism, we immediately deduce from the
above theorem that

Corollary 9.7.12. IfV and V' are Real Euclidean vector bundles over G i>s'—> X then

wi (Ve V)= w (V) +w (V), and wo(Ve V') = (=1 W)y vy wy (V7).

Proof of Theorem 9.7.4. As a consequence of Theorem 9.7.11, one has

KR¢; (G = KRZV+CZ,,,,7(9.)’
so we conclude by using Kasparov product in KKR-theory (recall that by definition we
have KR’ , (5%) = KKR_.(C, (A&xB) 1, 9)). O

9.8 Thom isomorphism in twisted K R-theory

We start this section by some observations about Spin® Real Euclidean vector bundles.
Let

Spin(p + q) :=Pin(p+g) n Clqu
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(cf. [7,42, 46]). The restriction of the projection Pin(p+ g) — O(p+ q) induces a surjective
Real homomorphism

Spin(p+ gq) — SO(p + q)
with kernel Z,, where SO(p+ q) is equipped with the Real structure induced from O(p+ q).
Moreover, there is a Real (trivially) graded S!-central extension ‘I;j_ q

S! —— Spin‘(p +q) — SO(p + q)

|

Z;
over the Real groupoid SO(p+ ) —= -, where SO(p + q) — Z; is the zero map, and
where
Spin‘(p + q) := Spin(p + q) xz, st.

Now suppose V is a Real Euclidean vector bundle of type p — g over § i>s'—> X. If
w1 (V) =0, then F(V) reduces to a generalized Real homomorphism from Gto SO(p+q) —=-.
So, Ay comes from the Rg S!-central extension F(V)* ‘I;y o Moreover, V being K R-oriented
means that F(V) is actually a Real Spin®-principal bundle over G i>s’—> X , hence a gener-
alized Real homeomorphism from g i>s”—> X to Spin‘(p+q) —=-.

The following result generalizes the Thom isomorphism theorem in twisted orthogonal

K-theory already known in the case of topological spaces (see Karoubi and Donovan [28]
and Karoubi [43]).

Theorem 9.8.1. Let G i>;—> X bealocally compact Hausdor{f second-countable Real groupoid

with Real Haar system. Let m : V — X be a Real Euclidean vector bundle of type p — q over
S i? X , and let A € BIR(G). Then there is a canonical group isomorphism

KR..,(m"9") = KRarci(§). (9.16)
Furthermore, if V is KR-oriented, then there is a canonical isomorphism
KR ,((n*9)") = KR, PTG, 9.17)

where as usual, the Real groupoid n*G —=V is the pullback of G i>s'—> X via the projec-

tion .

Proof. From Theorem 9.7.4 we have K R;H cIn (G)Y=K R;L;’Z/q ; in particular if V' is Spin®,
Av =0and KR}, ;) =K R} 7"(S"), which implies that the isomorphism (9.17) deduces

from isomorphism (9.16). Let us show the latter. The KK Ro(p+4)-equivalence

p,q € KKR(CoRPT), CLRPT))
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induces by functoriality in the category R® a KK Rg-equivalence
[F(V)*apﬂ € KKRg . (Co(V)®Cy(X), Co(X;CL(V))).
Thus, by the identifications of C*-algebras with generalized Real G-actions
Co(X;A) = Co(X)&e,x)Co(X;A), and

Co(V; " A) = Co(V)&e,x)Co(X;A),

we get a KK Rg-equivalence
@y € KKRg .. (Co(V;*A), Co(X; A& xCL(V))),
by taking ay to be the Kasparov product of F (V) *a, ; with the canonical KK Rg-equivalence
Le,x;a) € KKRg(Co(X;A), Co(X;A)).
Therefore, we obtain a KK R-equivalence
ay := jg rea(@v) € KKR.(Co(V;m™A) %, G, Co(X; A& X CL(V)) X, G),

where jg ;.4 is the descent morphism; and we are done. O



Classification of Real graded elementary
C*-algebras

A.1 RgC*-algebras

Recall that a complexification of a real Banach space (E, |.||) is a complex Banach space

(Ec, |I.ll¢) such that Ec = E + i E as a complex linear space, the norm ||.| . restricts to ||.|| on
E,and |[n+i| = In—i¢]| for all n,{ € E (i.e., Ec = E ®r C). Moreover, for any real Banach
space E , there is a unique (up to equivalence) complexification of it. We refer to [53] for a
general theory of real Banach spaces and real Banach (*-)algebras.
In this way, any real Banach (*-)algebra A is associated to a complex Banach (*-)algebra
Ac = A®RC. In particular, if A is areal C*-algebra (see [81, chap.1] for the definition of real
C*-algebra), then A¢ admits a structure of a complex C*-algebra. It is however natural to
ask the following question

Question A.1.1. Let B bea complex C* -algebra. Does there exist a closed real C* -subalgebra
B, of B such that B= B, g C?

Although it was mentioned in [53] that this question reminds open, the answer is in
fact "no". Indeed, as we will see later, the existence of B, is equivalent to the existence
of a conjugate-linear involution on B, which is also equivalent to B being isomorphic to
its conjugate algebra via a 2-periodic isomorphism). But such an involution induces an
involutory anti-automorphism ¢ : B— B (i.e. ¢ verifies ¢(ab) = ¢(b)p(a),Ya,b € B and
@* = 1). On the other hand, A. Connes [21] and T. Giordano [31] have constructed exam-
ples of von Neumann algebras that are not anti-isomorphic to themselves. Recently, other
explicite examples of C*-algebras not isomorphic to their conjugate algebras have been

225



226 A. CLASSIFICATION OF REAL GRADED ELEMENTARY C*-ALGEBRAS

constructed (see N.C. Phillips [72], and N.C. Phillips and M.G. Viola [73]).

We should however point out that being anti-isomorphic to itself is not sufficient for a
C*-algebra B to admit a conjugate-linear involution, as it was proved by V. Jones in [40].

In this section we are concerned with those (C*-)algebras that for which Question A.1.1
has a positive answer.

Definition A.1.2. AReal (Z,)-graded C* -algebra consists of a C* -algebra A together with
(i) an involutive * -homomorphism a : A— A with a® = 1; a is called the grading;

(ii) aninvolutive* -automorphismo 4 : A— A which is antilinear, such thata"f4 =1,and
ogA0Q =00 4. 04 is called the Real structure of A.

We will say that A is a Rg C* -algebra, for short.

We will often write (A, o 4) for such a Rg C*-algebra and we decompose A as a the direct
sum A= A°® A! where A° = Ker(15%) and A! = Ker(13%). We write |a| for the degree of an
element a € A. However, it is easy to see that A? is a C*-subalgebra of A while A is not.

An element a € A is called homogenous of degree i, fori =0,1 mod2,ifae Al ais
said to be invariant if it is of degree 0 and o 4(a) = a.

Example A.1.3. Let A= A’ ® A! be a graded real C* -algebra. Then its complexification Ac
is also graded. Indeed, we have Ac = Ag ® Aé. Now the bar operation ~ : Ac — Ac given by
a+ib:=a—ib defines a Real structure on Ac. For instance, any real C* -algebra A gives rise
to a Rg C* -algebra by taking A' = 0.

Example A.1.4. Given a real C* -algebra A, the direct sum A® A admits a canonical grading
given by (a,b) — (b, a); then (A& A={(a,a)|ac A} and (A® A)! ={(a,—a) | ac A}. This
induces a grading on the complex C* -algebra Ac ® Ac which becomes a Real graded C* -
algebra. This grading is called the standard odd grading. In particular, the complex clifford
algebraCl; = CeC is a Rg C* -algebra with its canonical Real structure given by the complex
conjugation.

Definition A.1.5. Let(A,0 4) and (B,0p) be Rg C* -algebras. AReal graded homomorphism
between A and B is a homomorphism of C* -algebras ¢ : A — B that intertwines the Real
structures and the gradings.

In particular, we say that (A, 0 4) and (B, 0 g) are isomorphic as Rg C*-algebras, and we
write (A,0 4) = (B, o), if there exists a Rg isomorphism between them.

If (A,04) is a Rg C*-algebra, then the multiplier algebra M(A) has also a structure
of Real graded C*-algebra. Indeed, if € is the grading on A and (T3, T>) € M(A), we put
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Ad¢(Ty, T)) := (eT1€,eT»¢) and it is easy to see that this defines a grading on M(A) with
MAD = {(Ty, T») € M(A) | eTre = (—l)iTk, k = 1,2}; moreover the Real structure is given
by

0A(T1, T2) :=(04T104,04T2037).

A subspace B of A is Real graded if it is invariant under o 4 and if it is the direct sum of the
intersections BN A’ (or equivalently, if it is invariant under the grading of A). For instance,
it is easy to check that the center of any Rg C*-algebra is Rg.

Le I be a Real graded ideal in (A, o). Let [a] denotes the class of a in A/I, then we can
show that the maps o([al) := [0(a)] and e([a]) := [e(a)], are well defined from A/I to A/,
giving us a grading and a Real structure on the quotient C*-algebra A/I.

Now let us give the following simple characterization of Rg C*-algebras.

LemmaA.1.6. Let(A,o 1) bea RgC*-algebra. Then there exists areal Z,-graded C* -algebra
Ag such that (A,o0 a) = (Agr ®r C,” ), where (") is the bar operation.

Mainly speaking, a Rg C*-algebra is just a graded C*-algebra which is the complex-
ification of a graded real C*-algebra, together with the bar operation. This justifies the
terminology of Real.

Proof. Put Agp:={a€ A|o4(a) = a}. Then Ag is a real graded C*-algebra. Moreover, it is

a+o 4(a)
2

isomorphism of complex C*-algebras intertwining the Real structures and the gradings.
O

very easy to check that the map A — Ag +iAp, a— + i(“_';?(“)) extends to an

Remark A.1.7. Similarly, we will call Rg Banach space any complex graded Banach space
which is the complexification of a Banach space over R.

Example A.1.8. Let (X, 1) be a (Hausdorff and locally compact) Real space. Then T induces
a Real structure, also denoted by T, on the C* -algebra Cy(X) of complex values functions on
X vanishing at infinity, given by (f)(x) = f(1(x)), for f € Co(X), x € X. Therefore, from
Lemma A.1.6 we have (Cy(X), 1) = (Co(X, 1) ®r C,”) where Cy(X, 1) :={f € Co(X) | f(z(x)) =
f(x), Vx € X} is the real C* -algebra of invariant elements of (Co(X), 1).

We must also say something about the tensor product of two Real graded C*-algebras.
This paragraph is a direct adaptation of [70] to the Real case. Let (A, o) be a Real graded
C*-algebra. A Real graded linear functional on A is a linear functional f : A — C such
that fj , =0 and f(o(a)) = f(a) for all a € A. A Real graded state on A is a positive linear
functional s on A such that ||s|| = 1. Suppose that (A,o0) and (B,¢) are separable, Real
graded C*-algebras, then (A®B,0&¢) denotes the algebraic Real graded tensor product of
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A and B, where elements are graded be |a®b| = |a| + |b|, and the Real structure is given by
06¢(adb) := a(a)d¢(b). The product and involutions are defined by

(adb)(@db) = (=D (ad' 6bb),

(@db)* = (1!l (a*6b*).
Now if s and ¢ are Real graded states on A and B respectively, let

n
(s60)(c*c):= ). s(aja;)t(b; b)),
ij=1
forc=3",a;6b; € AOB. Then s6t is a Real graded state on A®B. We define a C*-norm

on A®B by

el = s (s&t(d*c*cd)
' w,g (sdn(d*d) '

where the supremum is taken over all Real graded states s on A,  on B, and over all d €
A®B with (s&1)(d*d) # 0. The completion of A®B with respect to this norm is graded
C*-algebra denoted by A®B; moreover, 0&¢ extends to a Real involution on A® B which
gives a Real graded C*-algebra (A®B,0®¢) called the (Real graded) tensor product
of (A,0) and (B,¢).

A.2 Flementary Rg C*-algebras

We are interested in the study of Real structures on graded C*-algebras of compact
operators.

Definition A.2.1. A complex graded C* -algebra A is called elementary of parity 0 (resp. of
parity 1) if it isomorphic as a graded C* -algebra to K 0 @ resp. to X(H) & K(H)), where F
(resp. H) is a complex graded Hilbert space (resp. a complex Hilbert space), and X(JH) &
K (F) is equipped with the standard odd grading.

Example A.2.2 (The complex Clifford C*-algebras). The complex Clifford C* -algebras Cl,
can be defined as graded C* -algebras of compact operators in the following way. If p =
2m, Cly is Clyy, = (S Y o equipped with the standard even grading Ad,, where

01 N N
. ( 10 ) if p=2m+1isodd, then Cly,, 1 := K(C*") @ K(C?") with the standard odd

grading. We then see that the Cly,,’s are graded elementary C* -algebras of parity 0, while
the Clyp,+1 s are graded elementary C* -algebras of parity 1. Moreover, these algebras verify
Cl,&Cl, = Cly, 4 as graded C* -algebras ( [9, §.14.5]).
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For the sake of simplicity, we assume in what follows that HH is a complex separable
infinite-dimensional Hilbert space. Then, by choosing an isomorphism H = H & H, we
have a complex graded Hilbert space H := HeH = (HeH)°e (H e H)', where the grading
is given by (x, y) — (y, x). We thus obtain a complex graded elementary C*-algebra Kop:=

K (H) of parity 0 (here "ev" stands for even) whose grading automorphism is the unitary
0

1
standard odd grading. The next subsections are aimed at describing the Real structures of

JCeV and Kodd.

1 ~
ol We also get a Real graded elementary C*-algebra X ,;4 := K(H) & K(H) with the

A.3 Real structures on K e

Definition A.3.1. A Real structure (resp. quaternionic structure) on K is a ho-
mogenous anti-unitary J : K — H such that J* = 1 (resp. such that J* = —1).

Real structures on H will be denoted as Jr, oras Jir,i = 0,1 if we need to emphasize the
degree i of Jr. Similarly, quaternionic structures will be denoted as Jy, or J;,1 =0, 1.

Given a Real structure Jg : H— K, its (+ 1)-eigenspace ﬂTC]R ={xeX | Jr(x) = x}
(that we will also denote by Hp if there is no risk of confusion) is a real graded separable
infinite-dimensional Hilbert space such that H=H 7= ®r C. Furthermore, there exists an
orthonormal basis {e,} nen of K, unique up to conjugation with homogenous elements in
the orthogonal group O(.‘JA{]R), such that Jr is given by Jr(x) :=) ,, Xpe,forallx =), x,e, €
H. Writting Jg in this form, we get the following straightforward lemma.

Lemma A.3.2. Let Jg be as above. Define oy, : IJACe,, — 9AC6U byor(T):=JgrTJr. Thenog isa
Real structure on f]/%e,, such that (fJACe,,)UR = Kr (ﬂ?CR) as real graded C* -algebras.

Now suppose Jy : H— Hisa quaternionic structure. Define the degree 0 operator
I'H—H by Ix:=ix. Then I? = -1, and I] = —JI. Thus, we can define the operator K :=
1] : H — H which has the same degree as J and is such that K? = -1 = IJK. It turns out
that there exists a graded action of the quaternions H on K given by (i, x) — ix, (j,x) —
jx:=Jx, and (k,x) — kx := Kx = IJx, where {1, i, j, k} is the usual basis of the division
ring H. Let H 7y (or just Hy if there is no risk of confusion) be the quaternionic graded
Hilbert space, where the H-valued inner product is given by (x, y)i 1= (x, y) + {(x, Jy)j if
(-,-) denotes the complex scalar product of H.

Lemma A.3.3. Let Jiy be as above. Define oy : j%ey — j%ey by on(T) := —JuTJy. Then oy
is a Real structure on X ey SUch that (JAC ev)oy 1S isomorphic, under a graded isomorphism, to
the real graded C* -algebra Xy (Hw) of the compact H-linear operators on the quaternionic
graded Hilbert space Hy.
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Proof. The only thing we need to show is the graded isomorphism. Suppose that T €
(JACe,,)UH. Then, TJy = JuT, so that T extends uniquely to a compact H-linear opera-
tor T : J/:CH — J/:CH through the formula T(jx) = Ju(Tx) for x € H. This provides a ho-
momorphism of real graded C*-algebras (fJACeU)UH — iKH(HTCH), T—T. Conversely, any
T € Kpy(Hy) induces a unique T € L(H) such that Tx = Tx for all x € H. Then T € Kop.
Moreover, one has (TJy)x = TUnx) = T(jx) = ij = (JuD)x; hence, TJy = JuT, and
then o (T) = T. We then get a homomorphism of real graded C*-algebras Ky (FH) —
(JACQ,,)UH, T— T. Itis easy to check that these two homomorphisms are inverses of each
other. O

The following result classifies all the Real structures on JACeU.

Proposition A.3.4. Suppose that o is a Real structure on Kev. Then, o is either of the form
OR, or of the form o.

Proof. Choose an orthonormal basis {e,,} of H, and for T € K,,, define T € K, by T(x) :=
T (%), where if x = Y nXnén, Weset X:=) , Xnen. Then T = vTv, where v : H — H is the
anti-unitary define by the complex conjugation with respect to the basis {e,;}. Moreover,
v? = 1. Now, define 6 € Aut® (X,,) by 6(T) := o(T). Then, there exists a homogenous
unitary u € ﬁ(UA-C) such that 6 = Ad,. Whence, o(T) = 6(T) = uvTvu™! = JTJ!, where
J := uv. Observe that J is a homogenous anti-unitary since v is. Furthermore, for all T €
K.y, we have T = 2(T) = J2T(J~1)?; therefore J2 = +1. O

Definition A.3.5. We say that a Rg elementary C*-algebra (A,o) of parity 0 is (of type)
[0;¢,n], wheree = 0,1, n = %, if its Real structure is induced by an anti-unitary J of degree €
such that J* =n1.

Remark A.3.6. According to Proposition A.3.4, there are four types of Rg elementary C* -
algebras of parity 0: [0;0,+],[0;0,-1,[0;1,+], and [0; 1, —].

Remark A.3.7. Regarding K (H) as of parity 0 (with the trivial grading of J), there any
Real structure on X(J) is given by the conjugation with anti-unitary J : H — H such that
J? = +1. Thus, such a Real graded C* -algebra is either a [0;0, +] or [0;0,—].

Example A.3.8 (Real strucutres on Cly). Consider the second Clifford algebra Cly, = X(C &
C) = M, (C), equipped with the standard even grading. There is a canonical Real structure
Jr of degree 0 on the graded Hilbert space C & C given by the complex conjugation, and a
canonical quaternionic Real structure of degree 0 Jon = iJor, Which induce the same Real
structure clyp on Cly such that (Clp) gy = (Clz)c1y, = M2 (R) = Clo 2. In other words, Cly is the
complexification of the second real Clifford algebra Cly» (see [7] for more details on the real
Clifford algebras Cl,, 4).
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However, Cl, is also the complexification of the quaternionsH as follows. Define the quater-
nionic structure J1 1 : Ce& C — C & C of degree 1 by (x,y) — (y,—X). The graded quater-
nionic Hilbert space obtained is H; the Real structure induced by ] is denoted by cls .
Observe that (Cly)¢,, = Ku(H) = H = Clyg. Note that this Real structure is equivalent to
that induced by the anti-unitary J1 r(x,y) := (¥, X). These two Real structures will play a
central role in the classification of elementary Rg C* -algebras in Section A.5.

A.4 Real structures on K odd

In this section we describe the Real structures on f]%odd. We start by some usefull ob-
servations. Suppose we are given a trivially graded C*-algebra A. Then, any Real structure
o on A defines the two different Real structures o @ 0 and o @ (—0) on the graded C*-
algebra A@ A (with the standard odd grading), resepctively given by (a, b) — (o (a),o (b))
and (a, b) — (o(a), —o(b)). Notice that the latter Real structure is equivalent to (a, b) —
(o(b),o0(a)). Furthermore, if we denote Ag := A, then on the one hand, we get (A® A) 5o4 is
the real graded C*-algebra Ag @ Ag with the standard odd grading, and on the other hand,
(A® A)go(-0) = Ar ® i Ag is isomorphic to the real graded C*-algebra A,.,; which is the
underlying R-algebra of A. It is easy to see that the grading of A, is given by A = Ap

real

and Aiea ; = i Ag. Conversely, we have the following.

Proposition A.4.1. Let A be a complex C* -algebra, and let A® A be equipped with the stan-
dard odd grading (a, b) — (b, a). SupposeT is a Real structure on A® A. Then, T is either of
the form (a, b) — (o (a),o (b)) or (a,b) — (0(b),0(a)), whereo : A— A is a Real structure
on the ungraded C* -algebra A.

Proof. Since 7 is of degree 0, it can be written in the form 7 =

0 .
_ | with respect to
T

the decomposition A® A= (A® A)’® (Ae A)!, where 77 : (A® A)° — (A® A)" is a Real
structure on the C*-subalgebra (A® Al of A A and 77 : (A® A)' — (A® A)! is an anti-
linear isomorphism of vector space. For all (a,a) € (A® A)°, 77 (a,a) € (A® A)°, so that it
is of the form (o (a),o(a)). If (a;, a;) — (a,a) € (A® A)°, then (o (a;),o(a;) =17 (a;, a;) —
1% (a,a) = (o(a),o(a)), and then o(a;) — o(a) in A. Furthermore, it is straightforward
that o(ab) = o(a)o(b), 0(Aa) = Ao (a) forall L € C,a € A, and that 6% = 1, so that ¢ is a Real
structure on A. Now, for all (b, —b) € (A® A)}, (b,—b) - (b,—b) = (b, b?) € (A® A)°; thus,

(t7(b,—b))? = T(b*, b>) =17 (V% b?) = (0(b)*,0(D)P).

Hence, since this is true for all b € A, we obtain 77 (b,—b) = (xo(b),Fo(b)). If 1= (b,—b) =
(o(b),—0 (b)), then T is given by 7(a, b) = (o(a),o (b)), forall (a,b) e a® a, and if 7~ (b,—b) =
(—o(b),a(b)), thenforall (a,b)e A® A, t(a,b) = (c(b),o(a)). O
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Definition A.4.2. A Real structure T on A® A is called even if it is of the form (a,b) —
(o(a),o(b)), itis odd if it is of the form (a, b) — (0 (b),0(a)), where o is a Real structure on
the ungraded C* -algebra A.

Proposition A.4.3. Assumet:A® A— A® Aisa Real structure. Then
(@) (A® A1) = (ARCL,0®clyy), if T is even, and
(b) (A A1) = (ACL,08clyy), if T is odd.

Proof. Asgraded complex C*-algebras, A® A= A®Cl; = A®CI,; (cf. [9, Corollary 14.5.3]). If
7 is even, then as real graded C*-algebras, (A® A)g = Ag® Ar = (Ar®Cly) = (Aé)([:ll)(,@clo,l,
where Ag := Ay, and (A® A)r := (A® A),; this establishes (a). If 7 is odd, then (A® A)r =
Areal = AR®C = Ag®Cl o = (A®<Ell)0®cll‘o, which establishes (b). O

Corollary A.4.4. Suppose o is a Real structure on JAC,,dd. Then, there exists an anti-unitary
J: H — H with J? = +1, such that either (X pqq,0) = (KH)&ChL,Adj®clyy), or K opga, o) =
(K(%)@Cll,Adjécll,o).

Definition A.4.5. We say that a Rg elementary C* -algebra K odd,0) of parity 1 is (of type)
[1;€,m], if the Real structure is of parity € (i.e., € is0 if o is even, and 1 if o is odd), and if the
anti-unitary J of Corollary A.4.4 is such that J* = n1, wheren = +.

Remark A.4.6. Notice that there are four of such types: [1;0,+],[1;0,-1,[1;1,+], and [1;1, —].

Example A.4.7. (Cly,clp1) and (Cly, cly o) are of types [1;0,+] and [1;1, +], respectively.

A.5 The classification table

We start this section with the following lemma.

Lemma A.5.1. Let K, and F, be two complex graded Hilbert spaces, and let J;, i = 1,2
be an anti-unitary of degree €; on F; such that ]l? = +1. Denote by g;,i = 1,2 the grading
automorphism of X(H;). Then, there is an isomorphism of Real graded (elementary) C* -
algebras

(K (FHD K (H2), Ady, ®Ady,) = (K (1 8H(2), Ad)),

where J := ],18,2&J285°.

Proof. The isomorphism of graded C*-algebras K (H) &K (F(,) — K (F,&H(,) is given on
homogenous tensors by

(T18To) (x18x2) = (1) 20Ty (x) @ T (x2).
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Moreover, a simple calculation shows that this is actually a Real isomorphism, when K(F,8F(»)
is equipped with the Real structure Ad;; indeed,

Adj(T18T) = (188 ),85") (118 T2) (1826 1.85")"
= (-naeerelhl( 62718 )85 To) ((87)2 1 8(83)° J3)
= (- ATl (g2 Ty (1) 1) 8 U285 T2(85)1 T3)
= Ady, (T))®Ad, (T>).

A particular case of this lemma is the following.

CorollaryA.5.2. Le ] be an anti-unitary on the ungraded Hilbert space H such that J*> = n1,
where as usual n = +. Let cly and clyo be the Real structures of Cl, defined in Exam-
ple A.3.8. Then,

* [0;0,n] = (K(H),Ad))&(Cly, cly2), where J : H — H is such that J? = nl, and
e [0;1,1] = (K(H),Ad))&(Cly, clp ), where J : H — H is such that J? = -nl.

The next theorem can be viewed as a generalisation of Wall’s result, [92, Theorem 3],
to the infinite dimensional case.

Theorem A.5.3. The type of the Real graded tensor product of two Real graded elementary
C* -algebras (A, 0 4) and (B, o ) depends only on those of (A, 0 4) and (B,0 ). Moreover, we
have the formulae

[0;€1,m1]18[0;€2,m2] = [0;€1 + €2, (—)1¥2n172] (1.1)
[0;€1,m118[1;€0,m2] = [1;€1 + €2, ()51 818201 1,] (1.2)
(L;e1,m1®[1;€2,m2] = [0;1+ €1 + €2, (—)1%2m1m2] (1.3)

where the sum of degrees is mod 2.

Proof. Theformula (1.1) is nothing more than Lemma A.5.1. Indeed, we have seen that the
Real structure on K (F(; &H(,) is defined by the anti-unitary J = /1 g;?®J>g,"'. The degree of
Jisthen e =¢€;+¢,,and J? = (—l)glgzjféjg = (=12 n,181.

Also, combining Corollary A.4.4, Corollary A.5.2, we get (1.2), by considering the isomor-
phism of Rg C*-algebras

(K (F1),Ad )8 (K (FH2)8Cly, Ady, ®T1) = (K(F(18H2)&Ch,Ad;&T1),

where J = J1&J,, and 1, is either cly ; or ¢l o.
Finally, the equality (1.3) follows from Corollary A.5.2 and the following isomorphisms of
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Rg C*-algebras, which can be established by merely using the properties of the real Clifford
algebras (see [7]):

(Ch,cly)&(Ch,cly) = (Cly, cly)
(Ch,cly)®(Ch,chp) = (Cly,clyp)
(Ch,chp)®(ChL,chyp) = (Cly,clyp).

We summarise all the preceding discussions by the following result.

Definition and Proposition A.5.4. Denote by Ko, the Rgelementary C* -algebra Kev, Ad )

"n—nn

where Jg is the anti-unitary of degree 0 on FH defined by (x,y) — (X, ) ("™ "is the complex
conjugation with respect to an arbitrary orthonormal basis off}AC ). ThenXy is of type [0;0, +].

Say that two Rg elementary C*-algebras A and B are stably isomorphic if A®K, =
B&Xo, as Rg C* -algebras.

Slable isomorphism classes of Rg elementary C* -algebras form an abelian group of order
8 under Rg tensor products, denoted by BrR(x), and called the Rg Brauer group of the point.
The unit element ofErT{(*) is the element fJACO.

Furthermore, elements ofﬁrﬁ(*) are, up to stable isomorphisms, classified by the follow-

ing 8-periodic table

Parity 0 Parity 1
Ko := [0;0, +] X, _[1-0 +]
Ko :=[0;1,+] Ks:=1[1;1,-]
9C4—[0 0,-1] fK5—[10—]
3(6—[0 1,-] 3(7—[11+]

Table A.5.1: Classification of Rg elementary C*-algebras

Remark A.5.5. Under the notations of Table A.5.1, we set for all n e N*:

~

:Kn = J<1®®£K1
—_——
n—times

Then ﬂ?péﬂ%q = J%,Hq, and from the theorem, IJACH = j%n.,_g forall n € N. Now, define ﬂ%_n as
the inverse of.‘JACn in BRR(x). ThenX_,, = Kg_n

Example A.5.6. (Cf. [81]). One can determine the Real structures of the graded Clifford C* -
algebras Cl,, (recall Example A.2.2), for n € N*, in the following way: decompose n into a
sum p + q, and consider the Real space R”9 ®g C, with the obvious involution; this latter
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induces a Real structure cl, 4 on the graded C* -algebra Cl,, = CI(R”9 ® C), such that the
Real part is isomorphic to the graded real Clifford algebra Cl, 4. For this reason, we denote
the thus obtained Real graded C* -algebra by Cl,, ;. Indeed, for every decomposition n =
p + q, it is not hard to check that Cl, ; is a Rg elementary C* -algebra of type g — p mod 8
(see for instance [28]).
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GNS-construction for Rg C*-algebras. Rg
Co(X)-algebras

B.1 The GNS-construction for Real graded C*-algebras

Our goal here in this section to fit the GNS-construction techniques on the framework
of Real graded C*-algebras. For this, we have to give some basic definitions.

Definition B.1.1. AReal graded representation of (A, o) is a Real graded * -homomorphism
n: A— L(Hy) where Hy is a Real graded Hilbert space.

If H= H'® H' and H' = H @ H'! are Real graded Hilbert spaces, we have already
seen that £(H, H') is Real via T(h) = T(h). Furthermore, operators in £ (H, H') can be
represented by matrices of the form

Tt DT
T= )

D* T~

where T : H* — H°, T-: H' — H"', and D* : H! — H'°, D*: H* — H''. Note that if
DF = D* =0, then T is of order 0, while T is of order 1 if T* = T~ = 0. Now, let

+

U (H, H) := {u— (u
r 1, = 1o

u

eU(H, H) | uzu},

] , 0 ut
ULH HY={u=| ,

eU(H, H) | a:u},

and let
U,(H,H):=U%H,H)uULH, H).

237
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Then U, is by construction a closed (Real) subgroup of U(H, H') which inherits the strong
operator topology from U(H, H'). Elements of U, (H, H') are called Real graded unitaries.

Definition B.1.2. Two Real graded representations n: A— L(H) andn' : A— L(H') of a
Real graded C* -algebra (A, g) are (unitarily) equivalent, and we write & ~ ', if there exists
a Real graded unitary isomorphism u € U, (H, H') such that

n(a) = urn' (@) u*, Vae A.

As in the general theory of representations of C*-algebras (ungraded case without con-
sidering Real structures), itis easy to check that equivalence of Real graded representations
is an equivalence relation.

Also as in the usual case, a closed subspace K € Hy, is called invariant subspace of  if
nm(A)K c K. A Real graded representation (7, Hy) is irreducible if it has no proper invariant
subspaces.

Lemma B.1.3. Let f be a Real graded positive functional on (A,o0). Then forall a,b e A we
have

1. f(o(a*b)) = f(b*a);
2. (Cauchy-Schwarz inequality) | f (b* a)| < f(b*D) f(a™* a).

Proof. From [75, Lemma A.4] we have f(b*a) = f(a*b) for any positive linear function f;
now since f is Real, we get (1). The second point is the usual Cauchy-Schwarz inequality.
O

Let S, (A) be the convex set of Real graded states on (A, o). Then an extreme point ! of
S:(A) is called a pure Real graded state on (A, o). The proof of the following lemma is the
the same as in the usual case ( [75, Lemma A.13]).

Lemma B.1.4. For every element of a Real graded C* -algebra (A, o), there is a Real graded
pure state s on (A, o) such that s(a*a) = lal?.

Now we come to the GNS-construction for Real graded C* -algebras. Let us start with a
Real graded state s on (A, o) and let

Ns:={ae Als(a*a) =0}.

We can see directly that Ny is invariant with respect to o. Moreover, if a = a® + a' € N,
then a*a = (a®)*a’+(a")* a' + (a®)* a' + (a')*a®, and since ((a®)* a') and (a')* a° belong to
Al wehaveo(a*a) = o((a®)*a®)+o((ah)*a') =0, hence o ((a®)*a®) = o((a')* a') = 0 which

Recall that in general, if S is a convex subset of a vector space V, then v € S is an extreme point of S if
v=tw+(1-t)zforsome w,ze Sand t€[0,1] impliesv=w =12
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shows that Ny = Nyn A@ Nyn Al is graded. It turns out that the quotient space A/ N; is Real
graded (its Real involution, designed by the bar, is a+ N, := o(a) + N;). However, it follows
from Lemma B.1.3 that s(b*a) = 0 if either a or b lies in N. Thus there is a well-defined

inner product on A/ N; such that
{(a+ N, b+ Ny =s(b*a).

It is also easy to check that this inner product is Real graded. Indeed, if we consider A/ N
as a C-module with C being given the trivial grading and its canonical Real structure, then
(@’ + N, b' + Ny) = (a' + N5, b° + N5y = 0 for a’ € A, b’ € A%, i = 0,1; the compatibility
of this inner product with the Real structures comes from the fact that s is Real. Let J{;
be the completion of A/N; with respect to this Real graded inner product. Then 3 is
a Real graded Hilbert space. Now from Lemma B.1.3, N; is a Real graded left ideal in
Aforif a € A,b e N; we have |s((ab)*ab)| < s(b*b)s((a*ab)*a*ab) = 0. So A acts by left
multiplication on A/ Ny, i.e., a.(b+ N;) := ab+ N;. This action is Real and graded. Moreover,
since b*a*ab < ||al|*b* b, we have that

la.(b+ Ny)|l < llal®s(b*b) = |all®Ilb+ Ngll,

so the elements of A act as bounded Real graded operators on A/ N; and extends to bounded
Real graded operators 7¢(a) on the completion J{(;. The obtained Real graded representa-
tion s : A — L(H;) is called the GNS-representation of the Real graded C*-algebra (A4, o).
Then we have the following proposition:

Proposition B.1.5. Every Real graded state s on (A, o) gives rise to a (nondegenerate) Real
graded representation g on a Real graded Hilbert space 3¢ given by the GNS-construction.

Lemma B.1.6. Let s be a Real graded state on (A, o). Then the GNS-representation (mwg, Hs)
is irreducible if and only if s is a Real graded pure state.

Proof. Forgetting the gradings and the Real structures, this lemma is just [75, Lemma
A.12]. Now it remains to manage with the gradings and the Real structures which is not
difficult to do. O

Now, if we combine this lemma to B.1.4, we come out to the conclusion that every Real
graded C*-algebra (A, o) admits Real graded representations.

B.2 The spectrum as a Real space

In this section we deal with the set of equivalence classes of Real graded representa-
tions of a Real graded C*-algebra, and show how this can naturally be provided with the
structure of Real space.
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Definition B.2.1. The spectrum (A, 1) of (A,0) consists of the set of equivalence classes
of Real graded representations of A and the Real structure v : A — A defined by t([r]) :=
[t ()], for a class [7] of a Real graded representation (7, H,), wheret(m)(a) := n(o(a)).

Example B.2.2. Let (X,7) be a Real locally compact and Hausdorff space. Then the spec-
trum of the Real C* -algebra (Cy(X), 1) is identified with (X, 1).

Given a Real graded irreducible representation (7, };) of (A, o), it is easy to check that
Ker m is a closed Real graded ideal in A.

A closed Real graded ideal I in (A, 0) is said primitiveif it is the kernel of a Real graded
irreducible representation of (A,0). If I = Ker n is a Real graded primitive ideal in (4, o),
then

T(I):=Ker 1(m)

is a Real graded primitive ideal, where 7 is the Real structure defined in Definition B.2.1,
and where we consider 7 as the representative of the class [] € A.

Definition B.2.3 (The Real graded primitive ideal space). The Real graded primitive ideal
space (Primg A, 7) of (A,0) is the set of Real graded primitive ideals of (A, o) endowed with
the Jacobson topology ([75, A.2]), together with the Real structure T defined above .

(Primg A, 7) is then a topological Real space, and the spectrum (A, 7) inherits the topol-
ogy from (%RA, 7) (through the Real map A— mRA, 7 — ker ) by considering a
subset U € A as open if {Ker 7 | w € U} is open in Primy A. In this topology, each set of the
form {mwe Al |m(a)| > k} is open, and each set of the form {7 € Allln(a)| = k} is compact
([75, Lemma A.30]). It turns out that the spectrum is always locally compact. Moreover,
we have the following simple lemma.

Lemma B.2.4. Suppose that the specrtum (A, 1) of (A, o) is Hausdorff. Then the map m —
ker 7z is a Real homeomorphism between (A, 1) and (P/riﬁer, 7).

As in the ungraded complex case, we can show that any Real graded primitive ideal is
prime. However, we have also the following lemma which will play an important role in
the sequel.

Lemma B.2.5. If(A, o) is separable then any Real graded prime ideal is primitive.

Now we can give the Dauns-Hoffmann Theorem analog for Real graded C*-algebras,
which can be proved through an easy adaptation of [75, A.3].

Theorem B.2.6 (Dauns-Hoffmann). Let (A,0) be a Real graded C* -algebra. For each
I € PrimgA, let p; : A — A/l be the quotient map. Then there is a Real isomorphism
W : @, (Primg A) — ZM(A)? such that for all f € C,(Primz A) and a € A,

pi(¥(fa) = f)pi(a), Y1 € PrimpA. 2.1)
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B.3 Real graded C(X)-algebras

Definition B.3.1. Let (A,0) be a Real graded C* -algebra and (X, 1) be a Real locally com-
pact Hausdorff space. Then (A, o) is a Real graded Cy(X)-algebra if there is a Real homo-
morphism

®4:Co(X) — ZM(AY

which is nondegerate in the sense that the (Real graded) ideal
D4 (Co(X)NA:={Da(flal feCy(X), a€ A} (2.2)
is dense in A.

Proposition B.3.2. Suppose (A, o) is a Real graded Cy(X)-algebra and ] is an ideal in Cy(X).
Then ® 4(J).A is a graded ideal in A. Moreover, if ] is invariant in Cy(X) (with respect to the
involution of Cy(X), also denoted by T, induced by t), then ® o(J]).A is Real graded in A.

Proof. The closure of ®4(J).A is by definition the closed linear span of I := {®4(f)a| f €
J,a € A}. Therefore we have to show that given a € A and ®4(f)b € I then a(®4(f)b) and
(®4(f)b)a belong to I. Let us consider the pair (L, R) € M(A) consisting of left and right
translation in A. Then, since ® 4(f) € ZM(A), we have

a(@a(fIb) = La(@a(f)b) = Pa(f)(La(D)) =P a(f)(ab) € 1,

and
(@A(f)D)a=Ra(@a(f)b) =Pa(f)(Ra(D) =Da(f)(ba) € 1.

Now, since ® 4(f) is of order 0 in ZJ\/[(A),thenCIDA(f)a:qD,e;(f)aO+q)A(f)a1 WitthA(f)ai €
Al: but this means that = In A’ I n AL.

For the second part of the proposition, observe that we have a commutative diagram

Co(X) —4 2MA)O

P

Co(X) —> ZM(A)©

Then if J is invariant in Cy(X) (i.e., 7(f) € J, Vf e J) and f € ], we get

o(@a(f)a) =0 @A(f)(0°(@)) = (0( @) (0 (@) = (@ () (0(a)).
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Let (A,0) be a Real graded Cy(X)-algebra and let the C*-algebra C be endowed with
its complex conjugation as Real structure. For x € X, we denote by J the ideal in Cy(X)
defined by the kernel of the evaluation map ev, : Cy(X) — C (not necessarily a Real map).
Then we denote the ideal ® 4(J,).A by I, and the quotient A/I, by Ax. We think of A, as
the fibre of A over x and the class in I, of an element a € A is denoted by ay. In this way,
we think of each a € A as a function from X to [],cx Ax.

Remark B.3.3. Ifx € X is invariant with respect to T then the ideal ] is invariant in Cy(X);
thus from Proposition B.3.2, ® 4(J,).A is Real graded in A and o induces a Real structure on
the graded C* -algebra Ay. In particular, if T is trivial then every fibre Ay is a Real graded
C* -algebra with respect too.

Remark B.3.4. Notice thatt induces a map Jx — J (). Indeed, given an f € J,, we have
(X)) = f@?(x) = f(x) =0,

thust(f) € Jr(x).
Since® 0p = 00Dy, it then follows that o induces a map ® ,(Jx) — P47 x) and hence a
graded map o' : I, — I;(y) given by

' (®a(f)a) :=o(@a(f)).0(a) = Da(T(f).0a).
It turns out that for any x € X, there is a map Ax — A (x) given by
ay — 0(@) 1)
which is obviously anti-linear and it intertwines the gradings.

Definition B.3.5 (Homomorphism of Real graded C((X)-algebras). Let (A,o) and (B,V)
be Real graded Cy(X)-algebras. A C* -homomorphism ¢ : A— B is called homomorphism
of Real graded Cy(X)-algebras if it is Real, graded, and Cy(X)-linear in the sense that for all
feCo(X)andac A, one has p(o(a)) =v(p(a)) and (P 4(f)a) = Pp(f)p(a).

Example B.3.6. Let (D,¢c) be a Real graded C* -algebra and let (X, p) be a Real space. The
Real structure on the C* -algebra A := Cy(X, D) is given by

o(a)(x):=¢(alp(x)), Vye A, xe X,

while the grading ise(a) (x) := €' (a(x)) ife’ is the grading in D. Define® : Cy(X) — ZM(A) ©)
by
®d(f)(a)(x):= f(x)a(x), for feCy(X), xe€ X and ac A.

In this way, (A,0) is a Real graded Cy(X)-algebra. The only thing that we have to show
here is that ® commutes with the Real involutions. Let f € Cy(X), a€ A and x € X, then we
have

g (@(f)(a)(x) =o(@(f)o(a))(x) =¢(@(f)(o(@)(r(x))
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=¢(f(r(x))c(a(x)) = f(r(x).a(x)
= (T(f)(x).a(x) =D () (a)(x).

However, the map Ay 3 a.I, — a(x) € D is well defined (and is graded), and it identifies
each fibre A, with D (the identification of elements of D with elements of A being the obvi-
ous one).

Example B.3.7. Suppose that (X, ) and (Y,t') are Real locally compact Hausdorff spaces
and that p : Y — X is a continuous Real map. Then (Cy(Y),1') is a Real graded Cy(X)-
algebra with respect to the Real map ®¢,(y) : Co(X) — Cp(Y) = M(Cy(Y)) given by

D, v) (@) = f(pMEW),

and the trivial grading. Each fibre Cy(Y) is isomorphic to Cy(p~!(x)) (under a Real isomor-
phism) and if f € Co(Y) then fy is just fi,-1 (.

Example B.3.8. Let (A, 0) bea Real graded C* -algebra. Then the Dauns-Hoffmann theorem
can also be characterized in terms of Real graded irreducible representations. If (n,H;) €
(A, 1), then by taking I = ker in Theorem B.2.6, we have

n(¥(fla) = fkerm)m(a), Vf € Cp(PrimgA), a € A.

Thus, if (X,1") is a Real space and if p 4 : PrimpA — X is any Real continuous map, we get
a Real homomorphism ® 4 : Co(X) — Cp(Primp A) =4 ZM(A)© by defining

DA(f):=fopa,

where we identify fo o with its image ¥ (fo 4) in ZM(A)©. However, ® 4 is nondegenerate
(see [94, p.355]); hence (A, 0) is Real graded C(X)-algebra.

Through this example we have proved the first statement of the following proposition
([94, Proposition C.5]).

Proposition B.3.9. Suppose (X,1') is Real locally compact space. If there is a Real continu-
ous map ¢ 5 : Primgp A — X, then (A,0) is a Real graded Co(X)-algebra with

QA(f)=fopa, VfeC(X). (2.3)

Conversely, if ® 4 : Co(X) — Cp(PrimpA) = ZM(A)? is a Real graded Cy(X)-algebra,
then there is a Real continuous map ¢ 5 : Primp A — X such that (2.3) holds.

In particular, every Real graded irreducible representation of (A, o) is lifted from a fi-
bre Ay for some x € X. More precisely, if m € (A, 1), then the Real graded ideal Ly, (kerm)
is contained in kern, and n is lifted from an irreducible representation of the C* -algebra
Ay ,kerm)- Furthermore, if m is invariant with respect to T, then it is lifted from a Real graded
irreducible representation of (A , kern), 0)-
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Example B.3.10 ( [32]). Let (A, o) be a separable Rg C* -algebra with Hausdorff spectrum.
If we identify (%RA, 1) with (A, 1), then the identity map pa =id: ﬁ?nRA — A allows
us to view (A, o) as a Rg Cy(A)-algebra with

(@a(NA)y = f(m)ax,

where we identify any Rg primitive ideal kerm with m € A. Moreover, each fibre A, can be
identified with Al kert, and since A is separable, Ay is an elementary (Real if m in invariant
under t) graded C* -algebra.



Real fields of graded C*-algebras

g

Definition C.0.11. Let (X,1) be a locally compact Hausdorff Real space. A continuous

(resp. upper semicontiniuous) Real field of graded Banach spaces A over X consists of a

family (Ay) xex of graded Banach spaces together with a topology on A = [{yex Ax and a un

involution o : A — A such that

)
(ii)
(iii)
(iv)
)
(vi)

(vii)

the topology on A, induced from that on A is the norm-topology;

the projection p : A — X is Real, continuous, and open;

the map a— || a|l is continuous (u.s.c)frome toR*Y, and ||lo(a)|| =lall, Yace A.
the map (a, b) — a+ b is continuous from A x x A to A;

the scalar multiplication (A, a) — Aa is continuous from C x A to A;

the induced bijection o : Ay — Ar(x) is an anti-linear isomorphism of graded Ba-
nach spaces for every x € X, i.e. the diagram

Cx Ay — Ay 3.1

L

Cx Ar(x) > Ar(x)

commutes, where the horizontal arrows are the action of C on the fibres and the ver-
tical ones are the Real involutions (C being endowed with the complex conjugation),
and o o€y =€;() 00 .

if{a;} is a net in A such that la;ll = 0 and p(a;) — x € X, then a; — O, where Oy is
the zero element in A .

245



246 C. REAL FIELDS OF GRADED C*-ALGEBRAS

We also say that (A, o) is a Real graded Banach bundle (resp. u.s.c. bundle) over (X, 7).

Definition C.0.12. A Real graded Hilbert bundle (resp. u.s.c. bundle) over (X, 1) is a Real
graded Banach bundle (resp. u.s.c. bundle) (A,o) over (X,1) each fibre A, is a graded
Hilbert space with such that the fibrewise scalar products verify

(0x(),oxm) =45, m
foreveryé,ne Ay.

Definition C.0.13. A Real graded C*-bundle (resp. u.s.c. C*-bundle) over (X,t) is a Real
graded Banach bundle (resp. u.s.c. Banach bundle) (A, o) such that each fibre is a graded
C* -algebra satisfying the following axioms

(@) the map (a,b) — ab is continuous from A x x A to A;
(b) o(ab) =o(a)o(b) forall (a,b) € A xx A;
(c) forxe X,ox(a*) =0y (a)* forallac A,.

Homomorphism of Real graded u.s.c. Banach bundles and of u.s.c. C*-bundles are
defined in an obvious way.

Example C.0.14 (Trivial bundles). If (A, ) is any graded Real Banach algebra (resp. C*-
algebra), then the first projection pry : (X x 21,7 x 7) — (X, 1) defines a Real graded Banach
bundle (resp. C* -bundle) with fibre2l. A Real graded Banach bundle (resp. C* -bundle) of
this form is called trivial.

Definition C.0.15. A u.s.c. field of graded Banach spaces A — X (without Real structure)
is said to belocally trivial if for every x € X, there exists a neighborhood U > x such thatfhy
is isomorphic (under a graded isomorphism) to a trivial field U x B, where B is a graded
Banach space.

Similarly, we talk about locally trivial field of graded Banach algebras, graded Hilbert alge-
bras, and graded C* -algebras.

Unless otherwise stated, all of the graded Banach bundles and C*-bundles we are deal-
ing with are assumed locally trivial.

We shall however point out that the above notion of local triviality is not sufficient
in the category of Real bundles. Roughly speaking, suppose (X, 1) is a Real space and
(A,0) — (X, 1) is a u.s.c. Real field of graded Banach spaces which is locally trivial in
the sense of Definition C.0.15. Then it is not true that there exists a Rg Banach space A
such that the Real space A locally behaves like A in the sense that there would exists, for
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all x € X, an open Real neighborhood U of x (i.e. 7(U) = U) and and a Real homeomor-
phism h: p_l (U) — U x A; or equivalently, there would exists a Real open cover {U;} of X
and a trivialization h; : p~!(U;) — U; x A such that the following diagram commutes

hi
plU) ——U;xA (3.2)

lTUi irxbar
h;

pl(U) —=U;x A
where as usual we have written "bar" for the Real structure of A.

Definition C.0.16. A Rg Banach bundle (resp. C* -bundle, Hilbert bundle, etc.) A — X is
saidlocally trivial in the category of Real spaces (LTCR, for short) if there exists a Rg Banach
space (resp. C* -algebra, Hilbert space, etc.) A and a Real local trivialization (U;, h;) e such
that the diagram (3.2) commutes.

Example C.0.17. Let A be a simple separable stably finite unital C* -algebra that is not the
complexification of any real C* -algebra ( [72, Corollary 4.1]). Define a continuous Real field
of (trivially) graded C* -algebras A over the Real space S = {+1,—1} by setting

A_l = A, andA+1 = Z,

where A is the complex conjugate of A, together with the Real structure o : A — A given by
the conjugate linear * -isomorphismb : A— A (the identity map). Then A is not LTCR since
AZA.

Definition C.0.18. An even (resp. odd) elementary graded C*-bundle A over X is a locally
trivial field of graded C* -algebras A — X such that every fibre A, is isomorphic to K (Hy)
(resp. K(Hy) ® K(Hy)), where H, (resp. H,) is a graded Hilbert space (resp. is a Hilbert
space).

Definition C.0.19 (Pull-backs). If (A,0) is a graded Real C*-bundle over (X,p) and ¢ :
(Y,0) — (X, p) is a continuous Real map, then the pull-back of (A,0) along ¢ isthe
graded Real C* -bundle (p*A,p*0) — (Y,0), where 9* A :=Y x4, y,, A, and ¢*o(y,a) :=
(o(x),0(a)), Y(y,a) € p* A. Each fibre (¢*.A), can be identified with A, and then inherits
the grading of the latter.

Remark C.0.20. For any graded Real Banach (resp. C*-) bundle (A,0) — (X, p), Co(X, A)
is a graded Real Banach (resp. C* -) algebra with respect to the obvious pointwise operations
and norm ||s| := sup,cxls(x)|; the grading and the Real structure are given by €(s)(x) :=
€x(s(x)) and o (s)(x) := 0 px) (s(p(X))). It is straightforward that oxo0px) =1d4, ., Opx ©
ox =1dy,. In particular, for a Real point x € X, Ay is a Real graded Banach (resp. C*-)
algebra.
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Note that if p : (A,0) — (X, p) is a graded Real C*-bundle, then Cy(X) acts by multi-
plication on Cy(X,.A). Moreover, this action is Real and graded. Indeed, for f € Cy(x) and
s€ Co(X,A), we put o(f.s)(x) := ma(s(p(x))) = p(f)(x).0(s)(x). Thus, (A,0), where
A=Cy(X,A),is agraded Real Cy(X)-module.

If (A,0) is a graded Real Banach bundle over (X, p), then a continuous function s :
X — A such that pos = Idyx is called a section of A. Note that if s is a section of A,
then for any x € X, s(p(x)) and o(s(x)) are in the same fibre A,(y). We say that s is Real if
s(p(x)) = g (s(x)). The collection of sections s for which x — ||s(x)|| is in Cy(X) is denoted
by Co(X,.A).

Definition C.0.21. A Real graded Banach bundle p : A — X has enough sections if given
any x € X and any a € Ay, there is a continuous section s € Cy(X, A) such that s(x) = a.

Actually the following result assures us that all our Rg Banach bundles have enough
sections (see [29, Appendix C] for a detailed proof).

Theorem C.0.22 (Douady - dal Soglio-Hérault). Any Banach bundle over a paracompact
or locally compact space has enough sections.

Corollary C.0.23. Suppose (X, p) is a locally compact Hausdorff Real space. Then, if p :
(A,0) — (X, p) is a Tg Banach bundle, Real sections always exist.

Proof. Let x € X, a € Ay; then by Theorem C.0.22 there exists s € Cy(X,.A) such that s(x) =
a. Since for every x € X, s(x) and 0y (s(0(x))) belong to the Banach algebra A, the map
§:= %(s + 0 (s)) is a well-defined section in Cy(X,.A) which verifies o (5) = 5. O

Remark C.0.24. Let p : (A,0) — (X, p) be a graded Real C*-bundle. Then, the Defini-
tion C.0.11 can be interpreted by the fact that there exists a graded Real C* -algebra (2,™)
(the fibre of (A,0)), together with a family of graded isomorphisms of C* -algebras m :
A, — A, x € X (orin other words, m, € Isom© (A,,2)), such that

my(a) = my(y) (0x(a)), Vxe X,ae Ay. (3.3)

Definition C.0.25 (Elementary Rg C*-bundle). A Rg C*-bundle (A,o0) — (X, p) is called
elementary if each fibre A is isomorphic to a graded elementary C* -algebra.

Definition C.0.26. We say that a Rg elementary C*-bundle p : (A,0) — (X, p) satisfies
Fell’s condition if (and only if) (Cy(X,.A),d) is continuous-trace.

Note that if (A,0) — (X, p) is a Rg elementary C*-bundle, the spectrum of (4,0) is
naturally identified with (X, p).
In the sequel, we will write A for Cy(X,A) and if ¢ : (Y,p) — (X, p) is a continuous Real
map, we write ¢* A for Co (Y, p*A).
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Definition C.0.27 (Morita equivalence). Suppose that py : (A,04) — (X,p) and ps :
(A,o08) — (X, p) are graded Real C*-bundles. Then a Rg Banach bundle q : (€,04) —

(X, p) is called aRg A-B-imprimitivity bimodule ifeach fibre € . is a graded A . -B . -imprimitivity
bimodule such that

(@) thennaturalmaps(AxxE,0ax0¢) — (E,0¢), (a,&) — a-{and (ExxB,0ex04) —
(&,0¢), (b,&) — b-& are Real and continuous;

) (004, EM) = 4,0 (T)x(&), (@) x) and (03) (&, m)5,) = (02)2(0), (Te)x M),

If such a Rg A-B-imprimitivity bimodule exists, we say that (A,o 4) and (B,os) are
Morita equivalent.

Let (A,04) and (B,o3) be elementary Rg C*-bundles over (X,p). Then, there is a
unique elementary Rg C*-bundle A&B over X x X with fibre A,&B,, over (x, y) and such
that (x,y) — f(x)&g(y) is a section for all f € A = Cy(X,A) and g € B = Cy(X,B). The
Real structure is given by (0 4) x&®(03), over (x, y). By this construction, the elementary Rg
C*-bundle (A®B,0 4&03) satisfies Fell’s condition if (A, 4) and (B,o3) do, as does its
restriction (A& xB, 0 1&x03) to the diagonal A = {(x, x) € X x X}.

Definition C.0.28. Let (A,04) and (B,o03) be Rg elementary C* -bundles over (X, p). Then,
their tensor product is defined to be the Rg elementary C* -bundle (A& xB,0 4® xo ) over
the Real space (X, p) which is identified with the diagonal (A, p) of (X x X, p x p).
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