

AVERTISSEMENT

Ce document est le fruit d'un long travail approuvé par le jury de
soutenance et mis à disposition de l'ensemble de la
communauté universitaire élargie.

Il est soumis à la propriété intellectuelle de l'auteur. Ceci
implique une obligation de citation et de référencement lors de
l’utilisation de ce document.

D'autre part, toute contrefaçon, plagiat, reproduction illicite
encourt une poursuite pénale.

Contact : ddoc-theses-contact@univ-lorraine.fr

LIENS

Code de la Propriété Intellectuelle. articles L 122. 4
Code de la Propriété Intellectuelle. articles L 335.2- L 335.10
http://www.cfcopies.com/V2/leg/leg_droi.php
http://www.culture.gouv.fr/culture/infos-pratiques/droits/protection.htm

University of Lorraine

Master Thesis

Case Inflection in Koalib:
Discovering the Rules

Author:
Georgi Boychev

Supervisors:
Claire Gardent
Gosse Bouma
Nicolas Quint

June 19, 2013

Contents
1 Introduction 2

2 Background 3
2.1 Koalib . 3

2.1.1 Tonality . 4
2.1.2 Vowel Harmony 6
2.1.3 Noun Classes . 7
2.1.4 Case . 8

2.2 Machine Learning . 9
2.2.1 Feature Selection 11
2.2.2 Decision Trees 13
2.2.3 Rule Learning . 16

3 Methods 18
3.1 Object-Form Prediction 18
3.2 Classes . 20

3.2.1 Suffix . 20
3.2.2 Tone Change . 22
3.2.3 Full Change . 24

3.3 Features . 25
3.3.1 Phonemic Features 26
3.3.2 Syllabic Features 27
3.3.3 Tonal Features 28

4 Experiments 30
4.1 Implementation . 30

4.1.1 Preprocessing 31
4.1.2 Syllabification 31
4.1.3 Evaluation . 35
4.1.4 Optimization . 36

4.2 Results . 36
4.2.1 Multiple Classifiers 37
4.2.2 Single Classifier 39
4.2.3 Alternative Methods 41

4.3 Discussion . 42

5 Conclusion 46

1

1 Introduction
The goal of this master thesis is to discover the rules that govern
object-case inflection in Koalib. Koalib is an African language with
two grammatical cases - subject case and object case. It seems
that the object forms of nouns are derived from their subject forms
by following a set of rules which involve the ending of the noun,
its syllable schema and tonal pattern. However, due to the com-
plexity of the rules, it is very difficult to discover all of them using
manual analysis. This study demonstrates how machine learning
methods can be applied to discover those rules.

The rules are discovered from a corpus of about 1,200 Koalib
nouns, which contains their subject forms, object forms, root mor-
phemes and tonal patterns. This corpus is used to train a classi-
fier, which predicts the change from subject form to object form.
The classifier is trained using a rule-learning algorithm, which pro-
duces a list of rules as a model. The trained model is then eval-
uated on unseen data, in order to estimate the prediction accu-
racy of the generated rules. These automatically discovered rules
can correctly predict the exact object form of unfamiliar nouns in
about 66% of the cases.

This thesis is organized as follows. The section Background gives
an overview of the Koalib language and discusses the character-
istics that are relevant to the study, then gives an introduction
to machine learning and the algorithms used in the study. The
section Methods describes the methodology used to discover the
rules and explains the classes and features for the machine learn-
ing model. The section Experiments reports on the most impor-
tant experiments, conducted during the thesis project, and dis-
cusses their results. Finally, the section Conclusion summarizes
the findings of this study and offers points for future investigation.

2

2 Background
This section summarizes some of the most important previous
studies on the Koalib language. It also gives an overview of the
language and discusses some important characteristics of its gram-
mar and phonology. After that, it introduces machine learning and
some of its terminology, then describes the algorithms that are
used in the study.

2.1 Koalib
Koalib (also spelled Kwalib) is spoken by approximately 100,000
people in the Nuba Mountains, which are located in the Republic
of Sudan (Quint, 2010a). It belongs to the Niger-Congo family,
which is considered to be the largest language family in the world
in terms of distinct languages. The Niger-Congo family has many
branches and one of them is the Kordofanian branch, which is
composed of the languages spoken in the Nuba Mountains. Ko-
rdofanian languages themselves are divided into several smaller
groups, including the Heiban, Talodi, Rashad, Katla (Schadeberg
et al., 1989) and Lafofa (Stevenson, 1956) languages. Koalib is
part of the Heiban group, together with several similar languages
(Schadeberg, 1981). Thus, Koalib can be classified as belong-
ing to the Niger-Congo family, Kordofanian branch, Heiban group.
Furthermore, this study focuses on one particular dialect - ŋèrɛ́ɛɽɛ̀
(also spelled Rere), which is the basis of written modern Koalib
and could be regarded as the standard dialect (Quint, 2010b).

Kordofanian languages are some of the least studied African lan-
guages, due to a variety of factors. One of them is the sheer
diversity of Kordofanian languages and Niger-Congo languages in
general. Even though they are spoken in a relatively small geo-
graphical area - the Nuba Mountains, and by a small number of
people, Kordofanian languages include an impressive number of
distinct languages, many of them with a variety of dialects. This
complexity itself presents a challenge to the linguists who wish to
account for the entire Kordofanian branch. Due to the relatively
few speakers, Kordofanian languages have long been neglected
by the scientific community and this has led to the scarcity of re-
liable data about these languages. In addition to that, the wars

3

and isolated location have not made the Nuba Mountains a pop-
ular destination for international researchers.

Nevertheless, there are some studies on those languages and
Koalib in particular. Some of the most important earlier stud-
ies are those by Roland Stevenson from the 1950s, a protestant
priest who was supposed to christianize the Nuba people but sub-
sequently became quite interested in their language as well, and
the studies by Thilo Schadeberg from the 1970s, who is a pro-
fessional linguist. Some more recent studies have been made by
Nicolas Quint, who has investigated the phonology and grammar
of the Koalib language.

2.1.1 Tonality

Koalib, like most Niger-Congo languages, is tonal (Quint, 2010b).
In linguistics and phonology, the term tone refers to a specific
change in the pitch of the speaker's voice when pronouncing a
word. It is similar to intonation, which is used by almost all lan-
guages to express attitude, emotion or to distinguish a statement
from a question. However, intonation cannot change the lexical
meaning or the grammatical form of the word. Tones, on the other
hand, are used exactly for that purpose - to distinguish words and
word forms. Thus, a speaker of a tonal language can differentiate
one word (or word form) from another merely by a change in the
pitch.

Koalib distinguishes two pitch levels - low and high. These two
pitch levels represent the register tones in Koalib (Quint, 2010b).
In addition to the register tones, which correspond to different
pitch levels, there are also two contour tones - falling and raising,
which correspond to a specific change in the pitch, rather than
just a level (Quint, 2010b). A falling tone is a tone that starts as a
high tone, then ends in a low tone. A raising tone is the reverse -
first low, then high. Most Koalib words contain only register tones
and contour ones are quite rare. Furthermore, the low tone is
generally held as the default tone, while the high tone is used to
mark syllables. In the written language, tones are indicated by
special accent marks above vowels:

• low tone (L): ào as in kwào (grave accent),

4

• high tone (H): á as in kwár (acute accent),

• falling tone (F): â as in kwâm (circumflex),

• raising tone (R): ǒ as in kwǒrmàn (caron).

Note that in the first word - kwào, there are two vowels and only
one accent mark. This does not mean that the vowel o does not
have a tone. On the contrary, it means that the low tone extends
to the vowel o, which belongs to the same syllable as the vowel a.
It is merely a writing convention to indicate the tone only for the
first vowel of a syllable with more than one vowels. This way it
is easier to see whether two adjacent vowels belong to the same
syllable or to two different ones.

This writing convention also implies that tones apply to individ-
ual syllables, as opposed to whole words. However, this is not
entirely correct. It appears that tones in Koalib are not strictly
bound to their corresponding syllables. In certain contexts, a con-
tour tone may expand to cover two syllables, breaking down to
two different register tones in the process:
(1) kwɛ̂ɛcɛ́

'he will see'
(2) nyí kwɛ̀ɛcɛ́

'I will see'
In example 1, we see that the syllable kwɛɛ has a falling tone. But
when it follows the word nyi, the syllable kwɛɛ receives a low tone
and the preceding syllable gets a high one. Considering that a
falling tone indicates the change from high to low pitch, we could
consider it to be a combination of a high and a low tone. Thus,
the tone melody1 of the word kwɛ̂ɛcɛ́ is essentially HLH. But since
it has only two syllables, the first two tones are forced onto one
syllable - they are "squeezed" into a falling tone. However, when
it appears after the word nyi, the falling tone expands to cover
the preceding syllable as well. While doing so, the falling tone
is split into a high tone, which goes to the syllable nyi, and a low
tone, which remains for the syllable kwɛɛ. But the underlying tone
melody remains the same - HLH. Therefore, I will consider contour

1Here, I use the term tone melody to refer to the change of the pitch for a
whole word.

5

tones to be merely a combination of two different register tones
and assume that tones can only be either low or high.

2.1.2 Vowel Harmony

Many languages, including Koalib, exhibit vowel harmony (Quint,
2010b). Vowel harmony is a phonological phenomenon that con-
strains which vowels can appear in a word. In Koalib, vowel har-
mony manifests itself by grouping all vowels into two sets and
forcing every word to contain vowels from only one of those sets
(Quint, 2010b). These sets are defined by the vowel height - the
vertical position of the tongue when pronouncing the vowel. Thus,
there are high vowels, for which the tongue needs to be positioned
high in the mouth and closer to the roof, and low vowels, for which
the tongue is lowered and there is more space between it and the
roof of the mouth:

• high vowels = { i, ɐ, u },

• low vowels = { e, ɛ, a, ɔ, o }.

Because of vowel harmony, we can assume that every Koalib word
contains either only high vowels or only low ones. In addition
to their height, we can also categorize the vowels according to
their backness. Vowel backness refers to the horizontal position
of the tongue - front vowels are pronounced bymoving the tongue
forwards and for back vowels we need to place it towards the back
of the mouth. Using the notions of vowel height and backness, we
can categorize the vowels in Koalib as follows:

Height Backness
Front Central Back

High i ɐ u
Low e a o

ɛ ɔ

Note that the low set contains two front vowels - e and ɛ, as well
as two back ones - o and ɔ. Although all of these vowels belong to
the same vowel harmony set, there are some subtle differences
that separate the vowels ɛ and ɔ from the rest of the low set.
First of all, they belong to a different category, according to vowel
openness:

6

• open vowels = { ɛ, ɔ },

• mid vowels = { e, a, o }.

Secondly, almost all Koalib words that belong to the low vowel
harmony set contain either only open vowels or only mid ones
(Quint, 2010b). Thus, it appears that the open vowels ɛ and ɔ al-
most form their own vowel harmony set. So why group them with
the mid vowels? The reason is that almost all words in the low set
receive affixes with only mid vowels, regardless of whether they
have mid or open vowels. Hence, the distinction between open
and mid vowels is irrelevant from a morphological point of view.
In contrast, the distinction between the low and the high vowel
harmony set plays a crucial role in determining the vowels of the
affix. Since this study is concerned with predicting the suffixes of
nouns, it seems more logical to assume only two vowel harmony
sets - low and high.

2.1.3 Noun Classes

Many Indo-European languages have noun classes which are used
to express gender. Koalib also has a noun class system, but it is
used to express different classes and not just gender. These noun
classes are expressed with a prefix, so that Koalib nouns can be
thought of as a combination of a nominal root and a class prefix:
(3) kwòoɽàm ⇒ kwòoɽámè

'thief'
(4) lòoɽàm ⇒ lòoɽámè

'thieves'
(5) ŋòoɽàm ⇒ ŋòoɽámè

'theft'
In these examples, the nominal root -òoɽàm combines with three
different prefixes - kw-, l- and ŋ-, each giving the noun a different
class. The forms for the object case, which is discussed in the
next paragraph, are shown right of the arrow. As you can see,
the noun class prefix does not affect the object form in any way -
the noun is inflected in the same way, regardless of its class. This
pattern is observed in almost all known Koalib nouns (Quint, unp).

7

2.1.4 Case

Another important characteristic of the Koalib language that is
relevant to this study is its case declension. Koalib nouns have
two cases - subject (S) and object (O) (Quint, 2006). Moreover,
around 75% of the nouns are inflected for case (Quint, unp). The
subject case is assumed to be the unmarked case, as there is
usually no overt marker to indicate that a noun is in the subject
case, while the object case is considered to be the marked case
and is indicated by the addition of a suffix, a change in the tonal
pattern of the noun, or a combination of both (Quint, 2006):
(6) káaŋàl

sheep.S
ŋkó
DEM.CLF.PROX

kè-pèetò
CLF-be.white.PFV

'This sheep is white.'
(7) Kwókkò

Kwókkò
kwèm-ɛ̀ɛcɛ́
CLF.PRF-see

kàaŋálè
sheep.O

ŋkó
DEM.CLF.PROX

'Kwókkò has seen this sheep.'
In example 3, the word káaŋàl is the subject of the sentence,
therefore it is in subject case. In example 4, the same word is in
object case and this is indicated by a change in the form - káaŋàl
becomes kàaŋálè. The object case is indicated by two overt mark-
ers - the word receives the suffix -è and its tonal pattern changes
from HL to LH, plus an additional L tone for the suffix. This is an
example of an object case form, marked by both suffix and tone
change. However, other object forms are marked by only a suffix
or only a tone change, and some are not marked for object case
at all. Thus, in total there are four general ways to create the
object form:

• no change (25%): ŋèráaɽà (sauce.S) ⇒ ŋèráaɽà (sauce.O),

• suffix only (35%): kòţţó (gourd.S) ⇒ kòţţóŋé (gourd.O),

• tone only (6%): kwìcì (person.S) ⇒ kwícì (person.O),

• both (34%): kwòtlòm (jackal.S) ⇒ kwótlòmá (jackal.O).

The percentages indicate the proportion of nouns that use this
type of case marking and are estimated from a corpus of approxi-
mately 1,200 Koalib nouns, collected by Nicolas Quint Quint (unp).

8

Note that tone change here does not include the tone change in-
troduced by a suffix, which usually adds another tone. By manu-
ally analyzing this corpus, Quint (unp) was able to discover some
patterns, regarding case inflection:

Subject pattern Object pattern ReliabilityTones Phonemes Tones Phonemes

-LH
any

-LHH
any 252 / 267 = 94%

-C -e 125 / 136 = 92%
-V -ŋe 113 / 131 = 86%

(H)n
any (L)nH -a 117 / 167 = 70%
-C -a 108 / 124 = 87%
-V no change 23 / 43 = 53%

LL any no pattern N/A
-VC.CVC HLH -a 36 / 44 = 82%

Though these patterns are decently accurate, they only cover a
small part of the corpus - around 40%. The present study uses
this very same corpus and discovers rules that cover all of the
nouns in it by employing machine learning methods.

2.2 Machine Learning
The goal of this study is to demonstrate how machine learning
methods can be successfully used to automatically discover the
rules behind case inflection in Koalib. Machine learning is a branch
of artificial intelligence and is primarily concerned with creating
systems that are able to learn from data. The data consists of ex-
amples (also called instances), which are represented as values of
specific properties (also called features or attributes) which cap-
ture relevant information about the data. The choice of properties
depends on what is available from the data and the problem that
has to be solved by the system.

There are two basic types of machine learning - supervised learn-
ing and unsupervised learning. In supervised learning, the task is
to assign categories (also called labels) to instances. To do this,
the system needs training data - a set of labeled instances to learn
from. The process of learning consists of building a formal repre-
sentation (called a model) which generalizes the training data,
capturing any patterns that involve the specified features. The

9

system can then use this model to label new unseen instances.
How the model is built and how it is used to label new data, de-
pends on the particular supervised learning algorithm.

Supervised learning algorithms can be of several types, depend-
ing on the nature of the task. The most common type of super-
vised learning is classification, where the goal is to simply assign
the correct label to individual instances. In contrast, there is also
sequence labeling, which is a different type of supervised learn-
ing. In sequence labeling, we assume that some instances belong
together to form sequences of instances, where each label may
depend on the other labels in the sequence.

An example of a classification task is diagnosing patients. The
training data for this task could be a set of relevant observations
about previous patients, such as their age, gender, blood pres-
sure, presence or absence of specific symptoms and their correct
diagnoses. Here, the properties age, gender, blood pressure and
symptoms are the features that describe each instance, while the
diagnosis is the class - what we want to predict.

Features can have different types of values. For example, the
features gender and symptoms have nominal values (male or fe-
male; present or absent for each specified symptom), while age
and blood pressure could have numeric values (the measure in
years; the measure in millimetres of mercury) or ordinal values if
we define some intervals (child: 0-18 years, adult: 19-49 years,
elder: 50+ years; low: 0-89 mmHg, normal: 90-119 mmHg, high:
120+ mmHg). Classes typically have nominal values - the set of
possible diagnoses, in this case. The values of the class are also
referred to as labels.

In order to build a classifier that can predict the diagnoses of new
patients, first we need to describe our observations about previ-
ous patients with the specified features by assigning the correct
values for each patient. This way, each instance is composed of
feature values, which are usually stored in a vector (the feature
vector). With this training data, we can use a classification algo-
rithm to build a classifier, which would capture any patterns that
involve the specified features. Thus, it is important to choose the
right features, in order to have accurate predictions. In general,

10

the more training data we have, the more reliable the classifier,
though it is also important that this data is representative of the
population.

A typical example of a sequence labeling task is part-of-speech
tagging - predicting the parts-of-speech of words in texts. As with
classification, the training data consists of observations - texts
which are annotated with the correct part-of-speech tags. In this
case, the labels are the possible part-of-speech tags and the fea-
tures are the properties of words that are relevant for determining
the part-of-speech in the language. Each sentence is a sequence
with each instance being a word from the sentence. Although it is
possible to use a classifier and treat words individually, it would
be more appropriate to use a sequence labeler instead, because
the labels may depend on each other - for example, the part-
of-speech of a word often depends on the part-of-speech of the
previous word in the sentence.

Aside from supervised, there is also unsupervised learning, where
the task is to find some hidden structure in the data. The main
type of unsupervised learning is clustering and the goal of cluster-
ing is to group similar instances together, based on the specified
features. One way to do this is to represent instances as points in
an abstract multi-dimensional space, where each dimension cor-
responds to a feature. The feature values for each instance deter-
mine its position in the space, so that similar instances would be
placed closer to each other, clumping together and forming clus-
ters (hence clustering). The system can then identify the clusters
by measuring the distances between the points in the space.

2.2.1 Feature Selection

As mentioned, selecting the right features is an important fac-
tor in machine learning. Though we cannot always know for sure
what features are the best, we can experiment with the ones that
are likely to be useful and then check which ones actually help
with the prediction. This process of feature selection is particu-
larly important for tasks, where there are a lot of potential fea-
tures but only a small fraction of them are actually useful, such
as text classification, where each word could be a feature.

11

One way to measure which features are most useful is by us-
ing an algorithm called InfoGain. InfoGain works by measuring
the information gain of each feature with respect to the class and
then ranking the features from most useful to least useful. The
information gain of a feature can be measured by calculating the
reduction of entropy when this feature is introduced.

Entropy is a measure of uncertainty. The more the possible out-
comes of an event, the greater the uncertainty, thus the greater
the entropy of that event. Entropy can be measured in bits - one
bit denotes two possible outcomes (0 or 1, true or false). For ex-
ample, tossing a fair coin has two possible outcomes - heads or
tails. Therefore, the entropy of the event is one bit. Tossing two
fair coins has an entropy of two bits, as each coin has two possible
outcomes, for a total of four possible outcomes. However, tossing
an unfair coin has a smaller entropy than tossing a fair one. This
is because the fair coin is equally likely to land on either side, thus
we are more uncertain about the outcome. But an unfair coin is
more likely to land on one side than the other, thus we are less
uncertain about the outcome.

The entropy of a set of training examples with respect to the class
can be calculated using the logarithmic probability of each class
label. The probability of a class label is calculated by dividing
the number of instances with that class label by the total num-
ber of instances. More formally, if E denotes the set of examples
(instances), Ci is the set of examples with the i-th class label (i
ranges over the possible class labels), then the probability of the
i-th class label is this:

Pi =
|Ci|
|E|

The entropy of the data set with respect to the class is calculated
by summing up the logarithmic probabilities of all the class labels,
where b is the base of the logarithm, which is usually 2:

H(C) = −
∑

i Pi. logb Pi

The information gain of an attribute (feature) A with respect to
the class C is calculated by measuring the reduction of entropy in
the data set when A is introduced:

12

InfoGain(C,A) = H(C)−H(C|A)

The entropy with respect to the class when an attribute is intro-
duced, denoted as H(C|A) is calculated by summing up the prod-
ucts of the probability of each attribute value times the entropy
with respect to the class of the instances with that attribute value:

H(C|A) =
∑

j Pj.H(C|Aj)

In this formula, Pj is the probability of the j-th value of A (j ranges
over the possible values of A), which is calculated similarly to the
probability of a class label - by dividing the number of instances
with the j-th value for A by the total number of instances. Here,
H(C|Aj) denotes the entropy with respect to the class, but only
for the instances in the set Aj - that is, the instances with the j-th
value for A. It is calculated just like H(C), except that the set of
instances E is limited to Aj, so E = Aj.

Thus, InfoGain measures how the entropy of the data set is re-
duced when a certain attribute is introduced. That is, how much
relevant information does the attribute bring. It is a useful mea-
sure for feature selection, but also for building decision trees.

2.2.2 Decision Trees

Decision trees are tree-like graphs that visualize a model for mak-
ing decisions. Each node in the tree represents a test and each
edge from that node stands for a possible outcome of that test.
The leaf nodes indicate the decisions that are made after follow-
ing the tree from the root to a leaf. A simple tree for making
the decision whether to go out or not, depending on the weather,
could look like this:

13

In order to make a decision, we need to start from the root node
and perform each test, then follow the edge that corresponds to
the observed outcome. So, if the weather today is sunny with
normal humidity, then we make the decision to go out. But if it
rains and the wind is strong, we stay at home.

Decision trees are widely used as classifiers in machine learning.
The training data is used to learn a tree, then the tree is applied
to classify instances of data. There are different algorithms for
learning decision trees. Some notable ones are ID3 and C4.5.

The Iterative Dichotomiser 3 (ID3) uses the information gain of
features to learn a tree (Quinlan, 1986). It works by measuring
the information gain of each attribute and then choosing the best
one - the attribute with the highest information gain. Then, it
splits the data set into subsets - one subset for each value of that
attribute. For each one of those subsets, the process is repeated
recursively, until every subset belongs to only one class label or
there are no more attributes to use:

• create the root node of the tree,

• if instances in data set belong to more than one class label,
choose best attribute (feature),

14

• partition the data set into subsets - one for each value of the
attribute,

• for each subset, repeat the process with another attribute.

After inventing ID3, Quinlan extended the algorithm and created
an improved tree learner, called C4.5 (Quinlan, 1993). C4.5 works
similarly to ID3 and also uses the information gain measure to
evaluate attributes. It introduces several improvements, one of
which is the pruning of the tree after creation. Pruning is a tech-
nique which is used to simplify a decision tree by removing nodes
that are not very useful in classifying instances. The resulting tree
is much smaller in size and also much more accurate at predicting
new data.

Pruning is important, because it allows the decision tree to deal
with the problem of "overfitting". Overfitting occurs when the fea-
tures used for training are too many or too specific. This causes
the trained model to be very specific to the data it was trained
on and capture not only the general pattern in the data, but also
the "noise" in it. Noise is a term used to refer to rare, exceptional
instances which do not fit the general pattern of the data. Such
exceptions usually occur due to random errors in the data and
should be ignored by the model. But if the model is too complex
and specific, it will also account for such exceptions. The prob-
lem is that this makes the model less predictive, because new
instances are unlikely to be random errors, and even if they are,
it's even more unlikely that they are the same random errors as
those in the training data.

Thus, overfitting reduces the prediction accuracy of a model for
unseen data by making it unnecessarily complex. However, deci-
sion trees can be "pruned" by removing the nodes that help little
to increase the prediction accuracy. There are several pruning
techniques. The simplest one is reduced error pruning, where
each node, starting from the leaves, is replaced by its most prob-
able class label. Then the prediction accuracy is checked and if it
is not affected much, the change is kept.

15

2.2.3 Rule Learning

Decision trees encode a model for making decisions by showing
what decision to make when certain tests are fulfilled. Such a
model can also be represented as a list of rules, where each rule
says what decision to make when certain conditions are met. The
technique for building such rule lists is called rule learning. Rule
learning in fact is similar to learning decision trees and the al-
gorithms for that are derived from the earlier decision tree algo-
rithms.

One of the earlier algorithms for learning rules was also invented
by Quinlan (1987), who created the decision tree algorithms dis-
cussed before. This algorithm basically builds a decision tree and
then extracts rules from that tree. First, it grows a very complex
tree that overfits the data, then it prunes this tree and represents
it as a list of production rules.

Many other rule learning algorithms also make a heavy use of
pruning. They usually work by dividing the training data into a
growing set and a pruning set. The growing set is used to build
a very specific rule list that overfits this data, then this rule list is
pruned using the pruning set. The pruning technique used by the
earlier rule learners was reduced error pruning. However, later al-
gorithms improved that technique and used incremental reduced
error pruning (Furnkranz and Widmer, 1994).

Though incremental reduced error pruning (IREP) is very efficient,
the rule lists that it produces are shown to have higher error rates
than C4.5 rules (Cohen, 1995). Thus, Cohen (1995) proposed a
modified version of IREP for rule learning, called RIPPER, which is
competitive with C4.5 in terms of error rates, but also much more
efficient for large data samples.

Both decision trees and rule lists have the advantage of being
easy to interpret by human beings. This is a very important ad-
vantage for this study, because the ultimate goal is to discover
the rules that govern case inflection in Koalib and not simply to
build a system that predicts the object form. Therefore, I consider
both the decision tree learner C4.5 and the rule learner RIPPER to
be valid choices for the supervised machine learning algorithm

16

that will discover the rules. However, the rule learner RIPPER has
a slight advantage over C4.5, because the model it produces is
even more transparent than a C4.5 decision tree. Using a deci-
sion tree would require some additional postprocessing to collect
the rules from it. Though this is not very difficult to do, it makes
more sense to use an algorithm that already does it - RIPPER.

17

3 Methods
This study explores the use of machine learning methods for dis-
covering the rules behind case inflection in Koalib. It exploits
some of the information available from the corpus of Koalib nouns,
collected by Nicolas Quint. This information includes the subject
form and its tonal pattern, the root morpheme of the subject form
and its tonal pattern, the object form, its suffix if there is any and
its tonal pattern, too. The corpus contains some additional infor-
mation, such as the types of phonemes (consonants or vowels)
for the subject form, its root morpheme and the object form, as
well as French translations for most of the nouns. However, this
information is not exploited, because it is either automatically de-
duced during feature extraction or is not needed for the task.

The data extracted from the corpus is used for the training and
evaluation of supervisedmachine learningmodels. Themain idea
is to represent the task as a classification problem, where the goal
is to predict the object forms of nouns, given their subject forms.
Then, experiment with various features and classes, until a good
prediction accuracy is achieved. Finally, extract the rules from
the model with the best prediction accuracy.

Since the ultimate goal is to extract human-readable rules, it is
important to use a classifier, whose model is easy for human be-
ings to interpret. The accuracy of the model is of a secondary
concern - it is needed to select the optimal features and provide
an estimate to the reliability of the rules. The performance of the
model, in terms of time and space it takes to train or classify, is
not an issue here, as the data set is quite small. Therefore, I con-
sider that both decision trees and rule lists are good choices for
a model, but I prefer to use rule lists, since they provide exactly
the information I need.

3.1 Object-Form Prediction
During the project, I have experimented with various methods
for predicting the object form and extracting the features and
classes. This paper presents the results of the methods that I
consider to be the optimal solutions, both in terms of prediction

18

accuracy and relevance to linguistic theory, and discusses some
alternative solutions that yield similar accuracy.

The problem of predicting the object form can be reduced to pre-
dicting only the change from subject form to object form, because
the subject form is given as input. Recall that object forms in
Koalib are marked either by the addition of a suffix, a change in
the tonal pattern or both. This means that object forms may differ
from subject forms in two aspects - suffix and tonal pattern. If we
can predict both of these changes correctly, then we can deduce
the correct object form from the subject form.

Thus, one strategy for predicting the object form is to break down
the whole problem into several smaller ones and predict each
type of change individually. This means that the object form is
predicted using two classifiers - one of them predicts the suffix
and the other one predicts the tone change. The advantage of
this strategy is that we can separate the rules that determine the
suffix from those that determine the tone change. This is useful
if we are only interested in one of those changes. From a tech-
nical point of view, another advantage is that the features and
parameters of each classifier can be adjusted separately. How-
ever, with this strategy we are making the assumption that the
suffix change is independent of the tone change, which may not
be true.

A second strategy is to predict both the suffix and tone change at
the same time. This way, the problem is solved with only one clas-
sifier, which predicts the combination of suffix and tone change.
The advantage of this approach is that any dependencies be-
tween suffix and tone change are captured by the model. This
study focuses on using these two strategies for predicting the ob-
ject form.

There is also an alternative, third strategy, which will be discussed.
It combines the advantages of the previous two to some extent,
but makes the whole design slightly more complex. The idea is
to use multiple classifiers - one for each type of change, similarly
to the first strategy, and to add the predictions of the first clas-
sifier as additional information for the next one. This way, the
classifiers run in a pipeline fashion - the output of each classifier

19

is input for the next one. With this approach, the features and pa-
rameters of each classifier can still be adjusted separately, while
also capturing dependencies between the two types of change.

3.2 Classes
The classes encode the change from subject to object form or
a particular aspect of that change. They are defined in such a
way that knowing the correct class label makes it possible to de-
duce the correct object form from the subject form. The first two
classes - suffix and tone change, are needed for the multiple-
classifier strategy, while the third one - full change, is a combina-
tion of the first two and is used for the single-classifier strategy.

3.2.1 Suffix

One of the changes that subject forms undergo during inflection
is the addition of a suffix. 69% of the nouns in the corpus receive
a suffix in their object form. Therefore, one of the classes for
object-form prediction is the suffix class. Each possible suffix in
Koalib is encoded as a label of this class and there is an additional
label for nouns that do not receive any suffix in the object form.

An important note about suffixes is that the vowels in them are not
encoded directly, but are instead represented by abstract vowel
categories. These vowel categories correspond to the phonolog-
ical categories, specified by vowel backness. This means that
each vowel falls into one of three categories: front, central or
back. Each category is represented by a letter:

• front (E) = { i, e, ɛ },

• central (A) = { ɐ, a },

• back (O) = { u, o, ɔ }.

The main reason for this categorization is vowel harmony. In
Koalib, the choice between, say an i or an e in an affix2, depends
solely on vowel harmony constraints (Quint, 2010b). That is, if

2I use the term affix here, because these statements apply not only to suf-
fixes, but also to prefixes.

20

the other vowels in the word belong to the high VH set, then so
does the vowel in the affix and we choose i. Otherwise, if they
are in the low VH set, then we choose e for the affix. Therefore,
it suffices to know if the vowel in an affix is front, central or back,
as the differences between the vowels in each one of those sets
are dependent on the context of the affix in the word and should
not be regarded as a property of the affix itself. This also has the
side effect of reducing the number of possible class labels for the
suffix.

Note that the low VH set contains two front vowels (e and ɛ) and
two back vowels (o and ɔ). As discussed earlier, the difference
between the mid vowels (e and o) and the open ones (ɛ and ɔ)
is irrelevant to morphology, as affixes almost always contain only
mid vowels for the low VH set, regardless of whether the word has
mid or open vowels.

With this definition, the class suffix has 8 possible labels. 4 of
them are very common (frequency > 100), while the other 4 are
quite rare (frequency < 10). Here are the 4 most common la-
bels for suffix (the numbers indicate the frequencies with the total
number of instances being 1206):

• -A (488)

• NONE (374)

• -E (211)

• -ŋE (122)

On a side note, some suffixes replace the last letter of the subject
formwhen added, while others double the length of the first vowel
in it. Thus, one could additionally try to predict whether a suffix
replaces the last letter, prolongs the first vowel or is simply added
without any other changes. However, I consider this information
to be insignificant, as almost all the suffixes in the corpus are
added without any other changes. In the whole corpus of 1206
nouns, there are only 12 instances of suffixes which replace the
last letter of the subject form and only 18 instances of suffixes
which double the length of the first vowel.

21

3.2.2 Tone Change

The other possible change that can occur when a noun is inflected
is a change in its tonal pattern. Recall that Koalib is a tonal lan-
guage with two register tones (low and high) and two contour
tones (falling and raising). For the purposes of this study, I will
treat each contour tone as a combination of two different register
tones and assume that there are only two tones - low and high. I
use the term tone pattern to refer to the sequence of tones in a
word, where each tone is represented by a letter:

• L = low tone,

• H = high tone.

The class tone change encodes the difference between the tone
pattern of the subject form and the tone pattern of the object
form. 75% of the nouns in the corpus show a change in their tone
pattern when inflected. Once again, there is a special label for
cases where there is no change. In other cases, one or two tones
are added to the tone pattern of the subject form without chang-
ing any of the original tones (probably caused by the addition of a
suffix). In these cases, there is a label for each sequence of added
tones. All other tone changes are encoded as a pair of a subject
tone pattern and a corresponding object tone pattern, with a la-
bel for each possible pair. This way, the class tone change has
49 possible labels3. 14 of them are fairly common (frequency >
10), while the other 35 are rarer (frequency < 10). These are the
14 most frequent labels:

• ADD-H (372)

• NO-CHANGE (306)

• HH-LLH (101)

• HL-LHL (68)

• LL-HLH (42)
3There are actually several versions of the data set - in two of them the

whole subject and object forms are taken into account, while in the other two
prefixes are ignored. These are discussed in the section about experiments.
The information reported here is derived from a data set that considers the
whole subject and object forms.

22

• LHL-LLHL (40)

• L3H-LHH (38)4

• LLL-HLLH (31)

• HL-LL (29)

• LL-HL (24)

• LL-LHL (23)

• HL-LLH (21)

• ADD-L (16)

• LHL-LLL (14)

During the course of the project, I have experimented with many
alternative ways to define the class tone change. Initially, the
class labels were simply the tone patterns of the object form.
Then, in order to reduce the number of possible labels, those
tone patterns were shortened by reducing a sequence of the same
tone, repeated more than once, to only one tone. This was lim-
ited to only one sequence per tone pattern, in order to be able to
deduce the entire object tone pattern afterwards.

But there are many cases where there is no change in the tone
pattern. Such cases were later grouped into the same label, as
in the current definition of the tone change class. Furthermore,
assuming that each tone is strictly related to a particular syllable
in the word, added tones were predicted separately as a property
of the suffix and were not taken into account in the tone change
class. Then, in order to express the change from subject tone
pattern to object tone pattern, rather than the result thereof, the
cases where an actual change does occur were explicitly listed as
pairs. Some of these pairs were grouped together to avoid having
too many class labels. Initially, the grouping was done by assum-
ing that a tone changes by "inverting" into the opposite tone (H
inverts to L and L inverts to H) and the class labels encoded which

4In Koalib, there is a group of disyllabic nouns that have two possible tone
patterns - LL and LH. These are treated as special cases and are assigned a
unique tone pattern - L3H.

23

tones are inverted. Then, in order to have a more "natural" group-
ing, the data was clustered, according to the features that best
predict the explicit tone-change pairs, and the class labels corre-
sponded to the clusters, but without having more than one pair
with the same subject tone pattern in a cluster.

Unfortunately, this cluster-based grouping did not lead to a sig-
nificant improvement in the prediction accuracy. Therefore, that
idea was dropped in favor of a simpler design with more intuitive
rules as a result. Finally, the tone change class was redefined to
include added tones as well, realizing that tones are not strictly
related to syllables.

3.2.3 Full Change

The previous two classes - suffix and tone change, describe the
two aspects of the change from subject to object form separately
and are used for the multiple-classifier strategy. The alternative
strategy - the single classifier, is to predict the combination of
suffix and tone change in one go. The class for this classifier is
called full change and simply combines the labels of the previous
two classes, as defined above. This results in 76 possible class
labels. 20 of those labels are common (frequency ≥ 10) and the
remaining 56 are rare (frequency < 10). Here are the 20 most
common labels:

• NO-CHANGE + NONE (297)

• ADD-H + A (161)

• ADD-H + E (110)

• HH-LLH + A (101)

• ADD-H + ŋE (98)

• HL-LHL + A (55)

• LL-HLH + A (42)

• LLL-HLLH + A (31)

• LHL-LLHL + A (24)

24

• L3H-LHH + ŋE (21)

• LL-HL + NONE (21)

• HL-LL + NONE (20)

• HL-LLH + A (18)

• L3H-LHH + E (17)

• LHL-LLHL + E (16)

• ADD-L + E (15)

• LHL-LLL + NONE (14)

• HL-LHL + E (13)

• LL-LHL + E (11)

• LL-LHL + A (10)

Though 76 class labels may seem like a lot, most of them are very
rare and constitute only a tiny portion of the data. There are 31
unique labels (frequency = 1), but they are only 3% of the data.
Such rare labels are likely to be nothing more than noise in the
data and can safely be ignored by the model, using techniques
like pruning.

3.3 Features
The features encode the properties of the nouns that are used for
predicting the object-form change. They are probably the most
important factor for the success of the machine learning model.
Ideally, the features should capture only those properties of the
data that are relevant to solving the task. They should be specific
enough to separate most of the class labels, but not too specific
to account for noise as well. Thus, finding the optimal selection of
features is not always easy, as it is not immediately obvious what
the most important properties are. This is why it is important to
have a good understanding of the problem which has to be solved
by the model.

In order to find the optimal selection, I have experimented with

25

various features and only kept the ones that help the prediction.
The rules discovered by Quint (unp) provide a good starting point
and I have also examined the phonology of Koalib, in order to
develop a better understanding of the linguistic phenomena that
take place. Finally, I have tried to define features that are not only
accurate, but also relate to linguistic theory.

3.3.1 Phonemic Features

The first group of features encode information about the phonemes
of the subject form. Though Koalib is a written language, I con-
sider that phonemes are the basic building blocks of words, rather
than letters, because it appears that the phenomena involved in
Koalib case inflection are of a phonological nature. Similarly to
suffixes, phonemes are not taken directly, but are replaced by
abstract categories. The categories for vowel phonemes are the
same as the ones for vowels in suffixes - front (E), central (A) and
back (O), while consonants are categorized by manner of articu-
lation:

• plain obstruent (B) = { b, ɗ },

• strong obstruent (T) = { pp, tt, ţţ, cc, kk, kkw },

• weak obstruent (P) = { p, t, ţ, c, k, kw },

• prenasalized obstruent (M) = { mp, nt, nţ, ny, ŋk, ŋkw },

• nasal non-obstruent (N) = { m, n, ŋ, ŋw },

• liquid non-obstruent (L) = { l, r, ɽ, j, w, y }.

This categorization is based on Quint (2010b) with someminor ad-
justments to the available data. Apart from the category, phone-
mic features also encode the type of the phoneme - consonant
(C) or vowel (V), for cases where the category feature is too fine-
grained. This way, I have defined four phonemic features:

• last phoneme

• last two phonemes

• last phoneme type

26

• last two phoneme types

All four features describe the ending of the subject form, because
this is likely to play a role in the choice of the suffix.

3.3.2 Syllabic Features

While phonemes are the basic building blocks of words, they can
combine to form larger phonological units - syllables. The next
group of features describe the subject forms at the syllable level.
Syllabic features encode information about the structure of the
syllables in the noun.

In general, syllables are made up of three components - nucleus,
onset and coda. The nucleus is a vowel and is usually the only
obligatory component of a syllable. The onset consists of one or
more consonants that precede the nucleus, while the coda com-
prises the consonants that follow the nucleus. The nucleus and
coda combine to form the rhyme of the syllable.

Koalib syllables follow this general structure, with the only dif-
ference that the nucleus can be either one or two vowels. The
structure of Koalib syllables is encoded by grouping them into 8
possible types, depending on whether the nucleus is one or two
vowels and whether there is an onset and coda:

• V = single-vowel nucleus,

• CV = onset + single-vowel nucleus,

• VC = single-vowel nucleus + coda,

• CVC = onset + single-vowel nucleus + coda,

• VV = two-vowel nucleus,

• CVV = onset + two-vowel nucleus,

• VVC = two-vowel nucleus + coda,

• CVVC = onset + two-vowel nucleus + coda.

27

Note that although the system theoretically allows for the types
VVC and CVVC, they are practically non-existant. I have only en-
countered one instance of a CVVC syllable in the entire corpus and
not a single VVC syllable. Thus, from a practical point of view, we
can assume that the last two types do not exist and there are
only six syllable types in Koalib, as noted by Quint (2010b). The
syllabic features that are used are the following:

• last syllable

• last syllable type

• last two syllable types

• first two syllable types

The feature last syllable consists of the phonemes (or more pre-
cisely, the phoneme categories) of the last syllable. For mono-
syllabic nouns, the features last syllable type, last two syllable
types and first two syllable types are identical, while for disyl-
labic nouns, only the features last two syllable types and first two
syllable types are identical. Most of the nouns in Koalib have two
syllables. The noun with the most syllables in the subject form
has 5 syllables. The mean number of syllables is 2.329 with a
standard deviation of 0.629.

3.3.3 Tonal Features

The last group of features describe the tone pattern of the subject
form. As with the tone change class, only the register tones -
low (L) and high (H) are considered, and nouns with two possible
tone patterns (LL and LH) are treated as a special case and are
assigned the tone pattern L3H. The following tonal features are
defined:

• last tone

• last two tones

• squeezed tone pattern

• complete tone pattern

28

The feature squeezed tone pattern is a shortened version of the
complete tone pattern. It is obtained by reducing all sequences of
the same tone, repeatedmore than once, to only a single instance
of that tone. This way, the tone pattern is "squeezed", so that
the resulting pattern never contains two identical adjacent tones.
This "squeezed" tone pattern encodes the basic underlying tone
melody of the subject form. In some cases, the basic tone melody
is more important than the complete tone pattern, as tones are
not strictly bound to syllables and sometimes there are variations
in the tone pattern, while preserving the same basic melody.

29

4 Experiments
In order to test the methods proposed in the previous section and
discover the actual rules, I conducted a number of experiments.
This section describes the most important of those experiments,
reports on their results and discusses their findings.

The data that was used for the experiments was extracted from
the corpus of Koalib nouns, collected by Nicolas Quint. This corpus
includes approximately 1,200 nouns. It does not contain any bor-
rowings from English or Arabic, in order to focus only on traditional
Koalib words, as these are more representative of the language
and its grammar. Borrowings seem to follow different rules when
it comes to case inflection and these rules are discussed in detail
by Quint (unp). Furthermore, the corpus contains only nouns with
distinct nominal roots - that is, it does not contain two nouns with
the same root but different prefixes.

The corpus includes the subject forms, their root morphemes and
the object forms of the nouns. For each one of those, it also pro-
vides the tone pattern and the phoneme types (vowel or conso-
nant). It also contains the suffix of the object form, whenever
there is any, and a translation of the noun into French. For some
nouns, there is additional information, such as the plural form and
a semantic category, but this information is too scarce to be used
effectively.

4.1 Implementation
In order to conduct the experiments, I implemented a toolkit for
manipulating the corpus, extracting classes and features for ma-
chine learning and evaluating some of the proposed methods.
This toolkit is written in Java and uses Weka (Witten et al., 2011)
for implementations of variousmachine learning algorithms. Weka
is a popular open-source library for machine learning and is also
written in Java, which makes it easy to integrate into my program.
It also has a graphical user interface, but some of the experiments
required a finer control, which the GUI cannot provide, therefore
I also used some of its implementations directly from within my
program.

30

http://www.cs.waikato.ac.nz/ml/weka/

4.1.1 Preprocessing

Before extracting the data for machine learning, it was necessary
to transform the corpus into a more usable format and conduct
some preprocessing steps to ensure that it is consistent. The cor-
pus was originally in the format of an Excel spreadsheet. Though
this format may be useful for viewing, it is not the most suitable
format for automatic processing. Therefore, the first step was
to transform the spreadsheet into a simple text format, where
columns are delimited by tabs. To do this, I used another open-
source library, written in Java - Apache POI, which enabled me
to parse the Excel spreadsheet and export it in the format of my
choice.

After transforming the corpus into a simple text format, some ad-
ditional preprocessing was done to make it even more usable.
The French tone labels were replaced by English ones, in order to
avoid confusion and to comply with the notations used in Quint's
paper on case marking. The data fields were checked for consis-
tency and some small errors were fixed, such as incorrect or miss-
ing information. Additionally, some noun forms were normalized
by making all letters lowercase and removing some extra nota-
tions that were not part of the actual form. The resulting corpus
has exactly 1,206 nouns.

4.1.2 Syllabification

After preprocessing the corpus, the next step was to extract the
data for machine learning. For each noun, the correct feature val-
ues and class labels had to be collected and stored in as a data
set. The data set was exported in the Attribute Relation File For-
mat (ARFF) which is used by Weka.

Most of the feature values and class labels were either directly
available from the corpus or could easily be deduced automati-
cally. Special care had to be taken while reading the letters of the
words, as some of these letters are internally encoded by more
than one character. The only features that required more sophis-
ticated methods of extraction were the syllabic features, as the
corpus contains no information about syllable boundaries.

31

http://poi.apache.org/

In order to extract the values of syllabic features, I devised and im-
plemented an algorithm for splitting words into syllables. The cur-
rent implementation is tuned specifically for Koalib words, though
the algorithm could probably be used for some other languages,
for example Bulgarian, by adjusting its parameters accordingly.
The idea for the algorithm came after trying to manually split
some of the Koalib nouns into syllables and noticing that they
follow a similar pattern. After careful consultations with my su-
pervisor and expert on Koalib, Nicolas Quint, I defined the sylla-
ble splitter algorithm, making sure that it correctly splits all Koalib
words into syllables.

The algorithm reduces the problem of splitting a word into syl-
lables to finding the start index of each syllable. After knowing
where each syllable starts from, it becomes trivial to split the word
into syllables, as each start index represents a syllable boundary.
Alternatively, it may also be possible to look for the end index of
each syllable, but it seems easier to use start indices instead.

Thus, the essence of the algorithm is in the method for returning
the start indices of the syllables in a word. As discussed before,
a syllable is composed of three parts - onset, nucleus and coda.
The onset and coda consist of one or more consonants and are
optional. The nucleus in Koalib is either one or two vowels and is
obligatory. Thus, a syllable starts either with an onset or with a
nucleus.

Therefore, the problem of finding the start indices of syllables is
solved by identifying the onsets and nuclei in the word. Recall
that in written Koalib, accent marks are put on the first vowel of
each syllable. This writing convention makes it easy to detect syl-
lable nuclei - a valid nucleus consists of a vowel with an accent
mark, which is optionally followed by a vowel without an accent
mark, in case of a two-vowel nucleus.

But if there is a valid onset before the nucleus, then the syllable
starts from that onset. Syllable onsets in Koalib can be divided
into two types, which I have labeled short onsets and long on-
sets. Short onsets are composed of one or two consonant letters
which behave as a single sound - they form a phoneme. Short
onsets can never be split by syllable boundaries - if they contain

32

more than one letter, then these letters always go together.

On the other hand, long onsets are special combinations of two or
more consonants that only go together under particular circum-
stances. Each long onset consists of a consonant letter, followed
by a valid short onset. If the long onset is preceded by a conso-
nant, then it behaves as a single unit and the syllable starts from
the start index of that long onset. If it is preceded by a vowel,
then it is split by a syllable boundary and the syllable starts from
the start index of the short onset, which is within the long on-
set. Thus, when determining the start index of each syllable, the
following conditions are checked for each valid nucleus (in this
order):

• Is the nucleus preceded by a valid long onset?

• If yes, is the long onset preceded by a consonant or nothing5?

– If yes, then the index of the syllable is the index of the
long onset.

• If not, is the nucleus preceded by a valid short onset?

– If yes, then the index of the syllable is the index of the
short onset.

• If not, then the index of the syllable is the index of the nu-
cleus.

Therefore, we need to knowwhat are the valid nuclei, short onsets
and long onsets before we can split a word into syllables. These
are the parameters for the method and depend on the language
for which it is used. In the case of Koalib, the syllable nuclei are
either single vowels with an accent mark or combinations of two
vowels - the first one with an accent mark and the second one
without. But since we are actually only interested in finding the
start of each nucleus, it suffices to know what the valid first vow-
els for each nucleus are. Thus, the set of valid nuclei contains
all the accented vowels in Koalib. The set of valid long onsets
contains all the combinations of a consonant and a short onset
that behave as a single unit only under particular circumstances.

5In case the word starts with that long onset.

33

In the case of Koalib, this includes the prenasalized obstruents
(nasal plus weak obstruent) and the strong obstruents (doubled
weak obstruent). The set of valid short onsets consists of all other
consonant phonemes in Koalib.

After defining the sets of valid nuclei (N), short onsets (S) and
long onsets (L) for the particular language, we can use the sylla-
ble splitter to extract the syllables fromwords. It finds the start in-
dex of each syllable and then places syllable boundaries at those
positions. The procedure for finding the start indices of syllables
works as follows:

Data: a word
Result: a list of the start indices of the syllables in the word
initialize an empty list;
foreach letter in word do

if letter ∈ N then
prefix ← word.substring(0, index(letter));
if prefix.endsWith(l ∈ L) then

if index(l) = 0 or word.substring(0,
index(l)).endsWith(s ∈ S) then
add index(l) to list;

else if prefix.endsWith(s ∈ S) then
add index(s) to list;

else if prefix.endsWith(s ∈ S) then
add index(s) to list;

else
add index(letter) to list;

end
end

end
Algorithm 1: How to find the start indices of syllables in words

Note that S contains all the individual consonant letters, as every
single consonant letter is also a phoneme. It is also important to
keep in mind that certain letters are actually encoded as several
characters, so iterating over the characters in the word may not
always return the complete letters.

34

4.1.3 Evaluation

After extracting the classes and features from the corpus, the re-
sulting data set is exported into an ARFF file. Then it is used to
train and evaluate models with Weka. The main method for eval-
uation is stratified 10-fold cross-validation. This means that the
entire data set is partitioned into 10 subsets. Then for each one
of the 10 folds, a model is trained on 9 of the subsets and tested
on the remaining one, so that in the end each subset has been
used for testing once. Stratification ensures that the distribution
of the class labels is roughly the same in each subset.

Cross-validation accuracy provides a good estimate of how good
the model is at predicting the class label for unseen data. In our
case, it shows how reliable the rules are when used for new nouns.
In addition to cross-validation, the accuracy is also measured on
the training set. This is done simply by training the model on
the whole data set and testing it on the same. The train accu-
racy shows how accurate the rules are, relative to the nouns they
were learned from. By comparing the cross-validation and the
train accuracy, we can see whether the model "overfits" the data
set. This happens when the features are too specific and results
in a model that has a very high train accuracy but a poor cross-
validation accuracy.

It should be noted that the data set is also randomized before
stratification. This means that the instances are shuffled, so that
they do not appear in any particular order. This shuffling has
a slight effect on the accuracy of the model, as it determines
which instances are used for training and which ones for test-
ing. Since some instances are better training examples than oth-
ers, the randomization of the data causes the reported accuracy
to vary slightly, but these differences are never significant. The
shuffling is performed according to a random number generator.
The random number generator, as the name implies, generates
random numbers that are used for reordering the instances. It can
be given a number as an argument and this number is used as
the "seed" for the number generation, so that two random num-
ber generators with the same seed always produce the same se-
quence of "random" numbers if used in exactly the same way.

35

4.1.4 Optimization

The final step was to optimize the model for each experiment.
This involves adjusting the parameters of the machine learning
algorithm and selecting the features that maximize the cross-
validation accuracy. Features were selected with the help of the
InfoGain algorithm. InfoGain evaluates each feature by measur-
ing the information gain with respect to the class. This evaluation
can then be used to rank the features according to their useful-
ness.

The features for each experiment were selected by measuring
the cross-validation accuracy with the full feature set, then sub-
sequently reranking those features and removing the least useful
one, then measuring the new cross-validation accuracy. The pro-
cess is repeated until the maximum accuracy has been reached.
Finally, only the features that maximize the accuracy are used.

4.2 Results
The two methods for predicting the object form - multiple classi-
fiers and single classifier, were thoroughly tested and compared
to a baseline systemwhich simply assigns themost common class
label. Furthermore, four different versions of the data set were
created. Two of them include all the nouns, while the other two
include only the disyllabic nouns. The reason for this is that most
of the nouns in the corpus are disyllabic and they may be more
representative of case inflection than monosyllabic or other poly-
syllabic nouns. Furthermore, two versions of the corpus had their
classes and features extracted from the complete subject and ob-
ject forms, while the other two had them extracted from the root
morphemes. The motivation for this distinction is that the pre-
fixes of nouns do not seem to affect case inflection, so it may be
better to consider only the root mopheme and ignore the prefix
of the subject or object form. Thus, the following data sets were
used for testing:

• all subjects

• all roots

• disyllabic subjects

36

• disyllabic roots

All experiments were performed using the RIPPER rule learner,
whose implementation in Weka is called JRip. Though in some
cases a higher accuracy can be achieved by using C4.5 decision
trees instead, the difference is insignificant. I have decided to use
a rule learner over a decision tree, because the model of a rule
learner does not require addition postprocessing to extract rules.

In all experiments, JRip was set to do pruning of the data, in order
to deal with very rare feature values and class labels that may
lead to overfitting and lower the accuracy. The algorithm was set
to use only rules that apply to at least 2 instances. Lastly, the
seed used for the randomization of the data was 1.

4.2.1 Multiple Classifiers

The first method for predicting the object form is using multiple
classifiers, where each classifier predicts a different aspect of the
object-form change. This results in two prediction tasks - predict-
ing the class suffix and predicting the class tone change. The
features for each task are a subset of the features described in
the previous section. They also vary depending on whether the
data set includes all nouns or only disyllabic ones, with less fea-
tures being needed for disyllabic nouns.

9 features are selected for predicting the suffix class for the data
sets all subjects and all roots, and they are the following:

• last phoneme

• last two phonemes

• last syllable

• last two phoneme types

• last syllable type

• last two syllable types

• last two tones

• squeezed tone pattern

37

• complete tone pattern

For the data sets disyllabic subjects and disyllabic roots, the fea-
tures for the suffix class are the following 6:

• last phoneme

• last two phonemes

• last syllable

• last two syllable types

• squeezed tone pattern

• complete tone pattern

As for the tone change class, 9 features for the data sets all sub-
jects and all roots are chosen:

• last phoneme

• last two phonemes

• first two syllable types

• last syllable type

• last two syllable types

• last tone

• last two tones

• squeezed tone pattern

• complete tone pattern

And the features for the tone change class for the data sets disyl-
labic subjects and disyllabic roots are the following 8:

• last phoneme

• last two phonemes

• last syllable type

• last two syllable types

38

• last tone

• last two tones

• squeezed tone pattern

• complete tone pattern

The table below summarizes the resulting accuracies and com-
pares them to the baseline system:

Class Accuracy
Data set

all disyllabic
subjects roots subjects roots

suffix
base 40.46% 40.46% 39.67% 46%
test 81.09% 78.86% 75.14% 83.62%
train 83.08% 80.85% 81.39% 84.83%

tone
base 30.85% 34.25% 28.67% 31.19%
test 66.42% 66.25% 67.93% 67.84%
train 73.22% 69.65% 73.51% 72.69%

The results show that the classifiers are much more reliable than
the baseline system. It seems that predicting the suffix is easier
than predicting the tone change, perhaps due to the large number
of possible tone changes.

4.2.2 Single Classifier

The second method for predicting the object form is to use a sin-
gle classifier that predicts the whole change in one go. This way,
the class full change is a combination of the classes for the two
multiple classifiers. Once again, the feature sets for all nouns are
different from those for disyllabic ones.

12 features are selected for predicting the full change for the data
sets all subjects and all roots. These are all the features discussed
in the previous section:

• last phoneme

• last two phonemes

• last syllable

39

• last phoneme type

• last two phoneme types

• first two syllable types

• last syllable type

• last two syllable types

• last tone

• last two tones

• squeezed tone pattern

• complete tone pattern

As for the data sets disyllabic subjects and disyllabic roots, only
11 features are selected for predicting the full change:

• last phoneme

• last two phonemes

• last syllable

• last phoneme type

• last two phoneme types

• last syllable type

• last two syllable types

• last tone

• last two tones

• squeezed tone pattern

• complete tone pattern

The table below reports the accuracies and compares them to
the baseline system, as well as a system that uses the multiple-
classifiermethod to predict the suffix and tone change separately,
then combines them together:

40

Class Accuracy
Data set

all disyllabic
subjects roots subjects roots

full
base 24.63% 25.12% 28.26% 20.87%

multiple 62.52% 59.87% 60.05% 64.44%
test 64.59% 66.25% 63.99% 69.05%
train 72.06% 70.73% 72.55% 71.84%

The results show that the single-classifier method is more accu-
rate than using the multiple classifiers and then combining their
predictions. This is probably, because it accounts for any depen-
dencies between the two types of change. Furthermore, it ap-
pears that concentrating on the roots of the nouns and ignoring
their prefixes yields better results. This difference is not very big,
because each nominal root appears only once in the corpus. How-
ever, some prefixes do affect the values of certain features.

4.2.3 Alternative Methods

In addition to themultiple- and single-classifiermethods, the pipeline
method was also implemented and tested. It consists of two clas-
sifiers - the first one predicts the suffix, just like the first classi-
fier in the multiple-classifier method. The second one predicts
the tone change, similarly to the multiple-classifier method, but
it also uses the suffixes, predicted by the previous classifier as
features. This allows it to capture some dependencies between
the two classes when predicting the second one.

The classifiers in the pipeline are always trained on the correct
features from the training data. This means that the second clas-
sifier trains on the correct suffixes. However, in the testing phase
it does not have access to the correct values of this feature, there-
fore it uses the suffixes that are predicted by the previous classi-
fier. Since Weka does not implement such a functionality, to the
best of my knowledge, I have implemented the pipeline design
myself.

The pipeline classifiers use exactly the same parameters and fea-
tures as those in the multiple-classifier method, except that each
successive classifier also uses the class of the previous one as an
extra feature. The table below summarizes the accuracies for the

41

pipeline method and compares it to the two main methods:

Class Accuracy
Data set

all disyllabic
subjects roots subjects roots

suffix multiple 81.09% 78.86% 75.14% 83.62%
pipeline 80.35% 78.52% 76.09% 83.74%

tone multiple 66.42% 66.25% 67.93% 67.84%
pipeline 80.18% 80.51% 79.48% 78.88%

full
multiple 62.52% 59.87% 60.05% 64.44%
single 64.59% 66.25% 63.99% 69.05%
pipeline 67% 66% 63.32% 68.93%

As the table shows, the pipeline is about as good at predicting
the suffix, as the classifier in the multiple method. This is normal,
because the features are exactly the same. The differences are
probably due to a different way of randomizing data, but they are
very small of course. However, the pipeline is very good at pre-
dicting the second class - the tone change. This is because the
information from the suffix classifier seems to be helpful. How-
ever, when the two labels are combined and compared to the
label, predicted by the single classifier, there is not much differ-
ence between the two. Apparently, the single classifier is equally
good at capturing the dependencies between the two classes.

Since the pipeline method did not prove to be much more ef-
fective than the single-classifier method for predicting the whole
change, I would not use it for discovering the rules, because it
would only producemore complicated rules, that also require knowl-
edge of the suffix of the object to predict its tone pattern. How-
ever, I consider it worthy of mentioning.

4.3 Discussion
Considering the complexity of the task and the limited amount
of available data, it seems that the classifiers manage to achieve
a reasonable accuracy for unseen data. The entire object-form
change can be predicted correctly in about 66% of the cases. The
rest of the object-form changes are either too irregular to predict
or involve properties that are not available from the data.

42

As for discovering some actual rules, it seems that it is better
to look at the root morphemes and ignore the prefixes of nouns.
The object forms of disyllabic nouns are slightly easier to predict,
but not much more different than predicting them for any nouns.
For the experiments, the rule learner was set to use any rules that
apply to at least two cases. This yields good accuracies, but some
of the rules are not very interesting from a practical point of view.
By setting the minimum instances per rule higher, we can obtain
smaller models with fewer, but more interesting rules, at the cost
of a slight decrease in accuracy.

Finally, I would like to present some discovered rules. These rules
are all extracted from the all roots data set. The parameters and
features used are exactly the same as those in the previously
mentioned experiments, except that JRip was set to use only rules
that cover at least 10 instances. This greatly reduces the size of
the model for a small decrease in accuracy.

First, here are some rules for predicting the suffix only. They are
able to predict it for unfamiliar nouns with 77.2% accuracy:

• (LAST-TWO-TONES = LH) and (LAST-TWO-PHONEME-TYPES
= CV) => SUFFIX-CLASS=ŋe (104.0/12.0)

• (LAST-TWO-TONES = L3H) and (LAST-TWO-PHONEME-TYPES
= CV) => SUFFIX-CLASS=ŋe (22.0/1.0)

• (LAST-TWO-TONES = LH) and (LAST-TWO-PHONEME-TYPES
= VC) => SUFFIX-CLASS=e (109.0/11.0)

• (LAST-TWO-PHONEME-TYPES = VC) and (LAST-TWO-TONES
= L3H) => SUFFIX-CLASS=e (18.0/1.0)

• (LAST-TWO-PHONEME-TYPES=VC) and (LAST-TWO-PHONEMES
= AN) and (LAST-TWO-TONES = HL) => SUFFIX-CLASS=e
(38.0/13.0)

• (LAST-PHONEME = A) => SUFFIX-CLASS=NONE (147.0/7.0)

• (LAST-TWO-PHONEME-TYPES = CV) and (SQUEEZED-TONE-
PATTERN = L) => SUFFIX-CLASS=NONE (58.0/13.0)

• (LAST-TWO-TONES= L) => SUFFIX-CLASS=NONE (102.0/47.0)

43

• (LAST-TWO-PHONEME-TYPES=CV) and (LAST-TWO-SYLLABLE-
TYPES = VC.CV) => SUFFIX-CLASS=NONE (43.0/18.0)

• (LAST-TWO-SYLLABLE-TYPES=VV.CV) => SUFFIX-CLASS=NONE
(39.0/17.0)

• (LAST-TWO-TONES = H) and (LAST-SYLLABLE-TYPE = VC) =>
SUFFIX-CLASS=NONE (15.0/4.0)

• => SUFFIX-CLASS=a (511.0/110.0)

As you can see, the rules have two sides. The left side contains
some conditions, which operate in conjunction with each other.
Each condition checks if a specific feature has a specific value.
If this is the case, then the condition is fulfilled. If all conditions
are fulfilled, the rule predicts a class - in this case a suffix. Other-
wise, we move on to the next rule and check if its conditions are
fulfilled. Finally, if no rule is applied, we reach the default rule,
which has no conditions, and apply it. The numbers in the brack-
ets show the reliability of each rule. The first number indicates
how many instances the rule applies to in total, while the second
number indicates the number of instances for which the rule pre-
dicted a wrong class.

The following rules are used to predict the tone change. They
have an accuracy of 64.01% on unseen data:

• (LAST-TWO-TONES = L3H) => TONE-CHANGE-CLASS=L3H-
LHH (41.0/3.0)

• (COMPLETE-TONE-PATTERN= LL) and (FIRST-TWO-SYLLABLE-
TYPES=VC.CVC) => TONE-CHANGE-CLASS=LL-HLH (45.0/9.0)

• (COMPLETE-TONE-PATTERN = HL) and (LAST-SYLLABLE-TYPE
= CVC) => TONE-CHANGE-CLASS=HL-LHL (132.0/35.0)

• (COMPLETE-TONE-PATTERN = HH) and (LAST-SYLLABLE-TYPE
= CVC) => TONE-CHANGE-CLASS=HH-LLH (98.0/8.0)

• (LAST-TONE= L) and (LAST-PHONEME=A) => TONE-CHANGE-
CLASS=NO-CHANGE (137.0/47.0)

• (SQUEEZED-TONE-PATTERN = L) and (LAST-TWO-TONES = L)
=> TONE-CHANGE-CLASS=NO-CHANGE (108.0/51.0)

44

• => TONE-CHANGE-CLASS=ADD-H (645.0/282.0)
Finally, these rules predict the whole inflection. Their accuracy on
unseen data is 64.43%:
• (LAST-TWO-TONES = L3H) and (LAST-PHONEME-TYPE = C)
=> FULL-CHANGE-CLASS=L3H-LHH + e (18.0/1.0)

• (LAST-TWO-TONES = L3H) => FULL-CHANGE-CLASS=L3H-
LHH + ŋe (23.0/2.0)

• (LAST-TWO-PHONEMES=AN) and (SQUEEZED-TONE-PATTERN
= HL) => FULL-CHANGE-CLASS=HL-LHL + e (33.0/12.0)

• (COMPLETE-TONE-PATTERN= LL) and (FIRST-TWO-SYLLABLE-
TYPES=VC.CVC) => FULL-CHANGE-CLASS=LL-HLH+ a (45.0/9.0)

• (COMPLETE-TONE-PATTERN = HL) and (LAST-SYLLABLE-TYPE
= CVC) => FULL-CHANGE-CLASS=HL-LHL + a (103.0/35.0)

• (LAST-TWO-TONES = LH) and (LAST-PHONEME-TYPE = V) =>
FULL-CHANGE-CLASS=ADD-H + ŋe (111.0/15.0)

• (COMPLETE-TONE-PATTERN = HH) and (LAST-SYLLABLE-TYPE
= CVC) => FULL-CHANGE-CLASS=HH-LLH + a (98.0/8.0)

• (LAST-TWO-TONES = LH) => FULL-CHANGE-CLASS=ADD-H
+ e (109.0/12.0)

• (SQUEEZED-TONE-PATTERN = LHL) and (LAST-PHONEME =
E) => FULL-CHANGE-CLASS=ADD-H + a (22.0/2.0)

• (LAST-PHONEME=O) and (SQUEEZED-TONE-PATTERN= LHL)
=> FULL-CHANGE-CLASS=ADD-H + a (16.0/1.0)

• (LAST-PHONEME = O) and (SQUEEZED-TONE-PATTERN = HL)
=> FULL-CHANGE-CLASS=ADD-H + a (51.0/25.0)

• (FIRST-TWO-SYLLABLE-TYPES=CVC.CVC) => FULL-CHANGE-
CLASS=ADD-H + a (29.0/9.0)

• (SQUEEZED-TONE-PATTERN = HL) and (LAST-PHONEME = E)
=> FULL-CHANGE-CLASS=ADD-H + a (58.0/25.0)

• => FULL-CHANGE-CLASS=NO-CHANGE+NONE (490.0/260.0)
Thus, even with so few rules, it is possible to correctly predict the
object form for a good portion of nouns.

45

5 Conclusion
This thesis demonstrates how machine learning methods can be
used to discover case inflection rules in Koalib. By knowing what
properties of nouns are involved in the case inflection, it is possi-
ble to learn the rules for that automatically from training data.
Though these rules are far from perfect, they are able to pre-
dict the change from subject to object form for unfamiliar nouns
with about 66% accuracy, while covering all of the available data.
Whether the rest of the object forms require additional informa-
tion to predict or are simply too irregular to follow any rules, is
uncertain.

The automatically discovered rules provide a good insight into
the grammar of this remarkable language. However, there are
some even stranger phenomena, regarding case inflection, that
this study does not cover. For example, certain nouns in Koalib
appear to havemore than one object form (Quint, unp). This study
does not attempt to predict which nouns have two object forms
and which have one, as it focuses on predicting only one of them.
However, it might be interesting to account for those cases as
well, in future studies.

But such nouns are quite rare and its possible that only one of
the object forms is preferred, while the other one is rare or ar-
chaic. What could be more important for discovering case inflec-
tion rules, would be to examine if there are other potentially useful
features, beyond the ones that can be extracted from the current
corpus, and collect an even larger corpus with such additional
information, as that would provide more examples for machine
learning and result in a more reliable model. But I have tried to
create the optimal model, given the available data, and I think
that the rules discovered from it are already quite useful in giving
an insight into the grammar of the Koalib language.

46

References
Cohen, W. W. (1995). Fast effective rule induction. In Proceedings
of the Twelfth International Conference on Machine Learning,
pages 115--123. Morgan Kaufmann.

Furnkranz, J. and Widmer, G. (1994). Incremental reduced er-
ror pruning. In International Conference on Machine Learning,
pages 70--77.

Quinlan, J. R. (1986). Induction of decision trees. Machine learn-
ing, 1(1):81--106.

Quinlan, J. R. (1987). Generating production rules from decision
trees. In Proceedings of the Tenth International Joint Conference
on Artificial Intelligence, volume 30107, pages 304--307. Cite-
seer.

Quinlan, J. R. (1993). C4.5: Programs for machine learning, vol-
ume 1. Morgan Kaufmann.

Quint, N. (2006). Do you speak Kordofanian? 'Fifty Years After
Independence: Sudan's Quest for Peace, Stability and Identity'.

Quint, N. (2010a). Benefactive and malefactive verb extensions
in the Koalib verb system. Benefactives and malefactives. Ty-
pological perspectives and case studies, pages 295--315.

Quint, N. (2010b). The phonology of Koalib. Rüdiger Köppe.

Quint, N. (unp.). Case in Koalib (a Kordofanian language) and re-
lated Heibanian languages. To be published.

Schadeberg, T. C. (1981). A survey of Kordofanian: The Heiban
group, volume 1. H. Buske.

Schadeberg, T. C. et al. (1989). Kordofanian. The Niger-Congo
Languages, page 66.

Stevenson, R. C. (1956). A survey of the phonetics and grammat-
ical structure of the Nuba Mountain languages, with particular
reference to Otoro, Katcha and Nyima. Reimer.

Witten, I. H., Frank, E., and Hall, M. A. (2011). Data Mining: Practi-
cal Machine Learning Tools and Techniques. Morgan Kaufmann.

47

	Avertissement UL[1]
	thesis-boychev
	Introduction
	Background
	Koalib
	Tonality
	Vowel Harmony
	Noun Classes
	Case

	Machine Learning
	Feature Selection
	Decision Trees
	Rule Learning

	Methods
	Object-Form Prediction
	Classes
	Suffix
	Tone Change
	Full Change

	Features
	Phonemic Features
	Syllabic Features
	Tonal Features

	Experiments
	Implementation
	Preprocessing
	Syllabification
	Evaluation
	Optimization

	Results
	Multiple Classifiers
	Single Classifier
	Alternative Methods

	Discussion

	Conclusion

